ELECTRICITY DEMAND PREDICTION OF LARGE COMMERCIAL BUILDINGS USING SUPPORT VECTOR MACHINE

Indika Sujeewa Samarawickrama

(108863K)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2014

ELECTRICITY DEMAND PREDICTION OF LARGE COMMERCIAL BUILDINGS USING SUPPORT VECTOR MACHINE

N.G. Indika Sujeewa Samarawickrama

(108863K)

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2014

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisors:

Dr. K.T.M. Udayanga Hemapala

Date:

Dr. Buddhika Jayasekara

Date:

ACKNOWLDEGEMENTS

First of all, I would like to express my deepest sense of gratitude to my supervisors, Dr. K.T.M.U. Hemapala and Dr. B. Jayasekara, for their support, guidance and valuable advice throughout these academic years. I would like to thank University of Moratuwa for giving me the opportunity to study in the institute. My appreciation and thanks to the following people who have been very helpful and for their great contribution in the accomplishment of the study:

• All the building owners and managers for their help in the data collection.

• The members of Metrological Department, for sharing their knowledge and experiences and providing all weather data to the research.

Finally, thanks to all lecturer & my friends whom I have been working with throughout the period of study in University of Moratuwa.

ABSTRACT

In an ideal competitive commercial world, having accurate energy forecasting tool becomes a Key Performance Indicator (KPI) for the building owners. Energy forecasting plays a crucial role for any building when it undergoes the retrofitting works in order to maximize the benefits and utilities. This thesis elaborates accurate energy forecasting tools based on Support Vector Machine Regression (SVMR). SVM is one of the most important methods which is widely applied in different literatures, in forecasting and regression of random data sets. It estimates the regression using kernel function, which is composed of a set of linear functions that is defined in a high-dimensional feature space while, inputs having nonlinear performance.

In the case study, four commercial buildings in Colombo, Sri Lanka, are randomly selected and the models were developed and tested using monthly landlord utility bills. Careful analysis of data identified three important parameters, (Dry-bulb temperature (T), Solar Radiation (SR) and Relative humidity (RH)), which have significant contribution to the model, which is under consideration. Stepwise searching method is used to investigate the performance of SVM with respect to the three tunable parameters, C, γ and ε ; and thereby to develop the radial-basis function (RBF) kernel.

The results showed that the structure of the training set has significant effect to the accuracy of the prediction. The analysis of the experimental results reveal that all the forecasting models give an acceptable result for all four commercials buildings with low coefficient of variance & a low percentage error (% error).

TABLE OF CONTENTS

Declaration	i
Acknowledgement	ii
Abstract	iii
Table of Contents	iv
List of Figures	viii
List of Tables	ix
List of Abbreviations	Х
List of Appendices	xii
1. INTRODUCITON	1
1.1 Background	1
1.2 Definition of Baseline Model	4
1.3 Research Objectives	5
1.4 Scope and Limitations University of Moratuwa, Sri Lanka.	5
1.5 Organization of These's Theses & Dissertations www.lib.mrt.ac.lk	6
2. LITERATURE REVIEW	7
2.1 Introduction	7
2.2 Classification of Baseline Models	7
2.2.1 Regression-based models	7
2.2.2 Variable-based degree-day models	8
2.2.3 Linear regression models	9
2.2.4 Single-variant linear regression model	10
2.2.5 Multivariate linear regression model	10
2.2.6 Integrated model	11
2.2.7 Change-point models	11
2.2.8 Calibrated simulation	12
2.2.10. Artificial neural networks	13
2.2.11 Fourier series	14

2.2.12 Bin method	15
2.2.13 Support vector machines	15
2.3 Discussion	20
3. METHODOLOGY FOR EVALUATION AND PRE-PREPARATION	
TECHNIQUES	23
3.1 Introduction	23
3.2 Errors and Bias Inside the Model	24
3.3 Normalize Energy Use	25
3.4 Percentage Changes Based on Annul Energy Use	25
3.5 Possibilities of Utility Bill Reading Dates	26
3.6 Primary Modeling of Whole Building Energy Consumption	26
3.7 Selection of Weather Variables	27
3.7.1 Data collection	27
3.7.2 Discussion	28
4. BASLING MODELS OF BUILDING LANDLORD ENERGY Electronic Theses & Dissertations www.lib.mrt.ac.lk 4.1 Introduction	29 29
4.1.1Building Landlord Energy Consumption	29
4.2 Motivation	30
4.3 Selection of Independent Variables	31
4.4 Methodology for the Application of SVM in Baseline Monthly Model	1
Development	31
4.4.1 The objectives of the SVMs investigations	32
4.4.2 Model development for forecasting of building electricity lo	ad
	32
4.4.3 Data collection	34
4.5 Support Vector Machine Regression	36
4.5.1 Theory support vector regression (SVR)	37
4.5.2 Kernel selection	41
4.5.3 Normalizing parameters	42

	4.6 Model Development for Monthly& Weekly Load Prediction	43
	4.6.1 Pre-processing of collected data	43
	4.6.2 Formatting data	46
	4.6.3 Evaluation indices	46
	4.6.4. SVM algorithm development	48
	4.6.5 Storage effects analysis to prediction	55
	4.7 Results of SVM Prediction for Energy Load Forecasting	56
	4.7.1 Results of SVM for prediction of landlord energy consumpt	ion
		59
	4.7.2 Validation of the results	59
	4.7.3 Residual values calculation	60
	4.7.4 Discussion	60
	4.8 Baseline Models of Building Weekly Landlord Energy Consumption	61
	4.8.1 Data collection	61
	4.8.2 Preprocessing of collected data	62
	4.8.3 Weather data	62
	4.8.4 Model identification Electronic Theses & Dissertations	63
	4.8.5 Formatting data www.lib mrf.ac.lk	63
	4.8.6 Evaluation indices	63
	4.8.7 Parameter characteristics of SVM	64
	4.8.8 Modification of the width parameter γ of Gaussian kernel	67
	4.8.9 Storage effects analysis to prediction	68
	4.8.10 Results of SVM for prediction of landlord energy consump	otion
		69
	4.8.11 Residual values calculation	70
	4.9 Observations of the Experiment on Both Daily & Monthly Load	
	Forecasting	70
	4.10 Implication	72
5.	CONCLUSION & RECOMMENDATIONS	73
	5.1 Review and Achievement of Research Objectives	73
	5.2 Contribution of the Study	74

5.3 Recommendations for Further Research	75
REFERENCES	76
APPENDIX A: An Overview of Statistical Learning Theory Used By SVMs	84
APPENDIX B: An Introduction to LIBSVM 2.6 Program	88
APPENDIX C: Matlab Code	91

LIST OF FIGURES

Figure 1.1: Saving determination using the baseline model	4
Figure 4.1: Energy demand data profile of four years.	34
Figure 4.2: Weather data profile of four years.	35
Figure 4.3: Parameter for the support vector regression.	39
Figure 4.4: Proposed model to energy forecasting.	45
Figure 4.5: Results of C value with MSE.	52
Figure 4.6: Results of C value with NSV.	52
Figure 4.7: Results of ε value with RMSE for all four buildings.	53
Figure 4.8: NSV with ε value for all four builings.	53
Figure 4.9: Results of γ value with MSE.	54
Figure 4.10: Results of γ value with NSV.	55
Figure 4.11: Results of SVM prediction for Building A.	57
Figure 4.12: Results of SVM prediction for Building B.	57
Figure 4.13: SVM prediction for Building C. University of Moratuwa, Sri Lanka.	58
Figure 4.14 SYM prediction for Building D& Dissertations	58
Figure 4.15 Residuce of estimated tandlord energy consumption.	60
Figure 4.16: Energy demand data profile of four years.	61
Figure 4.17: Weather data profile of four years.	62
Figure 4.18: Results of SVM prediction for Building E	65
Figure 4.19: Results of SVM prediction for Building E	65
Figure 4.20: Results of SVM prediction for Building E	66
Figure 4.21: Results of SVM prediction for Building E	66
Figure 4.22: Results of SVM prediction for Building E	67
Figure 4.23: Results of SVM prediction for Building E	68
Figure 4.24: Results of SVM prediction for Building E	69
Figure 4.25: Residues of estimated landlord energy consumption.	70

LIST OF TABLES

Table 2.1: Comparison of different models in the literature.	21
Table 2.2: Summary for some commonly used baseline models.	22
Table 4.1: Total energy consumption of four buildings.	44
Table 4.2: Results for C, ε , γ after SVMR–Buildings (A, B, C, D).	52
Table 4.3: Historical monthly data for Input parameters setting.	56
Table 4.4: The prediction errors of SVM models in different cases.	56
Table 4.5: Comparison of results with standards.	59
Table 4.6: Total energy consumption of four buildings.	63
Table 4.7: Results for C, ε , γ after SVMR – Building (E).	67
Table 4.8: Results for Storage effect to Building (E).	68
Table 4.9: Results for storage effect to Building (E).	69
Table 4.10: Results for short term and medium term load forecasting.	72

LIST OF APPENDICES

APPENDIX- A: An overview of statistical learning theory used by SVMs	82
APPENDIX- B: An introduction to LIBSVM 2.6 program	86
APPENDIX- C: Matlab Code	89

