

AN ENERGY EFFICIENT DISTRIBUTED CLUSTER BASED SELF ORGANISING ALGORITHM FOR AD-HOC DEPLOYED WIRELESS SENSOR NETWORKS

By

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

A THESIS

This thesis is submitted to the Department of Electronic and Telecommunication Engineering at the University of Moratuwa in partial fulfilment of the requirements for the Degree of Doctor of Philosophy.

October 2010

DECLARATION BY CANDIDATE

I certify that this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University; and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where due reference is made in the text.

Prasanna Sankalpa Gamwarige

Certified by:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

October 1, 2010.

UNIVERSITY OF MORATUWA

A thesis submitted to the Department of Electronic and Telecommunication Engineering at the University of Moratuwa in partial fulfillment of the requirements for the Degree of Doctor of Philosophy

AN ENERGY EFFICIENT DISTRIBUTED CLUSTER BASED SELF ORGANISING ALGORITHM FOR AD-HOC DEPLOYED WIRELESS SENSOR NETWORKS

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Approved:

Prof. Saman Halgamuge University of Melbourne

Prof. Dileeka Dias University of Moratuwa Prof. Keerthi Walgama University of Peradeniya

Dr. Ajith Pasqual University of Moratuwa

Dr. Chulantha Kulasekere University of Moratuwa

October 1, 2010.

Abstract

Wireless sensor networks (WSNs) consist of a large number of inexpensive, low-power, sensors that can be placed in an ad hoc fashion to form a data gathering network. Subsequent to the sensor node deployment, the nodes will self-organize themselves to periodically collect reliable information from the environment to a central location called base station (BS). Once the nodes are deployed, upgrading and maintaining them is not practical. In such a scenario, the main concern would be the optimal utilization of the sensor energy, so that the entire sensor bed lasts as long as possible gathering useful information. Inter node communication for network organization and information gathering requires the most energy. Therefore, it is necessary to manage these activities in an energy efficient manner to optimize the lifetime of the sensor network. This research focuses on finding energy efficient methods of operating the sensor bed such that the lifetime is maximally extended.

Distributed clustering provides an effective way for self-organizing the wireless sensor

networks for and negative these finding where the cl

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk he most positive thms. Based on tering algorithm level of sensors.

Further, the cluster boundary determination and cluster head role rotation is governed by the cluster heads residual energy level. The algorithm favors more powerful nodes over the weaker ones thus makes local energy balancing to prolong the lifetime of the entire sensor network at a very low energy overhead. The proposed algorithm has realized near ideal local energy balancing. The proposed algorithm is also extended to achieve global energy balancing by introducing a mix strategy of communication (multi-hop and direct) from cluster head to base station.

The research shows that the algorithm performance is in line with the desired objectives using analytical proofs to back the simulation test results. Further, the research proposes an analytical framework in determining the cluster distribution of the presented algorithm. Subsequently, the framework was extended to other similar types of distributed clustering algorithms. Finally, the research proposes an analytical technique in finding optimum algorithm parameters such as the cluster head message broadcasting range and cluster head role rotation.

Acknowledgements

I am eternally indebted to my research supervisor Dr. Chulantha Kulasekere for his guidance, support, and encouragement during this challenging research. His unique approach in analyzing problems and finding novel solutions inspired me to widen my intellectual horizon. My life has been enriched professionally, academically, and personally by working closely with him.

I am also thankful to Prof. Saman Halgamuge, the Assistant Dean of Melbourne School of Engineering, University of Melbourne; Prof. Keerthi Walgama, the Director of Academic Affairs and former Head, Department of Engineering Mathematics, University of Peradeniya; Prof. (Mrs.) Dileeka Dias of University of Moratuwa; and Dr. Ajith Pasqual,

the Research support at t Dayawansa (research. Fu

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk suggestions and : (Mrs.) Indra throughout this i Samarasinghe,

Dr. Ranga Rodrio and all other staff of University of Moratuwa.

It was not an easy task to carry out a research of this nature, while being actively engaged with the industry. Zone24x7 Inc, my employer, provided the support and flexibility I needed to complete this research as expected. For this, I am grateful to Mr. Llavan Fernando, the CEO, Mr. Manjula Dissanayake, the Vice President and the entire team of Zone24x7.

All the guidance, commitment, and perseverance I had, would not have made this thesis possible, if not for the support, endurance, and understanding of my family. Thus, my utmost gratitude goes to my loving wife, two daughters, my parents and parents in-law.

PRASANNA SANKALPA GAMWARIGE

University of Moratuwa October 2010

Contents

Ackn	owledge	ements	iv
List o	of Figur	es	ix
List o	of Table	s	xii
Nome	enclatui	e	xiii
СНА	PTER	1 Introduction	1
1.1	Curre	nt Challenges in Sensor Networks	2
1.2	2 Dire	University of Moratuwa, Sri Lanka.	3
1.3	B Clu	(O) Electronic Theses & Dissertations	4
1.4	l Chε	www.lib.mrt.ac.lk	5
1.5	5 Scope	01 une russarun	8
1.6	6 Organ	ization of the Thesis	9
CHA	PTER	2 Related Work	10
2.1	Overv	iew of Energy Aware Communication Protocols	10
2.2	2 Wirel	ess Sensor Network Clustering Algorithms	12
	2.2.1	LEACH: Low Energy Adaptive Clustering Hierarchy	13
	2.2.2	LEACH-D: Low Energy Adaptive Clustering Hierarchy with Deter-	
		ministic Cluster Head Selection	15
	2.2.3	SEP: A Stable Election Protocol for Clustered Heterogeneous Wire-	
		less Sensor Networks	15
	2.2.4	HEED: Hybrid Energy Efficient Distributed Clustering	16
	2.2.5	ANTCLUST based Energy-Efficient Clustering Method for Data Gath-	
		ering in Sensor Networks	16
	2.2.6	EDAC: Energy Driven Adaptive Clustering Data Collection Protocol	
		in Wireless Sensor Networks	17

	2.2.7	MEDIC: Medium-Contention Based Energy-Efficient Distributed Clus-	
		tering Algorithm	18
2.3	Anator	my of a Wireless Sensor Node	19
	2.3.1	Ultra Low Power Micro Controllers	20
	2.3.2	Low Power Wireless Transceivers	20
	2.3.3	Battery and Optional Energy Harvesting Techniques	22
2.4	Sensor	Network Model	23
	2.4.1	Assumptions	23
	2.4.2	Energy Consumption Model	27
	2.4.3	Lifetime of the Sensor Network	28
CHAP	TER 3	Proposed Energy Balanced Distributed Clustering Algorithm	30
3.1	Object	vives of the EDCR Algorithm	30
3.2	Overvi	ew of the Algorithm	32
	3.2.1	Cluster Head Candidacy	32
	3.2.2	Cluster Head Selection	33
	3.2.		35
	3.2.	Electronic Theses & Dissertations	35
3.3	Alg	www.lib.mrt.ac.lk	38
CHAP	TEK 4	Performance Analysis of the EDCK Algorithm	40
4.1	Accura	acy and Complexity	40
4.2	Cluster	r Distribution	43
	4.2.1	Preliminaries	43
	4.2.2	Probability Density Function of Cluster Area, α	44
	4.2.3	Derivation of Expected Cluster Density	49
	4.2.4	Expected Number of Clusters, $\boldsymbol{E}[k]$ of a Rectangular Deployment Area	51
	4.2.5	Expected Number of Clusters, ${\cal E}[k]$ of a Circular Deployment Area .	52
	4.2.6	Average Distance between Neighboring Cluster Heads $\ldots \ldots \ldots$	53
CHAP	TER 3	5 Optimization of the Control Parameters for EDCR Algo-	
\mathbf{rith}	m		54
5.1	Optim	um Cluster Head Candidacy Broadcasting Range, R_{opt}	54
	5.1.1	Circular Deployment Area	57

5.2	Computation of Optimum Cluster Head Rotation Trigger Function Parame-	
	ter, c_{opt}	62
5.3	Estimation of Second Degree Neighborhood Determining Parameter ϵ for a	
	Given Wireless Sensor Network Setup	71
CHAP	TER 6 Global Energy Balancing	78
6.1	EDCR in Multi-hop Network Setup	79
	6.1.1 Identification of Next-hop Cluster Head	80
	6.1.2 Determination of R_{opt} and c_{opt} for EDCR-MH	81
	6.1.3 Limitations of the EDCR-MH Algorithms	84
6.2	EDCR-EB Algorithm	86
	6.2.1 Determination of R_{opt} and c_{opt} for EDCR-EB	92
	6.2.2 Application Guidelines of EDCR-EB Algorithm	94
CHAP	TER 7 Simulation Results	96
7.1	Comparison of Performance of EDCR Algorithm with Similar Class of Algo-	
	rithms	97
	7.1. University of Moratuwa, Sri Lanka.	98
	7.1. (O) Electronic Theses & Dissertations	104
7.2	Clu www.lib.mrt.ac.lk	110
7.3	Applicability of EDCK algorithm in Non Kectangular Deployment Regions	111
7.4	Accuracy of the Analytical Framework Proposed in Finding ${\cal R}$ for an Ex-	
	pected Cluster Setup	115
7.5	Validation of the Analytical Techniques for Determining the EDCR Algo-	
	rithm Parameters for Maximizing the Network Lifetime	120
	7.5.1 Validation of R_{opt}	120
	7.5.2 Validation of c_{opt}	122
7.6	Performance Evaluation of EDCR-MH	124
7.7	Performance Evaluation of EDCR-EB	125
CHAP	TER 8 Conclusion and Future Direction	129
Refere	nces	134
APPE	NDIX A	144
A.1	Expected Distance between Two Immediate Neighboring Nodes	144
A.2	Energy Optimum Cluster Head Location in an Arbitrary Cluster	144

List of Figures

1.1	Browsing physical environment over the Internet	2
2.1	Non uniform cluster formation in LEACH	14
2.2	Anatomy of a wireless sensor node	20
2.3	Current consumption of CC1101 transceiver for different Tx power output	
	levels	22
2.4	Radio energy dissipation model	27
2.5	Number of live sensor nodes at the end of each round $\ldots \ldots \ldots \ldots$	29
3.1	Seci 🙀 University of Moratuwa Sri Lanka	37
3.2	Re- (O) Electronic Theses & Dissertations	37
3.3	Star www.lib.mrt.ac.lk	39
4.1	Smallest possible cluster size $\frac{\sqrt{3K^2}}{2}$	45
4.2	Largest possible closed packed cluster size $\frac{3\sqrt{3}R^2}{2}$	46
4.3	Cluster area more than $\frac{3\sqrt{3}R^2}{2}$ create uncovered region shaded in gray \ldots	46
4.4	Proof of $P_B(\alpha > \frac{3\sqrt{3}R^2}{2}) \to 0$	47
5.1	Different scenarios of rectangular area with BS at the centre	58
5.2	Different scenarios of rectangular area with BS at the centre of the long side	
	of perimeter	60
5.3	Typical $\hat{J}_{total} vs R$ curve for a given WSN	61
5.4	Lifetime of WSN with respect to the change of c	63
5.5	Round robin CH selection	67
5.6	Constraints for maximum inter CH distance	72
5.7	Movement of a and b	74
6.1	Single-hop cluster based WSN organization	78
6.2	Multi-hop cluster based WSN organization	79

6.3	Area where CHs would never relay through another CH \ldots	81	
6.4	Determination of $\hat{\xi}$		
6.5	Expected number of relay packets by an average CH, $\hat{p} = \frac{A_2}{A_1}$		
6.6	WSN deployment regions	87	
7.1	'Number of Live Nodes vs. Data Transmission Rounds' for the simulation		
	experiments using free space communication model - FS1 \ldots	100	
7.2	'Number of Live Nodes vs. Data Transmission Rounds' for the simulation		
	experiments using free space communication model - FS2 \ldots	101	
7.3	'Number of Live Nodes vs. Data Transmission Rounds' for the simulation		
	experiments using free space communication model - FS3 \ldots	101	
7.4	'Number of Live Nodes vs. Data Transmission Rounds' for the simulation		
	experiments using free space communication model - FS4 \ldots	102	
7.5	'Number of Live Nodes vs. Data Transmission Rounds' for the simulation		
	experiments using simplified multi-path fading communication model - $\rm MF1$	105	
7.6	'Number of Live Nodes vs. Data Transmission Rounds' for the simulation		
	exp del - MF2	106	
7.7	'Nu University of Moratuwa, Sri Lanka. simulation		
	exp Electronic Theses & Dissertations del - MF3	107	
7.8	'Nu simulation		
	experiments using simplified multi-path fading communication model - MF4	108	
7.9	Node distribution among all clusters	110	
7.10	EDCR performance under Case NR1	112	
7.11	EDCR performance under Case NR2	113	
7.12	EDCR performance under Case NR3	114	
7.13	${}^{\cdot}E[k]^A$ vs λ ' for different R - $200 \times 200m^2$ square deployment area \ldots .	118	
7.14	${}^{`}E[k]^A$ vs $\lambda {'}$ for different R - $100m$ radius circular deployment area	118	
7.15	Typical 'Average Lifetime vs R^\prime curve for a given sensor network requirement	121	
7.16	Different Lifetime curves of a WSN for different c : Case 1	123	
7.17	Different Lifetime curves of a WSN for different c : Case 2	123	
7.18	Lifetime comparison EDCR and EDCR-MH	124	
7.19	Far end nodes die first with EDCR	126	
7.20	Nodes close to BS die first with EDCR-MH	126	
7.21	Lifetime comparison between EDCR, EDCR-MH and EDCR-EB	127	
7.22	First set of nodes die irrespective of node location in EDCR-EB	127	

A.1	Cluster head location in global re-clustered cluster	146
A.2	Cluster head location in local cluster head role rotation	147

List of Tables

7.1	Summary of results for the free space model (Unit: Number of data trans-			
	mission rounds)		103
7.2	Summary of re	sults for the multi-path fading model (Unit: Nur	nber of data	
	transmission re	$(unds) \dots \dots$		109
7.3	Distribution of	member nodes among different clusters		110
7.4	Sample network	k deployment requirements for EDCR \ldots .		116
7.5	Comparison of actual average number of clusters and expected value of it for			
	EDCR algorith	m		117
7.6	Cor	University of Moratuwa Sri Lanka	l theoreti-	
		Electronic Theses & Dissertations		119
7.7	Cor 🥁	www.lib.mrt.ac.lk	oum lifetim	e121

Nomenclature

 ϵ_{amp-fs} Radio propagation attenuation constant in Free Space model.

 ϵ_{amp-mp} Radio propagation attenuation constant in Multi-path Fading model.

 d_0

The distance differentiates the Free Space propagation effect and Multi-path Fading propagation effect in Simplified Multi-path Fading model. This is given by

$$d_0 = \sqrt{\frac{\epsilon_{amp-fs}}{\epsilon_{amp-mp}}}.$$

E_{elec}	<i>ec</i> The energy spent on transmitter and receiver circuits in signal processing		
	one bit.		
E_{DA}	Energy cost of data aggregation.		
ℓ P_i	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	spect to the other evel.	
\mathcal{N}^{μ}_{j}		s μ from node j	
	excluding the node j .		
${\cal H}$	The set of all cluster heads at a give moment.		
\mathcal{M}_i	The set of member nodes in a cluster headed by cluster head i including		
	itself.		
\mathcal{SN}_i	Cluster head node i 's second degree neighborhood.		
$E_{res_i}^t$	Residual energy of node i at any given time instance t .		
$E_{res_i}^t \big _{t=\tau}$	Residual energy of node i at time $t = \tau$.		
$\lambda^{\tau}{}_i$	Dynamic energy threshold value of a given cluster head no	ode i which becomes	
	a cluster head at time $t = \tau$. When it's residual energy	gy drops below this	
	value, it calls for a new cluster head selection phase with	the help of the base	
	station.		
$\operatorname{dist}(x,y)$	Distance between nodes x and y .		
$P_{Rx_{i,j}}$	The received signal strength of the signal transmitted by	node i at the node	
	j.		

P_{Tx_i}	The transmitted signal strength of a data packet by node i .	
R	Cluster head candidacy broadcasting range.	
R_{opt}	The value of R which will minimize the total data gathering energy of one round.	
с	The cluster head role rotation triggering dynamic energy threshold level	
	calculation parameter.	
c_{opt}	The value of c which will maximize the sensor network lifetime.	
E[k]	Expected (average) number of clusters for a planned wireless sensor network setup.	
D_{CH-CH}	Expected (average) distance between two neighboring cluster heads.	
$\eta(d_{i,j})$	Compressibility of the data of node j at node i due to the correlation of data of node i and j . $1 \ge \eta(d_{i,j}) \ge 0$.	
α	Exponential data correlation model coefficient such that $\eta(d_{i,j}) = 1 - e^{\alpha d_{i,j}}$.	
λ	Deployed sensor node density. Assumed these nodes are uniform randomly	
	deployed in a given and negative a Deigen point distribution with density	
N $\mathcal{N}\mathcal{H}_i$	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk d node <i>i</i> .	
d_{TH}	Cluster head nodes whose distance to base station is less than d_{TH} would not relay through another cluster head. This is used with EDCR-MH algorithm to save the energy of cluster head closest to base station by reducing the burden of serving closest cluster heads who can directly reach base station without incurring much energy cost.	
E_{CH}	The total energy spent by a cluster head in a given data transmission round for useful work.	
E_{nonCH}	The total energy spent by a non cluster head node in a given data transmis- sion round for useful work.	
E_{CHoh}	The energy overhead that a cluster head node has to spend in each cluster setup phase.	
$E_{nonCHoh}$	The energy overhead that a non cluster head node has to spend in each cluster setup phase.	

 β_i^T This is an energy level calculated at the beginning of any new cluster formation phase in EDCR-EB algorithm. Given cluster head *i* stops forwarding any incoming relay packets at this pre calculated energy level.

This is used in calculating β_i^T for each cluster head *i* making global energy balancing.

 a_i