LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

BENCHMARKING OF ELECTRICITY DISTRIBUTION LICENSEES OPERATING IN SRI LANKA

Lilantha Neelawala

108889U

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Dissertation submitted in partial fulfillment of the requirements for the

Degree Master of Science in Electrical

Department of Electrical Engineering

University of Moratuwa Sri Lanka

September 2013

University of Moratuwa 107089

107089 CD-ROM

621.3 "13" 696.6 (043)

Installations

2004/20 LB/DON/76/2014

107089

DECLARATION

"I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

Signature of the candidate si (Lilantha velawala) ctronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters Dissertation under my supervision.

i

UOM Verified Signature

Signature of the supervisor :

-

17/02/2014 Date:

(Dr. K.T.M. Udayanga Hemapala)

ABSTRACT

Electricity sector regulators are practicing benchmarking of electricity distribution companies to regulate allowed revenue to each company. Mainly this is done by using the relative efficiency scores produced by frontier benchmarking techniques. Some of these techniques, for example Corrected Ordinary Least Squares method and Stochastic Frontier Analysis have econometric approach to estimate efficiency scores, while method like Data Envelopment Analysis uses Linear Programming to compute efficiency scores. Using the relative efficiency scores, the efficiency factor (X-factor) which is a component of the revenue control formula is calculated. The approach used by the regulators to derive X-factor by the relative efficiency scores is varying among regulators.

In electricity distribution industry in Sri Lanka the allowed revenue for a particular distribution licensee is calculated according to the allowed revenue control formula as specified in the tariff methodology of Public Utilities Commission of Sri Lanka. This control formula contains the X-factor as well, but it has been kept zero, since there were no relative benchmarking studies carried out by the utility regulator to decide on X-factor.

In order to produce a suitable benchmarking methodology this dissertation focuses on prominent benchmarking techniques used in the matching seguratory regime and analyses the applicability to Sri Dankan context, where only five Distribution Licensees are operating at present. The main challenge was to produce robust efficiency scores using frontier techniques for lower sample size (i.e. five) where in contrast many countries have large number of distribution companies or licensees (i.e. large sample size).

Importantly this discussion gives directing signals to the utility regulator on possibility to control allowed revenue of Distribution Licensees according to their efficiencies.

Key words: Data Envelopment Analysis, Corrected Ordinary Least Squares, Distribution Licensees.

ACKNOWLEDGEMENT

Foremost, I pay my sincere gratitude to Dr. K.T.M. Udayanga Hemapala who encouraged and guided me to conduct this investigation and on perpetration of final dissertation.

I extend my sincere gratitude to Dr. J.P. Karunadasa, Head of the Department of Electrical Engineering and all the lectures and visiting lectures of the Department of Electrical Engineering for the support extended during the study period.

Also, I pay my sincere gratitude to Roland Goerlich - Analyst, E-Control Austria and Roar Amundsveen – Adviser, Energy and Regulation Department, Section for Economic Regulation, Norwegian Water Resources and Energy Directorate (NVE) for their continuous support by answering my queries on benchmarking.

Further I Extend my sincere gratitude to Mr. Damitha Kumarasinghe – Director General, Mr. Gamini Herath – Deputy Director General, Mr. Nalin Edirisinghe – Director (Licensing) and Mr. Kanchana Siriwardena Director (Tariff & Economics) of PUCSL (or supporting meduring the study period issertations

I would like to take this opportunity to extend my sincere thanks to following experts who gave their support to conduct my work. Tore Langset – Energy Department, Norwegian Water Resources and Energy Directorate (NVE). Göran Ek - Department of tariff regulation, Energy Markets Inspectorate, Sweden. Prof dr. Nevenka Hrovatin - Academic Unit for Economic Theory and Policy, Faculty of Economics, University of Ljubljana, Slovenia. Aleksander Selcan, Economic Regulation Sector, Energy Agency of the Republic of Slovenia. Jelena Zorić - Assistant Professor, Faculty of Economics, University of Ljubljana, Slovenia. Leonardo Lupano - Deputy Director, Sustainable Energy, AF Mercados Energy Markets International S.A, SPAIN. Denise Laurent - Dutch Competition Authority (NMa), Netherlands. Samuli Honkapuro - Researcher, D.Sc., LUT Energy, Laboratory of Energy Markets and Power Systems, Lappeenranta University of Technology, Finland. Konrad Godzisz -Counselor of the President, Tariff Department, Energy Regulatory Office, Poland. Su Wu - Principal Economic Advisor, Regulatory Development Branch, Australian

Competition and Consumer Commission. Prof. Dr. Massimo Filippini - Department of Technology, Management and Economics, Swiss Federal Institute of Technology, Switzerland. Dr. Chris Tofallis - Statistical Services Consulting Unit, University of Hertfordshire, United Kingdom. Mr. Rishi Maharaj - Assistant Executive Director, Economics and Research, Regulated Industries Commission, Republic of Trinidad & Tobago. Bríd O'Donovan - Electricity Distribution & Interconnection Commission for Energy Regulation, Ireland. Matti Supponen - DG Energy, Electricity & Gas Unit, European Commission. Peter Dane - Manager International Benchmarking, Association of Dutch Water Companies. Keith Smith - Librarian, Information Management and Technology, Ofgem. Emma Davis - Assistant Librarian, Information Management and Technology, Ofgem. Erika Toth - International Affairs Officer, Hungarian Energy Office. Aivars Berzins - Head of Electricity Division, The Public Utilities Commission, Latvia. The Australian Energy Regulator (AER). Sumith Gamage - Design Team Manager, Customer Service Branch, ActewAGL, Australia. Dave Jacobson - South Dakota Public Utilities Commission. Raminta Starkeviciute - High-level Administrator, Council of European Energy Regulators (CEER), Wichelle Smith - Administrative Officer, Office Of The Tasmanian Economic Regulator (OTTER).mrt.ac.lk

My thanks extends to Banxia Software for providing the demonstration version of Frontier Analyst®

It is a great pleasure to remember the kind co-operation extended by the colleagues in the post graduate program, friends and specially my wife Wimali Nawarathna who helped me to continue the studies from start to end and to my 2 year old son, Abinada who did not destroy my laptop during the this period.

TABLE OF CONTENTS

DECLARATION	i		
ABSTRACTii			
ACKNOWLEDGEMENT	iii		
TABLE OF CONTENTS	v		
LIST OF FIGURES	iii		
LIST OF TABLES	ix		
LIST OF ABBREVIATIONS	xi		
1 INTRODUCTION	1		
1.1 Background	1		
1.2 Identification of the Problem	2		
1.3 Motivation	2		
1.4 University of Moratuwa, Sri Lanka.	3		
1.5 Methodology WWW.lib.mrt.ac.lk	3		
2 PROMINENT BENCHMARKING TECHNIQUES	5		
2.1 Introduction	5		
2.2 Partial Performance Indicators (PPIs)	7		
2.2.1 Advantages	7		
2.2.2 Disadvantages	8		
2.2.3 Example for PPIs	8		
2.3 Data Envelopment Analysis (DEA)	8		
2.3.1 Input output variables	9		
2.3.2 Advantages of DEA10	0		
2.3.3 Disadvantages	1		
2.3.4 DEA Linear Programming Model1	1		

	2.4	Corrected Ordinary Least Squares (COLS)	11
	2.4	4.1 Variables used	13
	2.4	4.2 Key Assumptions	
	2.4	4.3 Advantages	
	2.4	4.4 Disadvantages	
	2.5	Stochastic Frontier Analysis (SFA)	15
	2.5	5.1 Advantages	
	2.5	5.2 Disadvantages	
3	INT	TERNATIONAL PRACTICES	17
	3.1	Austria	17
	3.2	Finland	
	3.3	Germany	19
	3.4	Norway	20
	3.5	Electronic Theses & Dissertations	20
4	SEL	LECTION OF VARIABLES ID. mrt.ac.lk	22
	4.1	Factors to consider in Selecting Variables	22
	4.2	Selected Variables	22
	4.3	Justification of Selected Variables	23
	4.3.	3.1 Cost Drivers	23
	4.3.	3.2 Dispersion of Consumers	24
	4.3.	3.3 Correlation	24
	4.3.	3.4 Input, Output and Environmental Variables	
5	SEL	LECTION OF BENCHMARKING TECHNIQUES AND MODELS	28
	5.1	Comparison of Benchmarking Methods	
	5.2	Feasible Methods and Models	29
	5.3	Availability of data	

6	IMF	PLEMEN	NTATION OF BENCHMARKING TECHNIQUES	31
	6.1	DEA		
	6.1.	1 Ma	thematical DEA Model	31
	6.1.	2 Inp	ut and Output Variables	34
	6.1.	3 Imp	plementation of Different Models	
	6	.1.3.1	Models with Eight Variables	42
	6	.1.3.2	Models with Seven Variables	43
	6	.1.3.3	Models with Six Variables	45
	6	.1.3.4	Models with Five Variables	46
	6	.1.3.5	Models with Four Variables	
	6	.1.3.6	Models with Three Variables	
	6	.1.3.7	Conclusion on Results from DEA	50
	6.2	COLS .	University of Menstry Sui Lenke	52
	6.2.		Susing Four Variables Electronic Theses & Dissertations	53
	6.2.	2	S Using Three Variables ac. 1.	56
	6.3	PPI		57
7	ANA	LYSIS	DF RESULTS AND RECOMMENDATIONS	59
	7.1	Interp	retation of Relative Efficiency Scores	59
	7.2	Appro	priateness of DEA 3-variable models	63
	7.2.3	1 Rob	oustness of the Results	64
-	7.3	Rankir	ng of DLs According to Overall Efficiency	65
1	7.4	Influe	nce on X- Factor	66
8	CON	ICLUSIC	DN	67
9	REFE	ERENCE	S	69
10	APP	ENDIX.		74

LIST OF FIGURES

Figure 1-1: Methodology followed	4
Figure 2-1 : COLS Procedure	13
Figure 4-1 : Energy Delivered vs. Number of Consumers	25
Figure 4-2 : Energy Delivered vs. Number of Employees	26
Figure 6-1 : Implementation of DEA 3-Variables model in MS Excel (Initial values)	36
Figure 6-2 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL1	37
Figure 6-3 : Results for Maximizing the Efficiency of DL1	38
Figure 6-4 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL2	38
Figure 6-5 : Results for Maximizing the Efficiency of DL2	39
Figure 6-6 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL3	39
Figure 6-7 : Results for Maximizing the Efficiency of DL3	40
Figure 6-8 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL4	40
Figure 6-9 : Results for Maximizing the Efficiency of DL4	41
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5	41 41
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11 Results for Maximizing the Efficiency of DV5Sri. Lanka	41 41 42
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11: Results for Maximizing the Efficiency of DU5Sri Lanka Figure 6-12: Efficiencies for 7-Variables Models. & Dissertations	41 41 42 43
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11: Results for Maximizing the Efficiency of DL5 Figure 6-12: Efficiencies for 7-Variables Models Figure 6-13 : Efficiencies for 7-Mariables Models.	41 41 42 43 44
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11 : Results for Maximizing the Efficiency of DL5 Figure 6-12 : Efficiencies for 7-Variables Models Figure 6-13 : Efficiencies for 6-Variables Models. Figure 6-14 : Efficiencies for 6-Variables Models.	41 41 42 43 44 45
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11: Results for Maximizing the Efficiency of DL5 Figure 6-12: Efficiencies for 7-Variables Models. Figure 6-13: Efficiencies for 7-Variables Models. Figure 6-14 : Efficiencies for 6-Variables Models. Figure 6-15 : Efficiencies for 5 - Variables Models.	41 41 42 43 43 45 47
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11 : Results for Maximizing the Efficiency of DL5 Figure 6-12 : Efficiencies for 7-Variables Models Figure 6-13 : Efficiencies for 6-Variables Models Figure 6-14 : Efficiencies for 5 - Variables Models Figure 6-16 : Efficiencies for 4 – Variables Models	41 41 42 43 43 45 45 47 48
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11 : Results for Maximizing the Efficiency of DL5 Figure 6-13 : Efficiencies for 7-Variables Models. Figure 6-14 : Efficiencies for 6-Variables Models. Figure 6-15 : Efficiencies for 5 - Variables Models. Figure 6-16 : Efficiencies for 4 – Variables Models. Figure 6-17 : Efficiencies for 3-Variables Models.	41 41 42 43 43 45 45 47 48 49
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11 : Results for Maximizing the Efficiency of DU5, Sri Lanka. Figure 6-12 : Efficiencies for 7-Variables Models. Figure 6-13 : Efficiencies for 6-Variables Models. Figure 6-14 : Efficiencies for 6-Variables Models. Figure 6-15 : Efficiencies for 5 - Variables Models. Figure 6-16 : Efficiencies for 4 – Variables Models. Figure 6-17 : Efficiencies for 3-Variables Models. Figure 6-18 : Average Efficiencies of DEA models.	41 41 42 43 43 45 45 47 48 49 51
Figure 6-9 : Results for Maximizing the Efficiency of DL4 Figure 6-10 : Implementation of Constraints in MS Excel to Maximize Efficiency of DL5 Figure 6-11: Results for Maximizing the Efficiency of PL5, Sri Lanka. Figure 6-12: Efficiencies for 7-Variables Models. & Dissertations Figure 6-13 : Efficiencies for 6-Variables Models. Figure 6-14 : Efficiencies for 5 - Variables Models. Figure 6-15 : Efficiencies for 5 - Variables Models. Figure 6-16 : Efficiencies for 4 – Variables Models. Figure 6-17 : Efficiencies for 3-Variables Models. Figure 6-18 : Average Efficiencies of DEA models. Figure 7-1 : Graphical representation of DEA implementation	41 41 42 43 43 43 45 45 47 48 51 60

LIST OF TABLES

Table 2-1 : Prominent Benchmarking Methods
Table 2-2 : Input Output Variables Used in International Studies 6
Table 3-1 : Variables and Techniques Used by Austrian Regulator 17
Table 3-2 : Variables of Norwegian DEA Model
Table 3-3 : Benchmarking Methods by Selection of European Countries 21
Table 4-1 : Dispersion of Consumers in each DL
Table 4-2 : Correlation Coefficients 25
Table 4-3: Average No. of New Connections Provided by each DL
Table 5-1: Characteristics of Benchmarking Methods 28
Table 6-1 : DEA Efficiency Scores of 8 Input/output Variables Models 42
Table 6-2: Maximum, Minimum and Average Efficiency Scores of 8 Variables Models 43
Table 6-3 : DEA Efficiency Scores of 7 Input/output Variables Models 43
Table 6-4 : Maximum, Minimum and Average Efficiency Scores of 7 Variables Models 44
Table 6-5 : DEA Efficiency Scores of 6 Input/output Variables Models 45
Table 6-6 : Maximum IVI inimum and Average Efficiency Scores of 6 Variables Models 46
Table 6-7 DEAEfficiency Scores of 5 Input/output Variables Wodels n.s. 46
Table 6-8 : Maximum Minimum and Average Efficiency Scores of 5 Variables Models 47
Table 6-9: DEA Efficiency Scores of 4 Input/output Variables Models
Table 6-10 : Maximum, Minimum and Average Efficiency Scores of 4 Variables Models 49
Table 6-11 : DEA Efficiency Scores of 3 Input/output Variables Models 49
Table 6-12 : Maximum, Minimum and Average Efficiency Scores of 3 Variables Models 50
Table 6-13 : Average Efficiency Scores by Model 50
Table 6-14 : Differences in Customer Densities 52
Table 6-15 : Consumers per Unit Length of Network 53
Table 6-16 : Actual values of Input / Output Variables
Table 6-17: Logarithmic Values 54
Table 6-18 : Coefficients Estimated by Regression Analysis 54
Table 6-19 : Predicted In(OPEX) and the Difference with Actual
Table 6-20 : Coefficients of the Efficient In(OPEX) Line 55
Table 6-21 : COLS Efficiencies 55
Table 6-22: Cost Function used with Four Variables55

50

Table 6-23 : COLS with Four Variables	56
Table 6-24 : Cost Functions Used with Three Variables	56
Table 6-25 : COLS with Three Variables	57
Table 6-26 : Efficiency Scores from PPIs	58
Table 7-1 : Relative efficiency scores of each models under the DEA 3- variable Method	59
Table 7-2 : Energy Sales per OPEX and Total Network Length per OPEX	60
Table 7-3 : Average Efficiency Scores	64
Table 7-4: Ranking of DLs	65

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

Abbreviation	Description
CAPEX	Capital Expenditure
CEB	Ceylon Electricity Board
COLS	Corrected Ordinary Least Squares
DEA	Data Envelopment Analysis
DL	Distribution Licensee
GWh	Giga Watt Hours
HV	High Voltage
LECO	Lanka Electricity Company (Private) Limited
LKR	Sri Lanka Rupee
LV	Low Voltage
MV	University of Moratuwa, Sri Lanka.
MWh	Electron Watt Hourses & Dissertations
0&M 🥁	W Operations and Maintenance
OLS	Ordinary Least Squares
OPEX	Operational Expenditure
PPI	Partial Performance Indicators
PUCSL	Public Utilities Commission of Sri Lanka
SFA	Stochastic Frontier Analysis

xi