LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

LB/DON/114/2012

DEVELOPMENT OPPORTUNITIES IN POWER ELECTRONIC APPLICATIONS IN SRI LANKAN INDUSTRIES

Baddegedara Nayantha Nimmika Abeysiri

(06/9317)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Automation www.lib.mrt.ac.lk

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree

Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

621.3 "12"

TH

May 2012

104041

104041

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to university of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Signature:

uwa, Sri Lanka **UOM Verified Signature** Dissertations 05 06 2012 www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters under my supervision.

Signature of the Supervisor: **UOM Verified Signature**

Date: 05/06/2012

i

Acknowledgement

I am heartily thankful to my supervisor, Prof. J.P Karunadasa whose encouragement, guidance and support from the initial to the final level enabled me to develop an understanding of the subject. I attribute the level of my Master's degree to his encouragement and effort and without him this thesis, too, would not have been completed or written.

I owe my deepest gratitude to Course coordinator, Dr Chandima Pathirana who has supported me throughout my thesis with his patience and knowledge whilst allowing me the opportunity to do my presentations and project reviews by arranging extra sessions. Special thanks go to Dr. Narendra De Silva, who has guided me to renovate my thesis into a more meaningful one, when looking at the industrial point of view.

My sincere thanks go to the officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa, Sri Lanka for helping in various ways to clarify the things related to my academic works of Stime field to the people who serve in the Department of Sincere gratitude Electronic Theses & Dissertations Electronic Theses & Dissertations Electronic Theses & Dissertations www.lib.mrt.ac.lk

Collective and individual acknowledgments are also owed to my colleagues at Unilever Sri Lanka, Pelwatte Sugar Ltd, Rockland Distilleries Ltd, Holcim Lanka Ltd, National Water board, MAS holdings Ltd, Cargill's & Nakiyadeniya Palm Oil industry Ltd for there valuable support in various ways during the industrial visits.

Special Thanks goes to the management of Holcim Lanka Ltd, Nestle Lanka and National water Board for providing me the opportunity to visit their plants within short notice.

Last but not least, I offer my regards and blessings to all of those who supported me in any respect during the completion of the project.

Nayantha Nimmika Abeysiri

ABSTRACT

Power electronics technology has gone through dynamic evolution in the last four decades. Recently, its applications are fast expanding in industrial, commercial, residential, transportation, utility, aerospace, and military environments primarily due to reduction of cost, size, and improvement of performance. In Sri Lankan industries modern power electronic applications are yet to come and there are few industries, which already have explored the modern power electronic technologies competitively.

It appears that the role of power electronics on our country in the future will tend to be as important and versatile as that of information technology today. In this dissertation, development opportunities in power electronic applications will be discussed after a brief introduction of drawbacks of the existing applications in the major industries like Food, Cement, Apparel, Sugar, Alcohol, Personal care and Home care.

Major development opportunities in Industrial power electronic applications are described in different chapters separately. For each proposed applications technical and financial feasibility were checked and pay back time was calculated through reliable cost analysis. Calculations have been done based on practically obtained data to determine the expected energy savings for each application

Case studies have done for two different industries where power electronic applications are used tremendously.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

TABLE OF CONTENTS

Declaration	i
Acknowledgement	ii
Abstract	iii
Table of content	iv
List of Figures	viii
List of Tables	Х
1. Introduction to Power Electronic Applications	1
2. Use of Variable Frequency Inverter Drives in Industries	2
2.1 Introduction	2
2.2 Background	3
2.3 Variable Speed Drive Applications with centrifugal pumps	4
2.3.1 Alcohol manufacturing Industry	5
2.3, 1 Clarified tank pump Electronic Theses & Dissertations	6
2.3.1.2 Pnergy Saving by Proposed method	7
2.3.2 Soap manufacturing Industry	9
2.3.2.1 Soap Feed Pump	10
2.3.2.2 Energy Saving by Proposed method	13
2.3.3 Water & Waste Water treatment industry	15
2.3.3.1 Water Distribution Pump	15
2.3.3.2 Benefits	16
2.3.3.3 Expected Energy Savings	17
2.4 Variable Speed Drive Applications with centrifugal Fans/ Blowers	17
2.4.1 Soap Powder manufacturing Industry	17
2.4.1.1 Soap Powder Process description	18
2.4.1.2 Draft Fan	22
2.4.1.3 Energy Saving by Proposed method	22
2.4.2 Palm oil Refining Industry	24
2.4.2.1 Boiler Draft Fan	24
2.4.2.2 Energy Saving by Proposed method	25
Υ.	

iv

• •	
2.4.3 Textile Industry	27
2.4.3.1 Energy Saving by Proposed method	27
2.4.4 Cement Industry	•31
2.4.4.1 Cooler	32
2.4.4.2 Benefits	33
2.4.5 Personal product Manufacturing Industries	33
2.4.5.1 Introduction to Bottle Filling Process Automation	34
2.4.5.2 Proposed method	35
2.4.5.3 Conveyor system with VSD	35
2.4.5.4 Cost Estimation	36
2.4.5.5 Expected Savings	36
2.5 Variable speed drives in Automation Applications	37
2.5.1 Dust Collector Automation	37
2.5.1.1 Motor with VSD	38
2.5.1.2 Capital Expenditure	39
2.5.1.3 Savings Expected University of Moratuwa, Sri Lanka.	39
3. Use of Soft starters curtienergy savers for Industriess & Dissertations	40
3.1 Introduction www.lib.mrt.ac.lk	40
3.2 Automatic Power Control by Soft Starters	41
3.2.1 Inverse Time Running Trip	41
3.2.2 Heavy Duty Option	41
3.2.3 Operation	42
3.3. Shampoo Manufacturing Industry	43
3.4 Cement Industry	46
3.5 Advantages	47
3.6 Estimating Energy Saving with Reduced Voltage Solid Starter	48
4. Applications of Servo Motors	49
4.1 Introduction	49
4.2 Toilet soap Manufacturing	50
4.2.1 Description of the machine	51
4.2.2 Current Operation	52
4.2.3 Servo motor control	53
4.2,4 Advantages	55

.

4.3 Edible packing Industry	56
4.3.1 End Line Automation of the Astra Ambient 18g filling machine	56
4.3.2 Existing Method	• 57
4.3.3 Proposed Method	-58
4.3.4 Servo Motor	59
4.3.5 Cost of Equipments	60
4.3.6 Expected Savings	60
5. Energy Saving by Electronic Ballast for Tube Lights	61
5.1 Introduction	61
5.2 Textile industry	63
5.2.1 Energy Consumption	63
5.2.2 Energy Efficiency Improvement	64
5.2.3 Use of Electronic ballast	64
5.2.4 Expected Savings	65
6. Energy Saver for Air conditioners	66
6.1 Introduction University of Moratuwa, Sri Lanka.	67
6.2 Shortcomings of pical Accepting Theses & Dissertations	67
6.3 Introduction to PackagevAir conditioning (Juit	68
6.4 Margarine Manufacturing Industry and Office area	68
6.5 Energy Savers for Air Conditioners	69
6.5.1 How do the air savers improve energy efficiency?	69
6.5.2 Air conditioning is a major consumer of electrical power	69
6.5.3 Proposed unit Specification	71
7. Case Studies from Industries	73
7.1 Instant Noodle Manufacturing Industry	73
7.1.1 Process description	74
7.2 Waste water treatment process at diary industry	77
8. Experiments for Industrial Application	83
8.1 Implementation of VSD Application in Industry	83
8.1.1 VFD with Pump load	. 85
8.1.2 Monitoring Performance	88

vi

9. Data Analysis	90
9.1 Margarine manufacturing	91
9.1.1 Production Data- Margarine Manufacturing process	• 92
9.1.2 Motor list Eligible for the VSD Applications	92
9.1.3 Analysis of the motor power distribution	94
9.2 Soap Manufacturing	97
9.2.1 Production data-Soap manufacturing	97
9.2.2 Analysis of the motor power distribution	100
9.3 Data Analysis-Sri Lankan Industries	103
9.4 Results	104
9.4.1 Opportunities for VSD applications in Sri Lankan Industries	s 104
9.4.2 Opportunities for electronic ballasts in Sri Lankan Industries	s 105
9.4.3 Opportunities for Energy saving A/C in Sri Lankan Industri	es 106
10. Conclusion	108
10.1 Variable Frequency Drives	108
10.2 Soft Starter cum Energy Saver University of Moratuwa, Sri Lanka.	108
10.3 Applications of Servo Metersonic Theses & Dissertations	109
10.4 Energy sving by Electronic ballast for fludrescent tube lights	109
10.5 Energy savers for air conditioners	109

Reference List

110

LIST OF FIGURES

	6
Figure 2.1 Inverter speed control	. 3
Figure 2.2 Outlet valve Control	4
Figure 2.3 With Bypass valve	4
Figure 2.4 With Inverter control	4
Figure 2.5 Clarified pump	6
Figure 2.6 Block diagram valve control and inverter control	9
Figure 2.7 Soap feed pump	. 10
Figure 2.8 Pump head vs. Discharge	11
Figure 2.9 Pump power vs. Discharge	11
Figure 2.10 Head vs. Discharge	12
Figure 2.11 Power vs. Discharge	13
Figure 2.12 Water distribution pumps	16
Figure 2.13 Process Flow Diagram	19
Figure 2.14 Soap powder, manufacturing Process. Electronic Theses & Dissertations	20
Figure 2.15 Boiler draft fan www.lib.mrt.ac.lk	27
Figure 2.16 Cement manufacturing Process	32
Figure 2.17 Cooler	32
Figure 2.18 Air volume vs. Power input	34
Figure 2.19 Conveyor system	35
Figure 2.20 Load vs. Power	36
Figure 2.21 Dust collector	37
Figure 2.22 Dust collector with control unit	38
Figure 2.23 Drive Motor with VSD	39
Figure 3.1 Soft Starter	¹ 40
Figure 3.2 CIP process flow	43
Figure 3.3 Direct Online Starter	44
Figure 3.4 Torque vs. Speed Curve (DOL)	. 44
Figure 3.5 Current vs. Speed Curve (DOL)	44
Figure 3.6 Torque vs. Speed (Star delta)	46
Figure 3.7 Current vs. Speed (Star delta)	46

Figure 3.8 Star delta Starting method	46
Figure 3.9 Torque vs. Speed (Soft starter)	47
Figure 3.10 Current vs. Speed (Soft starter)	• 47
Figure 4.1 Toilet soap manufacturing process (Flow Diagram)	50
Figure 4.2. Wrapper machine	51
Figure 4.3 Reel arrangement	52
Figure 4.4 Photocell to detect length of wrapper	52
Figure 4.5 Wrapper reel with white colour mark to detect by photocell	53
Figure 4.6 Servo Motor Mechanism	54
Figure 4.7 Astra 18g Packing machine	56
Figure 4.8 Astra 18g Packing Line	57
Figure 4.9 Collator with Servo Motor control	58
Figure 4.10 Sachet in 3 lines before folding	58
Figure 4.11 Folding of sachet on to the collator	59
Figure 4.12 Servo Motor	59
Figure 5.1 Lighting arrangement in Textile Industry, Moratuwa, Sri Lanka.	61
Figure 5.2 Fluorescent tube Debt Electronic Theses & Dissertations	65
Figure 7.1: Noodle Manufacturing Process Prov. Diagram	73
Figure 7.2: Palm Oil Handling Process- Panel View	75
Figure 7.3: Air Handling Unit	76
Figure 7.4: Control loops-AHU	76
Figure 7.5: Draft Fan-AHU	77
Figure 7.6: Waste water treatment Process	80
Figure 7.7: Process Blowers	80
Figure 7.8: Membrane Blowers	81
Figure 7.9: HMI-Blowers	. 81
Figure 7.10: Control net configurations	82
Figure 8.1: Water Supply Panel- Lay out	84
Figure 8.2: Data Analysis by Pareto Graph	85
Figure 8.3: VFD pump Laboratory Set-up	86
Figure 8.4: VFD pump Laboratory Set-up	86
Figure 8.5: VFD pump Set-up	87
Figure 8.6: Current value without VSD	87.

ix

Figure 8.7: Current value With VSD

Graph 9.1: Motor distribution Margarine plant Graph 9.2: Motor distribution-soap plant

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk 88

• 95

- 101

Х

LIST OF TABLES

Table 2.1 Damper positions	28
Table 2.2 Estimated Equipment Cost	36
Table 2.3 Estimated Equipment Cost	39
Table 4.1 Machine Capacities	51
Table 4.2 Current Manning requirement	57
Table 4.3 Estimated Equipment Cost	60
Table 6.1 Performance of AC units	69
Table 8.1: Electricity Consumption in 2010 and 2011 – Water Pump Panel	83
Table 8.2: Electricity Consumption per ton of water in 2010 and 2011	83
Table 8.3: Current vs Pressure	88
Table 9.1: Production Data-Margarine Process	91
Table 9.2: Motor List-Margarine Process	94
Table 9.3 Motor Power vs Quantity	94
Table 9.4: Production data soap manufacturing Theses & Dissertations	97
Table 9.5: Motor List-Soap manufacturing Blantt.ac.lk	100
Table 9.6: Motor Power vs quantity	101
Table 9.7: Electricity usage- Sri Lankan Industry	104
Table 9.8: Expected savings from VSD application	104
Table 9.9: Expected savings from Electronic Ballast	105
<i>Table 9.10</i> : Expected savings from Energy saving A/C	106

~