ANALYZING POWER QUALITY ISSUES OF WIND POWER PLANTS IN PUTTALAM

D. M. Mahesha Thilini Dissanayake

(109207M)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2014

ANALYZING POWER QUALITY ISSUES OF WIND POWER PLANTS IN PUTTALAM

D. M. Mahesha Thilini Dissanayake

(109207M)

Dissertation submitted in partial fulfillment of the requirements for the degree Master

of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

December 2014

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

UOM Verified Signature

Date: 18.12.2014

D.M.M.T. Dissanayake

The above candidate has carried out research for the Masters Dissertation under my supervision. Electronic Theses & Dissertations

UOM Verified Signature

Date: [9] 12 / 2014.

Date: 19/12/2014

Dr. W.D.A.S. Rodrigo

UOM Verified Signature

Dr. H.M. Wijekoon

ABSTRACT

Wind Power development has become a booming industry due to its advantages over conventional thermal power sources. However, wind is considered as an intermittent source in terms of power quality as wind turbines have an uneven power generation following natural variations of wind. Power quality (PQ) is an important issue for electricity consumers at all levels of usage, particularly industrial sector as PQ disturbances ultimately lead to huge economic losses and safety concerns.

The research objectives are; to study on major power quality issues associated with four wind plants in Puttalam, propose suitable PQ improving methods and to identify the most suitable wind technology in view of power quality. Project scope includes measurement of electrical parameters at each plant, analysis of parameters based on "IEC 61400-21" and "Grid Connection Requirement" published by Ceylon Electricity Board, study on mitigation techniques, computer modeling and simulation in MATLAB/SIMULINK environment to investigate harmonic mitigation. For each power quality aspect, a set of norms and marginal values were set to evaluate each wind plant's performance. There are four distinct wind technologies and three of them are available in Sri Lanka. Out of these technologies, Wind Turbine type "C" which employs a Doubly-Fed Induction Generator with a partial scale power converter shows the best power quality characteristics.

From Measurements and Data Analysis it was concluded that, none of the investigated plants adhere to power quality requirements of the grid code. Neither the utility (CEB) nor the Wind Power Producers pay adequate attention on these violations. It is recommended to pay more attention on PQ deviations. Systems must be developed to continuously monitor PQ parameters and take necessary actions to keep them within specified levels. Further, hybrid filters to reduce harmonic distortion and Dynamic Voltage Restorers to mitigate voltage sags are proposed for WPPs inderstudy. Theses & Dissertations

Keywords: Power Quality, Wind Power Harmonics, Active Filter

ACKNOWLEDGEMENT

There are many individuals who deserve acknowledgement for their contribution towards successful completion of this research.

First, I would like to express my gratitude to my supervisors; Dr. W.D.A.S. Rodrigo and Dr. H.M. Wijekoon for their valuable advices, guidance and assistance throughout the entire period of study. I am much grateful for sharing their vast knowledge and expertise on the field of Power Quality.

Secondly, my sincere acknowledgement is towards my employer; Ceylon Electricity Board for providing me the necessary equipment for data recording and the authorities of Seguwantivu Wind Power (Pvt) Ltd, Vidathamunai Wind Power (Pvt) Ltd, Nirmalapura Wind Power (Pvt) Ltd and LTL Holdings for granting me permission to monitor and record parameters of my choice.

I am much grateful to the Head of the Department of Electrical Engineering, the Course Coordinator of Master of Electrical Engineering Course and to the staff of the Department of Electrical Engineering for their valuable guidance and corporation related to all academic works during the course.

My very special thanks go to my dear husband Nalaka for his continuous encouragement, assistance and patience during the entire period. My research would never be successful without his tremendous support.

Lastly, there are many friends and colleagues who have not been personally mentioned here that I am much indebted for their contribution at various stages of the research to make it successful.

TABLE OF CONTENTS

Declaration of the Candidate & Supervisors	i
Abstract	ii
Acknowledgements	iii
Table of Contents	iv
List of Figures	Х
List of Tables	xiv
List of Abbreviations	xvi
List of Appendices	xix

Chapters

	-				
1.	Intro	oduction	l		1
	1.1	Power	r Quality Iss	ues associated with Wind Plants	2
	1.2	Motiv	vation		2
	1.3	Objec	tives of the	Project of Moratuwa Sri Lanka	3
	1.4	Scope	of the Proje	^{eet} heses & Dissertations	4
	1.5	Over	iew of the L	Pissertation	4
2.	Fund	lamenta	ls of Wind	Energy Conversion	6
	2.1	Histor	rical Develo	pment	6
	2.2	Basics	s in Wind Po	ower Generation	6
	2.3	Classi	fication of V	Wind Turbines	8
		2.3.1	Type A –	Fixed speed Wind Turbine	8
		2.3.2	Variable-s	peed Wind Turbines	10
			2.3.2.1	Type B – Partial Variable speed Wind	l Turbine
				with variable rotor resistance	11
			2.3.2.2	Type C – Variable speed Wind Turbin	ne with
				Partial-Scale Power Converter	11
			2.3.2.3	Type D – Variable speed Wind Turbin	ne with
				Full-Scale Power Converter	13
	2.4	Positi	on of Wind	Plants in Sri Lanka	14

3.	Powe	Power Quality and Literature Review on Power Quality of Wind Power				
	Plant	ts			17	
	3.1	Voltag	ge Events		18	
		3.1.1	Voltage S	ag / dip	18	
		3.1.2	Under vol	tage Events	19	
		3.1.3	Interruptio	ons	19	
		3.1.4	Over volta	nges	19	
			3.1.4.1	Power Frequency over voltages	20	
			3.1.4.2	Switching over voltages	20	
			3.1.4.3	Lightning over voltages	20	
		3.1.5	Voltage F	luctuations and Flicker	20	
		3.1.6	Voltage U	nbalance	23	
	3.2	Wave	form Events	3	23	
		3.2.1	Harmonic	S	23	
			3.2.1.1	Harmonic Distortion	24	
		J	Jai2.1.2 Juiversity	Adverse effects of Harmonics	25	
	(20)) E	Electronic	Theamonic Mitigationons	26	
	3.3	Litera	ture Review	or Power Quality of Wind Power Plants	26	
		3.3.1	Power Qu	ality Issues associated with Wind Plants	26	
		3.3.2	Voltage va	ariations and Fluctuations	27	
		3.3.3	Reactive H	Power	28	
		3.3.4	Voltage U	nbalance	29	
		3.3.5	Flicker iss	ue in wind plants	30	
		3.3.6	Harmonic	issues associated with wind plants	30	
4.	Meth	Methodology and Measurements				
	4.1	Metho	odology		33	
	4.2	Measu	urements		35	
		4.2.1	Equipmen	t used for Data Logging	36	
		4.2.2	Plant 01 :	Seguwantivu WPP	37	
		4.2.3	Plant 02 :	Vidatamunai WPP	39	

	4.2.4	Plant 03 : Nii	rmalapura WPP	39
	4.2.5	Plant 04 : Pav	vandanavi WPP	40
Data	Analysi	is		43
5.1	Voltag	ge Variations		43
	5.1.1	Interruptions		44
	5.1.2	Voltage sags		45
	5.1.3	Under voltag	e Events	46
5.2	Frequ	ency Variation	8	47
5.3	Behav	vior of WPPs d	uring Normal Operation	47
	5.3.1	Allowable lir	nits for Harmonic Content	49
	5.3.2	Harmonic Sp	ectrums	49
	5.3.3	Harmonic co	ntent in Voltage Waveform	52
		5.3.3.1	Harmonic content in voltage waveform wh	ien
			P<0	52
ŧ	ST T	5.3.3.2	Harmonic content in voltage waveform wh	ien
		Electronic T	heses & Dissertations	53
A A A A A A A A A A A A A A A A A A A	W	₩.3.3.313b.mrt	Harmonic content in voltage waveform wh	ien
			0 < P < 850 kW	54
		5.3.3.4	Harmonic content in voltage waveform whether the second se	ien
			850 kW < P < 5 MW	55
		5.3.3.5	Harmonic content in voltage waveform whether the second se	ien
			5 MW < P < 10 MW	56
		5.3.3.6	Total Harmonic Distortion of Voltage	57
	5.3.4	Harmonic co	ntent in Current Waveform	59
		5.3.4.1	Harmonic content in current waveform wh	en
			P<0	59
		5.3.4.2	Harmonic content in current waveform wh	en
			P=0	60
		5.3.4.3	Harmonic content in current waveform wh	en
			0 < P < 850 kW	61

5.

		5.3.4.4	Harmonic Content in Current Waveform wh	nen
			850 kW < P < 5 MW	62
		5.3.4.5	Harmonic content in current waveform whe	n
			5 MW < P < 10 MW	63
		5.3.4.6	Total Harmonic Distortion of Current	65
	5.3.5	Voltage Ui	nbalance during Steady State	66
	5.3.6	Variation of	of Power Factor during Steady State	67
	5.3.7	Variation of	of Short Term Flicker Index during Steady State	69
Eval	uation o	f Power Qu	ality during Voltage Events and Improving	
Tech	niques			71
6.1	Power	r Quality dur	ing Voltage Events in Plant 01	71
6.2	Power	r Quality dur	ing Voltage Events in Plant 02	71
6.3	Power	r Quality dur	ing Voltage Events in Plant 03	72
6.4	Power	r Quality dur	ing Voltage Events in Plant 04	72
6.5	Perfor	mance Com	parison of Voltage Events	73
6.6	Simul	ation Result	sof Moratuwa, Sri Lanka.	73
6.7	Impro	ving Voltage	e Sags in Wind Plants	77
	6.7.1	Static Sync	chronous Compensator (STATCOM)	77
	6.7.2	Dynamic V	Voltage Restorer (DVR)	78
Eval	uation o	f Power Qu	ality during Steady State and Improving	
Tech	niques			80
7.1	Behav	vior of Harm	onics	80
	7.1.1	Harmonics	in Voltage Waveform	80
		7.1.1.1 Ha	rmonic behavior at Plant 01	80
		7.1.1.2 Ha	rmonic behavior at Plant 02	81
		7.1.1.3 Ha	rmonic behavior at Plant 03	81
		7.1.1.4 Ha	rmonic behavior at Plant 04	82
	7.1.2	Harmonics	in Current Waveform	84
		7.1.2.1 Ha	rmonic behavior at Plant 01	84
		7.1.2.2 Ha	rmonic behavior at Plant 02	84

6.

7.

		7.1.2.3 Harmo	onic behavior at Plant 03	84
		7.1.2.4 Harmo	onic behavior at Plant 04	85
7.2	Harmo	onics Mitigation	n Techniques	86
	7.2.1	Harmonic Filt	ering	87
		7.2.1.1 Passiv	e Harmonic Filters	88
		7.2.1.1	.1 Series Passive Harmonic Filter	89
		7.2.1.1	.2 Shunt Passive Harmonic Filter	90
		7.2.1.2 Active	Harmonic Filters	90
		7.2.1.2	2.1 Shunt Active Harmonic Filter	92
		7.2.1.2	2.2 Series Active Harmonic Filter	93
		7.2.1.2	2.3 Hybrid Active/ Passive Harmonic Filters	93
	7.2.2	Harmonic Cu	rent Cancellation	94
	7.2.3	Design Consid	lerations of Equipment	94
	7.2.4	Recommende	d Harmonic Mitigation Method	94
7.3	Flicke	r Emission and	Mitigation	95
7.4	Behav	Iniversity of	Moratupwa Sri Lanka	96
	E 4.1	Electronic The Power factor	leses & Dissertations	96
	5 W	ww.lib.mrt. 7.4.1.1	ac.lk Static Capacitor	96
		7.4.1.2	Synchronous Condenser	96
		7.4.1.3	Phase Advancer	97
	7.4.2	Improving Po	ower Factor at Wind Plants	97
75	Comp	arison of Wind	Plants during Normal Operation	07
1.5	Comp		Flants during Normal Operation	91
Comp	uter M	lodeling and Si	mulation of a Harmonic Filter	99
8.1	Devel	opment of the C	Computer Model	99
	8.1.1	Development	of the Controller for Harmonic Detection and	ł
		Generation of	Gate Signals	100
	8.1.2	Development	of the Voltage Fed PWM Inverter (VSI)	101
	8.1.3	Development	of the Passive Filter	102
8.2	Simul	ation Results		102

8.

9.	Concl	usions and Recommendations	108
	9.1	Conclusions	108
	9.2	Recommendations	109
		9.2.1 General Recommendations for grid connected wind power	plants
			109
		9.2.2 Specific Recommendations for wind plants under study	110
		9.2.2.1 Recommendations for Plant 01 and Plant 02	110
		9.2.2.2 Recommendations for Plant 03	110
		9.2.2.3 Recommendations for Plant 04	110
	9.2	Provision for Future Research	111
Refere	ence Lis	t	112
Apper	ndix A		118
Apper	ndix B		125
Apper	ndix C		134
Apper	ndix D		136
Apper	ndix H	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	144

LIST OF FIGURES

		Page
Figure 1.1	Increase of Global Cumulative installed Wind Capacity in MW	1
Figure 2.1	Major components of a Wind Plant	8
Figure 2.2	Basic components of a WPP employing Type A Wind Turbine	9
Figure 2.3	Basic components of a WPP employing Type B Wind Turbine	11
Figure 2.4	Basic components of a WPP employing Type C Wind Turbine	11
Figure 2.5	Basic components of a WPP employing Type D Wind Turbine	13
Figure 3.1	Classification of Voltage Events	18
Figure 3.2	Voltage Envelope	21
Figure 3.3	IEC Flicker Perception Curve for $P_{ST} = 1$	22
Figure 3.4	Distorted Voltage and Current waveforms of a wind plant directly	,
	connected to a distribution Feeder	31
Figure 3.5	Harmonics generated in a typical Six-Pulse Converter	32
Figure 4.1	(a): Research Methodology followed during Normal Operation of University of Moratuwa, Sri Lanka.	22
	(b): Research Methodology followed during Voltage Events	33 34
Figure 4.2	Seasonal Wind Pattern in Puttalam	35
Figure 4.3	Major Plant Components at Seguwantivu WPP	37
Figure 4.4	Major Plant Components at Nirmalapura WPP	39
Figure 4.5	Major Plant Components at Pavandanavi WPP	41
Figure 5.1	Variation of Active Power Generation in Case 02	48
Figure 5.2	Durations of categories of power generation	48
Figure 5.3	(a): Voltage and Current Harmonic Spectrum for Case 01	50
	(b): Voltage and Current Harmonic Spectrum for Case 02	50
	(c): Voltage and Current Harmonic Spectrum for Case 03	51
	(d): Voltage and Current Harmonic Spectrum for Case 04	51

		Page
Figure 5.4	Comparison of Average Harmonic Content in Voltage Waveform	
	when P<0	52
Figure 5.5	Comparison of Average Harmonic Content in Voltage Waveform	
	when P=0	53
Figure 5.6	Comparison of Average Harmonic Content in Voltage Waveform	
	when $0 < P < 850 \text{ kW}$	54
Figure 5.7	Comparison of Average Harmonic Content in Voltage Waveform	
	when $850 \text{ kW} < P < 5 \text{ MW}$	55
Figure 5.8	Comparison of Average Harmonic Content in Voltage Waveform	
	when 5 MW $< P < 10$ MW	56
Figure 5.9	Behavior of Average V_{THD} in four wind plants	58
F' 5 10		1
Figure 5.10	Comparison of Average Harmonic Content in Current Waveform	when
	P<0	59
Figure 5.11	Comparison of Average Harmonic Content in Current Waveform	when
	P=0 University of Moratuwa, Sri Lanka.	60
Figure 5.12	Comparison of Average Flarmonic Content of Current Waveform	when
Contraction of the	0 < P < 850 kW. III C. a.C. IK	61
Figure 5.13	Comparison of Average Harmonic Content in Current Waveform	when
	850 kW < P < 5 MW	63
Figure 5.14	Comparison of Average Harmonic Content in Current Waveform	when
	5 MW < P < 10 MW	64
Figure 5.15	(a): Average Reactive Power vs Active Power during	
	0 <p<850kw< td=""><td>68</td></p<850kw<>	68
	(b): Average Reactive Power vs Active Power during	
	850kW <p<5mw< td=""><td>68</td></p<5mw<>	68
	(c): Average Reactive Power vs Active Power during	
	5MW <p<10mw< td=""><td>69</td></p<10mw<>	69

		Page
Figure 6.1	Voltage waveform measured at Plant 04	72
Figure 6.2	Comparison on performance of four cases against voltage events	73
Figure 6.3	(a): Voltage during a line fault at Palavi_F4	74
	(b): Voltage during a line fault at Nor_WindF	74
Figure 6.4	(a): Voltage during a bus fault at Palavi_F4	75
	(b): Voltage during a bus fault at Nor_WindF	75
Figure 6.5	(a): Voltage during a tripping of a wind plant at Palavi_F4	76
	(b): Voltage during a tripping of a wind plant at Nor_WindF	76
Figure 6.6	WPP including a STATCOM connected at the PCC	78
Figure 6.7	WPP including a DVR connected at the PCC	78
Figure 7.1	Basic types of Filter Responses	87
Figure 7.2	Classification of Harmonic Filters	88
Figure 7.3	Shunt Active Harmonic Filter	92
Figure 7.4	Series Active Hamonic Filteruwa, Sri Lanka.	93
Figure 7.5	Hybrid Edteowith ThAstise Filter such a Rassive Filter	95
Figure 7.6	Comparison in performance of four cases during their normal	
	operation	98
Figure 8.1	Basic Block Diagram of the Controller and Gate Signal Generator	100
Figure 8.2	Generation of the Gate Signal by Pulse Width Modulation	101
Figure 8.3	Block Diagram of the Complete System Model	102
Figure 8.4	Current waveform from the Wind Power Plant (Phase 01)	103
Figure 8.5	(a): Feeder Current	103
	(b): Fundamental component of the Feeder Current	103
	(c): Harmonic component of the Feeder Current	103
Figure 8.6	(a): Harmonic component of the Feeder Current	104
	(b): Compensating Current generated by the VSI	104
Figure 8.7	FFT Analysis of the Current from the Wind Power Plant	105
Figure 8.8	FFT Analysis of the Filtered Feeder Current	105

		Page
Figure 8.9	Harmonic Spectrum of the Current Output of the Wind Plant	106
Figure 8.10	Harmonic Spectrum of the Filtered Feeder Current	106
Figure 8.11	Filtered Feeder Current	107

LIST OF TABLES

		Page
Table 2.1	Advantages and Disadvantages of Fixed-Speed Wind Turbines	9
Table 2.2	Advantages and Disadvantages of Variable-Speed Wind Turbines	10
Table 2.3	Details of the commissioned wind plants in Sri Lanka by June 201	4
Table 2.1	Maximum normissible compatibility loyals and planning loyals of	15
1 able 5.1	Elister	22
$T_{abla} = 4 \cdot 1$	Flicker	25
	wind Power Plants used for measuring purposes	35 27
Table 4.2	Major Technical Parameters of Seguwantivu WPP	37
Table 4.3	Major Technical Parameters of Nirmalapura WPP	40
Table 4.4	Major Technical Parameters of Pavandanavi WPP	41
Table 5.1	Summary of Interruptions	44
Table 5.2	Summary of Voltage Sags	46
Table 5.3	Summary of Under Voltage Events	46
Table 5.4	Allowable Harmonic Limits in Grid Code	49
Table 5.5	Behavior of VTHD Theses & Dissertations	57
Table 5.6	Harmonic orders with high harmonic content when P<0	59
Table 5.7	Harmonic orders with high harmonic content when P=0	61
Table 5.8	Harmonic orders with high harmonic content when	
	0 < P < 850 kW	62
Table 5.9	Harmonic orders with high harmonic content when	
	850 kW < P < 5 MW	62
Table 5.10	Harmonic orders with high harmonic content when	
	5 MW < P < 10 MW	64
Table 5.11	Behavior of I _{THD}	65
Table 5.12	Behavior of Power Factor	67
Table 5.13	Variation of P _{LT} at each Plant	70
Table 7.1	Harmonic orders with a high Voltage Harmonic Content	82
Table 7.2	Status of Voltage Harmonic levels at different Harmonic Categorie	es
		83

		Page
Table 7.3	Harmonic orders with a high Current Harmonic Content	85
Table 7.4	Advantages and Disadvantages of Series Passive Filter	86
Table 7.5	Advantages and disadvantages of Shunt Passive Filter	87
Table 8.1	Comparison of the Harmonic contents of the Feeder Current	
	before and after Harmonic Filter	107

LIST OF ABBREVIATIONS

Abbreviation	Description
AC	Alternating Current
AF	Active Filter
CEB	Ceylon Electricity Board
CSC	Current Source Converter
CSI	Current Source Inverter
DC	Direct Current
DFIG	Doubly-Fed Induction Generator
DSP	Digital Signal Processor
DVR	Dynamic Voltage Restorer
GIS	Gas Insulated Substation
GSS	Grid Sub Station
HV	High Voltage
IEC (O) Elec	International Electromechanical Commission tronic Theses & Dissertations
IEEE WWW	v.lib.mit.ac.lk Independent Power Producers
IT	Information Technology
LV	Low Voltage
LVRT	Low Voltage Ride Through
NCRE	Non-conventional Renewable Energy
NE	North East
NEMA	National Electrical Manufacturers Association
NREL	National Renewable Energy Laboratory
OP-AMP	Operational Amplifier
OPEC	Organization of Petroleum Exporting Countries
PCC	Point of Common Coupling
PF	Passive Filter
PMG	Permanent Magnet Generator

PQ	Power Quality
PSS/E	Power System Simulation for Engineering
PWM	Pulse Width Modulation
RMS	Root Mean Square
SCIG	Squirrel-Cage Induction Generator
STATCOM	Static Synchronous Compensator
SVR	Static Voltage Regulator
SW	South West
THD	Total Harmonic Distortion
VSC	Voltage Source Converter
VSI	Voltage Source Inverter
WPP	Wind Power Plant
WRIG	Wound Rotor Induction Generator

Principal Symbols

	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.ight.ac.lk
	Harmonic number
	Hertz
	Current
	Insulated Gate Bipolar Transistor
	kilometers
	Kilo Volt
	kilo volt ampere
	Kilo Watt
	Meters
	Meters per second
Т	Metal Oxide Semiconductor Field Effect Transistor
	Milliseconds
	Mega volt ampere
	T

MW	Mega Watt
MW	Mega Watts
Р	Active Power
P _{LT}	Long Term Flicker Index
P _{ST}	Short Term Flicker Index
PU	per unit
Q	Reactive Power
R	Resistance
rpm	rounds per meter
S	Seconds
V	Volt

LIST OF APPENDICES

Appendix	Description	Page
Appendix – A	Details of Voltage Interruption Events	118
Appendix – B	Details of Voltage Sags	125
Appendix – C	Details of Under voltage Events	134
Appendix – D	Minimum, Maximum and Average Voltage Harmonic Percentages with Percentage Durations that exceed the Allowable Maximum Limits	136
Appendix – E	Minimum, Maximum and Average Current Harmonic Percentages with Percentage Durations that exceed the Allowable Maximum Limits	144

