LB/DON/114/2012

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

APPLICATION OF SENSOR NETWORK IN LOCATING MOVING TRAINS FOR RAIL GATE SECURITY SYSTEM

A dissertation submitted to the Department of Electrical Engineering, University of Moratuwa in partial fulfillment of the requirements for the degree of Master of Science

University of Moratuwa, Sri Lanka. Electronic The Ses & Dissertations www.lib.mrt.ac.lk

W.D.S.P.PERERA

Supervised by: Prof J.R.Lucas Eng. Mr. D.G.R.Fernando M.Sc. in Electrical Tystallations

Department of Electrical Engineering

University of Moratuwa, Sri Lanka

621.3°12" 696.6(043) TH

October 2011

104038

Resubmission June 2012 University of Moratuwa 104038

104038

DECLARATION

The work submitted in this dissertation is the result of my own investigation, except where otherwise stated.

It has not already been accepted for any degree or diploma and is also not being concurrently submitted for any other degree or diploma.

UOM Verified Signature

W.D.S.P.Perera October 2011

Resubmission June 2012

We endorse the declaration by the candidate.

UOM Verified Signature

Prof J.R.Lucas

Supervisor

UOM Verified Signature

Eng. Mr. D.G.R.Fernando

i

Supervisor

CONTENTS

Decla	ration	i	
Abstr	act	V	
Dedic	cation	vi	
Ackn	owledgement	vii	
List o	f Figure	viii	
List o	f Table	Х	
Term	s of Abbreviation	xi	
	University of Moratuwa Sri Lanka		
1.0	Introduction	1	
1.1	Background/survey of previous work	1	
1.2	Rail Routes in Sri Lanka	2	
1.3	Motivation		
1.4	4 Objective and Scope		
2.0	Accidents at Level Crossing	12	
2.1	Types of level crossing in Sri Lanka	12	
	2.1.1 Full protected level crossing	13	
	2.1.2 Semi protected level crossing	14	
	2.1.3 Unprotected level crossing	14	

ii

2.2	Types	of rail gates	15	
2.3	Intern	ational Level crossing security systems	17	
3.0	Resear	rch design	24	
3.1	Selection of suitable method to detect the train			
	3.1.1 Infrared			
		3.1.1.1 The method of operate IR transmitters	26	
		and receiver in this research		
		3.1.1.2 Design of IR transmitter		
		and Receiver	29	
		University of Moratuwa, Sri Lanka.	29	
		3.1.1.2.2 Design of IR Receiver	31	
	3.1.2	Ultrasonic Sensor	32	
		3.1.2.1 The method of operating US transmitters		
		and receiver.	33	
3.2	Zigbee	2	36	
	3.2.1	What is the Zigbee	36	
	3.2.2	Types of Node in Zigbee Network	36	
	3.2.3	Topology overview of Zigbee Network	38	
	3.2.4	ZigBee Specifications	41	
	3.2.5	The wireless ultrasonic sensor using Zigbee	41	
10				
4.0	The tra	ain Detection Points for IK sensor	43	
4.1	Train	Detection Points for US sensor	45	

iii

5.0	Appli	cation for the proposed method	58
5.1	Applic	cation	58
6.0	Analysis and conclusion.		60
6.1	Advan	tages for train detection system	60
	6.1.1	Mechanical Sensor	60
	6.1.2	RF Sensor	60
	6.1.3	GPS Sensor	60
	6.1.4	The existing detection system of Sri Lanka	61
		rail way department	
	6.1.5	US Sensors University of Moratuwa, Sri Lanka.	61
		6.1.5 Electronic Theses. & Dissertations www.lib.mrt.ac.lk	61
	6.1.6	IR Sensor	62
	6.1.7	Advantages of this system	62
6.2	Recon	nmendation for future study	63
6.3	Concl	usion	64
Refere	ences		65
Apper	ndix A	1 [*]	66
Apper	ndix B		73
Apper	ndix C		74
Apper	Appendix D		

iv

e

ABSTRACT

This research project is designed for rail gate security system for vehicles and pedestrian.

Currently, the railway system of Sri Lanka does not have a correct system to monitor and indicate correct positions of trains. Therefore vehicle drivers and pedestrians imagine the location of trains and try to cross level crossings. Hence accidents happen at rail gates. A suitable security system should be arranged at rail gates. Hence this project is done to find the correct position of the train.

University of Moratuwa, Sri Lanka.

The outcome of the research would spectrule sertime indicator and a distance indicator are fixed at tevel bossings. The time indicator indicates time duration of trains approaching the level crossings and the distance indicator indicates the distance in between the train and the level crossing. This timely information to the people who try to cross level crossings on foot or by vehicles will be very useful to protect their lives. Also this will be a good source for Sri Lanka railway system to track trains and protect human beings.

This project consists of three main subsystems such as

- 1. When a train passes a specified detection point, the time indicator counts down and the distance indicator indicates the distance in between the train and the level crossing.
- 2. When the train passes other specified detection points the time indicator and the distance indicator indicates time as zero.
- 3. When the train passes the level crossing rest the computer program.

DEDICATION

This work is dedicated to my parents late

University of Moratuwa, Sri Lanka. EMrtWhD: Keerthirathiespetations www.lib.mrt.ac.lk and Mrs C.D.Leena Perera

ACKNOWLEDGEMENT

I would like to express my deepest gratitude to my supervisors Prof.J.R.Lucas and Eng. Mr. D.G.R.Fernando. The supervision and support that they gave me truly helped the progression and smoothness of this research program.

I would also like to express my deepest gratitude to Prof. Ranjit Perera, Dr Karunadasa, Dr.N.De Siva and all other staff members of the Department of Electrical Engineering, University of Moratuwa, for the support given to meafrom the beginning of Electrical installation MSc course. Electronic Theses & Dissertations www.lib.mrt.ac.lk

I like to express my gratitude towards the staff of the Sri Lanka Railway Department who assisted me to do this research.

LIST OF FIGURES

Figure	Title			
Figure 1.1	Polgahawela level crossing accident	3		
Figure 1.2	The level crossing accident in Egypt	6		
Figure 1.3	Car and train accident at unmanned	6		
	level crossing in India			
Figure 2.1	Rail way gate systems in Sri Lanka	13		
Figure 2.2	Full protected level crossing.	13		
Figure 2.3	Semi protected level crossing	14		
Figure 2.4	Utinprotected flevel prossing Sri Lanka.	14		
Figure 2.5	Electronic Theses & Dissertations Electrical type rail gate www.lio.htt.ac.lk	15		
Figure 2.6	Mechanical type rail gate	16		
Figure 2.7	Farm type rail gate	16		
Figure 2.8	A manual type level crossing in India	17		
Figure 2.9	India Rajasthan/ (Closed) railway crossing	18		
Figure 2.10	A level crossing on China National Highway	18		
Figure 2.11	A level crossing in England	19		
Figure 2.12	A level crossing at Chertsey, England	19		
Figure 2.13	Belgian level crossing	20		
Figure 2.14	Finland level crossing	20		
Figure 2.15	Swedish level crossing	21		
Figure 2.16	United State of America Level crossing	22		
Figure 3.1	The Locations of the sensors	28		

viii

Figure 3.2	Diagram of 555 timer circuit		
Figure 3.3	IR Transmitter circuit	30	
Figure 3.4	IR Receiver	32	
Figure 3.5	Ultrasonic Sensor detection pattern	33	
Figure 3.6	US transmitting and receiving signal pattern	34	
Figure 3.7	Star, Tree, Mesh topology	38	
Figure 3.8	Star	39	
Figure 3.9	Tree	40	
Figure 3.10	Mesh	41	
Figure 3.11	Block diagram of wireless ultrasonic		
	sensor using Zigbee	42	
Figure 4.1	Train Detection Points University of Moratuwa, Sri Lanka.	44	
Figure 4.2	Etrid Probability seister Disa of totalization	46	
Figure 4.3	www.lib.mrt.ac.lk Probability density of US sensor	47	
Figure 4.4	The detection probability of US sensor	48	
Figure 4.5	The curve of correct location of the train	52	
	using US sensors		
Figure 4.6	System Architecture	53	
Figure 4.7	Flow Chart of Computer Program	60	

ix

1.

.

LIST OF TABLE

Figure	Title	Page
Table 1.1	Level Crossing accidents in Sri Lanka from 2000 to 2011	5
Table 1.2	Recorded Level Crossing accidents of foreign countries from 2000 to 2011	7
Table 4.1	The detection probability of sensor US_A	49
Table 4.2	The detection probability of sensor US_B	49
Table 4.3	Electronic Theses & Dissertations	50
Table 4.4	The detection probability of sensor US_c	50
Table 4.5	The probabilities of the sensors	51

Х

TERMS AND ABBREVIATIONS

Positioning on One Device	POD	с.	Infrared Receiver at point E	IR _B
Kilo meter	km	5	Infrared Receiver at point F	IR _F
Hour	h		Infrared Receiver at point G	IR _G
Meter	m		Infrared Receiver at point H	IR _H
Kilo ohm	kΩ		Superintendent	SD
Micro farad	Нſ		Ultrasonic sensor	US
Hertz	Hz		Ultrasonic sensor at point A	USA
Seconds	S		Ultrasonic sensor at point B	US B
Velocity	v iversity (of Mo	Ultrasonic sensor at point C oratuwa, Sri Lanka.	US _c
Infrared Ele	ctronic 7 vw.lib.m	These rt.ac.i	SURradonse sensionat point D k	US _D
Infrared Receiver at point A	IR _A		Ultrasonic sensor at point E	US _B
Infrared Receiver at point B	IR _B		Ultrasonic sensor at point F	US _F
Infrared Receiver at point C	IRc		Ultrasonic sensor at point G	US _g
Infrared Receiver at point D	IR _D		Ultrasonic sensor at point H	US _H

xi