TSUNAMI RISK ASSESSMENT FOR EARLY WARNING AND IMPACT MITIGATION

Ratnayakage Sameera Maduranga Samarasekara

138031L

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

August 2014

Declaration

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text."

Signature:....

Date:

R.S.M. Samarasekara Department of Civil Engineering University of Moratuwa Sri Lanka

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Declaration of the Supervisors

"I have supervised and accepted this thesis for the submission of the degree".

Signature:	Date:
Prof. S.S.L. Hettiarachchi	
Senior Professor	
Department of Civil Engineering	
University of Moratuwa	
Sri Lanka	

 Signature:
 Date:

 Mr. A.H.R. Ratnassoriya
 University of Moratuwa, Sri Lanka.

 Senior Lectorers Grade I
 Electronic Theses & Dissertations

 Department of Civil Engineering
 Int. ac.lk

 University of Moratuwa
 Sri Lanka

Abstract

An effective, accurate, reliable and rapid version for the Indian Ocean Tsunami Warning System (IOTWS) is stretches back over several years to integrate with the tsunami forecasting and early warning framework. A brief outline is presented to enhance the capacity to cope with an emergency situation in scientifically rigorous manner.

2005 March, 2007 September, 2012 April etc. false tsunami warnings recall the need for effective implementation of the IOTWS with operational robustness to initiate tsunami mitigation program and to be prepared for future potentially destructive tsunamis in the region. Use common and agreed formats for information exchange, address common service requirements, standard operating procedures and international commitment strive to satisfy the public safety in a tsunami emergency. Develop all elements in order to conduct a tsunami hazard assessment study for a city along the coastline of Sri Lanka, operating within the framework of template for coastal cells in deep water adopted by the RTSP.

All material available from the activities of the former Working Group on Modelling, in particular development of data bases along the fault line for tsunami forecasting and deep water modelling was reviewed to study the existing performance criteria of the tsunami warning system by communicating with RTSPs to clarify important issues.

Preparation of a Case Study for the port city of Galle will illustrate the capability that serves real time operational needs, hazard/risk assessment needs and research/development opportunities through the use of a standard tsunami forecast system that includes tsunami characterization, measurements and forecast models. This study will be the hazard assessment for the above study.

Unfortunately, many people living alone the shore facing climate change impact adversary. This incessant struggle between humans and nature need to be stabilized via short – and long – term approaches. This research provides an excellent cross reference and strong awareness of approaches adapted in IOTWS thus educating a wider stakeholder base on the said approach.

Acknowledgement

I have always thought that research work is the foundation for the expansion knowledge. This Master of Science degree is a very important part of my academic career. Many have contributed to make this effort worthwhile, success and joyful and I would like to express my sincere gratitude to the following outstanding personalities, which I have had the privilege to get their kind support in successfully completing this degree as a post graduate student of the University of Moratuwa. It was important part of the process of achieving a sound knowledge in Civil Engineering, which will enhance my career in future.

First and foremost, I would like to express my sincere gratitude to my research supervisors, Prof S.S.L. Hettiarachchi and Mr A.H.R. Ratnasooriya, who persuade me and offered continuous support and encouragement in successfully completing this post graduate degree.

Secondly, I would like to extend my gratitude to Mr. Tony Elliot and Mr. Kodijat, Ardito of UNESCO-IOTWS for their support and guidance in completing this research work successfully.

I must also express my sincere thanks to the University of Moratuwa, Sri Lanka and UNESCO-IOTWS for the financial support, given as Senate Research Grant and project funding respectively. This project was supported by University of Moratuwa Senate Research Grant Number SRC/LT/2012/01. Without either of the said funding sources, this research would have never being arisen.

I am also grateful to, Dr R.H.L. Rajapaksha Department of Civil Engineering, University of Moratuwa, Sri Lanka for his kind support and guidance given to me during this research work.

The kind support given by Dr T.M.N. Wijayarathne as the chairman of the progress review committee is greatly valued. Without his guidance and support, this risk assessment case study will not be possible.

I must also express my heartiest gratitude to Dr. Srinivasa Kumar, Scientist – E, Head of ASG, Dr. Patanjali Kumar Ch, Scientist – C, Mr. Mahendra R.S., Scientist – C, Dr. Prakash C Mohanty, Project Scientist – B, INCOIS, Hyderabad, Andhra Pradesh, India. Their vast knowledge in the subject field was a great asset in overcoming many difficult bottlenecks of the research work.

I must extend my gratitude to Prof H.S. Thilakasiri, the research coordinator of the Department of Civil engineering, for coordinating the research work with the Post Graduate Division, University of Moratuwa.

I must also express my heartiest gratitude to the academic staff of the Department of Civil Engineering and UNESCO Madanjeet Centre for South Asia Water Management, University of Moratuwa, including the Head of the Department Prof S.M.A. Nanayakkara, for the kind support given to me and providing necessary facilities to carry out this research work. The non – academic staff of the Department, especially the staff of the Hydraulic Engineering Laboratory and Madanjeet Centre for South Asia Water Management should be mentioned with due appreciations, for the support given to me in completing this research work.

The support given to me by Ms Karunathilaka, A.V.A.U, Dr P. K. C. De Silva and Mr S. S. Wanniarachchi should also be warmly appreciated and I must also thank the other postgraduate researchers at Department of Civil Engineering, University of Moratuwa for their support given to me in completing this research work.

At last, but not the least, I express my heart full gratitude to my parents and sister for supporting me and encouraging me to complete this work.

R.S.M. Samarasekara Department of Civil Engineering, University of Moratuwa, Sri Lanka. On the 3rd day of September 2014 of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Table of Contents

Declaration	i
Declaration of the Supervisors	ii
Abstract	iii
Acknowledgement	iv
Table of Contents	vi
List of Figures	viii
List of Tables	ix
Glossary of Terms	X
Chapter 1	.12
1. Introduction	.12
1.1. Risk Assessment and Security of Coastal Communities	.12
1.2. Risk Assessment Initiatives for the Indian Ocean Tsunami Warning	
System (IOTWS)	.12
1.3. Objective of the Study	.13
Chapter 2	.14
2. Literature Review	.14
2.1. Risk and its Components	.14
2.2. Hazard University of Moratuwa, Sri Lanka	.16
2.2.1. Orsunami Hazardic. Theses & Dissertations	.16
2.2.2. Tsunami Detection	.17
2.2.3. Tsunami Warning Dissemination	.20
2.2.4. Tsunami Hazard Analysis	.25
2.3. Vulnerability	.27
2.3.1. Simplified Approach to vulnerability	.27
2.3.2. Advance approach to vulnerability	.27
2.4. Risk Assessment	.28
2.4.1. Approach to Risk Assessment	.28
2.4.2. Hazard, Vulnerability and Risk Maps	.29
2.5. Enhancement of Tsunami Risk Assessment Capability within a Tsunami	
Forecasting and Early Warning Framework	.31
2.6. Managing Risk	.34
2.6.1. Classification of Risk Management Measures	.34
2.6.5. Planning Risk Management Measures	.35
Chapter 3	.37
3. Methodology	.37
Chapter 4	.46
4. Tsunami Wave Height Prediction for Early Warning and Risk Assessment	
using Numerical Modelling	.46
4.1. Introduction	.46
4.2. Current Issues in RTSP	.49

4.	3. Tsunami Source Characterization	
4.	4. Verification of results from TUNAMI N2	60
4.	5. Limitations of the Study	
Chapter 5		65
5. Results and Discussions		65
Chap	pter 6	70
6.	Conclusion	70
Refe	erences	xiii

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 2-1	Four elements of people centred early warning system (EWS)	15
Figure 2-2	Tsunami Signal recorded in a tide gauge	20
Figure 2-3	Worldwide Tsunami Early Warning Systems	21
Figure 2-4	Coastal Forecast Zone Map	23
Figure 2-5	UN-ISDR Framework for effective Early Warning Systems	31
Figure 2-6	Risk assessment within a tsunami forecasting and early warning	
framework	·	33
Figure 3-1	Methodology Flow Chart	43
Figure 4-1	Current Setup of DART® buoys	48
Figure 4-2	Maximum Wave Heights for Port City of Galle for an arbitrary tsunam	i
scenario		49
Figure 4-3	Coastal Forecast Zone Map	51
Figure 4-4	A Coastal Forecast Zone	51
Figure 4-5	Galle CFZ	52
Figure 4-6	General Representative Sketch of a coastal forecasting zones (CFZ)	54
Figure 4-7	One Scenario in ComMIT	58
Figure 4-8	One Scenario in ComMIT	61
Figure 4-9	One Scenario in TUNAMI N2 atrive Sri Lanka	61
Figure 4-1	Coastal Forecast Points in Galle CFZ.	62
Figure 4-1	Google Image of the Port City of Galle	63
Figure 5-1	Selected Points in Coast in Galle CFZ	67
Figure 5-2	Comparison of results from the application of Green's Law and Linear	
Momentum	n Flux	68

List of Tables

Table 2-1	Tsunamigenice earthquake prone faults1	7
Table 2-2	Earthquake Magnitude Scales 1	8
Table 2-3	Parameters which are specified in tsunami bulletins2	24
Table 3-1	Performance of RTSP in Indian Ocean	39
Table 3-2	Sequence of the creation of a digital map with an aid of Admiralty Chart	S
	4	14
Table 4-1	Comparison of tsunami models (Karunathilaka, Assessing Tsunami	
Hazard, 2	010)5	56
Table 4-2	Source Parameter Selection in Different Models	50
Table 4-3	Coastal Forecast Points in Galle CFZ	51
Table 5-1	Selected Scenarios	55
Table 5-2	Wave height variation - (Linear Momentum Flux vs. Green's Law)6	56

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Glossary of Terms

Abbreviation	Description
ADPC	Asian Disaster Preparedness Center
BAKOSURTANAL	Indonesian National Coordinating Agency for Survey and Mapping
BMKG	Indonesian Agency for Meteorology, Climatology and Geophysics
BoM	Australian Bureau of Meteorology
BPPT	Indonesian Agency for Assessment and Application of Technology
BPR	Bottom Pressure Records
CFL Condition	Courant Friedriches Leavy Condition
CFP	Coastal Forecast Points, used by RTSPs to define coastal zones under threat
CFZ Un	Coastal Forecast Zones, used by RTSPs to identify sections of coast under threat
CFZ WW	Coastal Forecast Zones ww.llo.mrt.ac.lk Community Model Interface for Tsunami
CRM	Coastal Resource Management
СТВТО	Comprehensive Nuclear Test Ban Treaty Organization
DART	Deep Ocean Assessment and Reporting of Tsunamies
DMC	Disaster Management Center
DRM	Disaster Risk Management
EWS	Early Warning Systems
FTP	File Transfer Protocol
GA	Geosciences Australia
GLOSS	Global Telecommunication System (IOC)
GLOSS	Global Sea Level Observing System
GSN	IRIS Global Seismographic Network
GTS	Global Telecommunication System (WMO)
IAS	Interim Advisory Service
IGC	Intergovernmental Coordination Group
InaTEWS	Indonesian Tsunami Early Warning System
INCOIS	Indian National Center for Ocean Information System

INTEWC	Indian Tsunami Early Warning Center
IOC	Intergovernmental Oceanographic Commission
IOTWS	Indian Ocean Tsunami Warning System
IOWave	Indian Ocean Wave
IPCC	Intergovernmental Panel on Climate Change
IRIS	Incorporated Research Institutions for Seismology
ITIC	International Tsunami Information Center
JATWC	Joint Australian Tsunami Warning Centre
JMA	Japanese Meteorological Agency
MOST	Method of Splitting Tsunami
MOST	Method of Splitting Tsunami
NCTR	NOAA Center for Tsunami Research
NDMO	National Disaster Management Organizations
NHMSs	National Meteorological and Hydro meteorological Services
NOAA	National Oceanic and Atmospheric Administration
NTWCs	National Tsunami Warning Centers
PTWC	Pacific Tsunami Warning Center
RTSP	Un Regional Tsunami Service Providers ka
SIFT	EleShort-term Inundation Forecast for Tsunami
SIM	Standby Inundation Models
SOPs	Standard Operating Procedures
TNC	Tsunami National Contact
TRATE	Tsunami Risk Assessment Tsunami Exercises in Indian Ocean Countries
TSU	IOC Tsunami Unit
TWFPs	Tsunami Warning Focal Points
UNDP	United Nations Development Programme
UNESCAP	United Nations Economic and Social Commission for Asia and Pacific
UNESCO	United Nations Educational Social and Cultural Organization
UNISDR	United Nations International Strategy for Disaster Reduction
UNU-EHS	The United Nations University Institute for Environment and Human Security
UTC	Coordinated Universal Time
WG	Working Group
WMO	World Meteorological Organization
YSTWC	Yuzhno Sahhalin Tsunami Warning Center