CR 2-1 " 18/00N/29/2014

NUMERICAL MODELING OF EFFECT OF UNDERGROUND CAVITIES ON FOUNDATIONS

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

HALUWEERAGE RASIKE MADURANGA

MASTER OF ENGINEERING IN FOUNDA FION ENGINEERING Electronic Theses & Dissertations EARTH RETAINING SYSTEMS

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF MORATUWA

SRI LANKA

624 "10" 624 · 15 (043)

106899

July 2010

106899

NUMERICAL MODELING OF EFFECT OF UNDERGROUND CAVITIES ON FOUNDATIONS

HALUWEERAGE RASIKE MADURANGA

This thesis was submitted to Bepartment of Light Engineering University of Moratuwa in partial fulfill control the heads rements storathendegree of Master of Engineering in Foundation Engineering and Earth Retaining Systems

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF MORATUWA

SRI LANKA

July 2010

DECLARATION

I Haluweerage Rasike Maduranga do honestly and truly declare that the work included in this thesis in part or whole has not been submitted for any other academic qualification at any institution.

Haluweerage Rasike Maduranga Candidate for the degree of Master of Engineering in Foundation Engineering and Earth Retaining Systems

CERTIFIED BY

UOM Verified Signature

Prof. U.G.A. Puswewala Department of Civil Engineering University of Moratuwa, Sri Lanka

ACKNOWLEDGEMENT

I wish to express my sincere gratitude and acknowledgement to the supervisor of this research work Prof. U.G.A. Puswewala, Department of Civil Engineering, University of Moratuwa who took very keen interest in this project. His guidance and constructive criticism made through his vast research experience were of enormous help to plan and execute the project.

It is a pleasure to take this opportunity to record my gratitude to Prof. S.A.S. Kulatilaka, the course coordinator for the M.Eng Degree Course in Foundation Engineering and Earth Retaining Systems (2006/2007) and other Senior Lectures, University of Moratuwa, for the proper coordination and monitoring.

University of Moratuwa, Sri Lanka.

I am deeply grateful to the optrector, Theoree handle signate the Division, National Building Research Organisation, Dr. Asiri Karunawardena, for giving me opportunity to conduct this research and for granting permission to use the necessary data.

H.R. Maduranga

ABSTRACT

NUMERICAL MODELING OF EFFECT OF UNDERGROUND CAVITIES ON FOUNDATIONS

By

Haluweerage Rasike Maduranga University of Moratuwa Sri Lanka

Simulation of the behavior of foundations over underground cavities and identification of factors affecting the design of the foundations over such cavities are valuable to foundation design engineers.

Matale area in the central province of Sri Lanka provided the background for this work, where many foundations on problematic sub-surface condition are giving rise to distress in building. The various factors and parameters used in this work are based on actual data obtain previously by studies conducted in the Matale area by NBROk. The main objective of this work is to use numerical modeling to investigate the effect of underground cavities on footing foundations.

The numerical study carried out here conform the generally excepted behavior of a footing placed on ground with a cavity. A parametric study carried out using finite element analysis, yielded more specific quantitative data on the interaction between a footing foundation, and ground with cavities. Particular emphasize was placed on such parameters as the vertical displacement, stress distribution and the extent of the influence zone.

TABLE OF CONTENTS

DECLARATION	I
ACKNOWLEDGEMENT	П
ABSTRACT	Ш
TABLE OF CONTENTS	IV
LIST OF FIGURES	VI
LIST OF TABLES	VIII
LIST OF APPENDICES	VIII
CHAPTER 1 INTRODUCTION	1
1.1 Background	1
1.2 Statement of the problem and objectives	1
CHAPTER 2 LITERATURE REVIEW	3
2.1 Introduction Electronic Theses & Dissertations	3
2.2 Theory of Stress Distribution mrt. ac.lk	3
2.2.1 Point Load and Stress Distribution	4
2.2.2 Contours of equal vertical stress	8
2.2.3 Displacements from Elastic Theory	9
2.2.4 Evaluation of Elastic Parameters	10
2.3 Stress Distribution over Cavity	14
2.3.1 Experimental Result	15
2.3.2 Finite Element Analysis	16
CHAPTER 3 CASE HISTORY AT THE MATALE AREA IN SRI LANKA	19
3.1 General	19
3.1.1 Geology	19
3.1.2 Theoretical Background	20
3.2 Investigation in the area	22

3.2.1 Subsoil Investigations	23
3.2.2 Laboratory Tests	26
CHAPTER 4 NUMERICAL MODELING	27
4.1 Finite Element Analysis	27
4.2 Plain Strain Finite Element Analysis and Verification of Algorithm	n 27
4.3 Material Parameters for the Soil Media	30
4.4 Parametric Finite Element Analysis	32
4.5 Configuration of the problem considered	33
4.6 Stress Distribution and Settlement Analysis	35
4.7 Variation of stress and settlement with width of footing	36
4.7.1 VSD vs. width of footing (B)	37
4.7.2 EVS vs. width of footing (B)	40
4.8 Stress and settlement vs. radius of cavity (R) Electronic Theses & Dissertations	42
4.8.1 VSD vs. radius of single cavity. (R). 1k	42
4.8.2 EVS vs. radius of single cavity (R)	44
4.9 Stress and settlement vs. depths of cavity (H)	45
4.10 Stress and settlement analysis vs. values of E and v	48
4.10.1 VSD vs. Young's Modulus and Poison's ratio (v)	48
4.10.2 EVS vs. Young's Modulus and Poison's ratio (v)	52
CHAPTER 5 CONCLUSIONS	53
REFERENCES	54
APPENDIX I - FIGURES	55
APPENDIX II - DETAILS OF LABORATORY TESTS	61
APPENDIX III – LOG OF THE BOREHOLES	73

v

LIST OF FIGURES

Figure 2-1 - (a) The stresses at point X due to a point load Q on the surface , (b) The vertical stress distribution	4
Figure 2-2 - Contact pressure q_0 to be applied to a circular area	5
Figure 2-3 - The Influence chart for vertical pressure (Bowles, 1996) after Newmark (1942)	6
Figure 2-4 - Approximate methods of obtaining the stress increase q_v in the soil at a depth z beneath the footing	7
Figure 2-5 - Distribution of vertical stress due to a loaded circular area on a linear elastic halfspace (a) along vertical lines, (b) along horizontal lines (Fang, 1991)	7
Figure 2-6 - Contours of equal vertical stress (a) under strip area (b) under square (Craig, 1987)	9
Figure 2-7 - Definitions of the initial tangent and secant module (Fang, 1991)	12
Figure 2-8 - Shallow continues rough foundation over a void by Baus and Wang (Das, 1987)	15
Figure 2-9 - Result for the ultimate bearing capacity by Baus and Wang (Das, 1987)	16
Figure 2-10 – Vertical stress distribution on vertical planes (Badie and Wang, 1994) Electronic Theses & Dissertations	16
Figure 2-11 - Vertical stress distribution on horizontal planes (Badie and Wang, 1994)	17
Figure 2-12 - q_u/q_0 vs. footing spacing(S) / width (B) without void condition (Wang, Jao, and Hsieh, 1994)	17
Figure 2-13 - q_u/q_0 vs. footing spacing(S) / width (B) with void condition by (Wang, Jao, and Hsieh, 1994)	18
Figure 3-1 – Typical subsurface geometry at the site	20
Figure 3-2 - Stiff graph presentation of chemical data	23
Figure 3-3 - Assumed vertical soil profiles through boreholes BH1 and BH 2	24
Figure 3-4 - Assumed vertical soil profiles through boreholes BH2 and BH3	25
Figure 4-1 - 15-node triangular element	27
Figure 4-2 – Problem configuration for verification of the software	28
Figure 4-3 – The mesh generated using 15-node element	29
Figure $4-4 - (a)$ Stress distribution (b) along the AA' (c) along the BB'	30
Figure 4-5 - Young's Modulus value of clayey sand layer (Location BH2, Depth 4-4.6m)	32
Figure 4-6 - The problem configuration of the domain and boundary conditions	34

Figure 4-7 - Vertical stress distribution at the centre plane with respect to footing without cavity	34
Figure 4-8 – Major principal stress contour for without cavity (a) and with cavity (b)	35
Figure 4-9 - The vertical stress distribution along the vertical plane of footing centre (1), cavity edge (2) and far edge (3)	36
Figure 4-10 - The subsurface geometry for stress and settlement analysis for selected different size of the footing (B)	37
Figure 4-11 - The VSD along the vertical plane of footing centre for different footing width (B = 1, 2.5, 5, 10 and 15) for H= 10m	38
Figure 4-12 - The VSD along the vertical plane of footing centre for different footing width (B = 1, 2.5, 5, 10 and 15) for H= 5m	38
Figure 4-13 - The VSD along the vertical plane of footing centre for different footing width (B = 1, 2.5, 5, 10 and 15) for H = $2.5m$	39
Figure 4-14 - The VSD along the vertical plane of footing centre for different footing width (B = 1, 2.5 and 5) for H = 1m	39
Figure 4-15 – EVS vs. B/H with cavity	40
Figure 4-16 - EVS vs. B/H without cavity	41
Figure 4-17 – Setulement Difference (LS) for the curves of with and without Electronic Theses & Dissertations	41
Figure 4-18 - The ground settlement though for different footing widths (B = 2.5, 5 and 10)	42
Figure 4-19 - The subsurface geometry for stress and settlement analysis for selected different radii of cavity (R)	43
Figure 4-20 - The vertical stress distribution along the vertical plane of footing centre for different radius of single cavity ($R = 1, 2.5, 5, 10$)	43
Figure 4-21 - The vertical stress distribution along the vertical plane of footing centre for different radius of single cavity (R = 2.5m, 10m)	44
Figure 4-22 - The ground settlement though for different radius of single cavity $(R = 1, 5, and 10)$	44
Figure 4-23 - The subsurface geometry for stress and settlement for different depths of cavity (H)	45
Figure 4-24 - The vertical stress distribution along the vertical plane of footing centre for different depth to the cavity (H=2.5, 10, 15) for $B = 2.5m$	46
Figure 4-25 - The vertical stress distribution analysis along the vertical plane of footing centre for different depth to the cavity (H=5, 10, 15) for B = $15m$	46

Figure 4-26 - The settlement for 2.5m width of footing for different depth to the cavity (H=2.5, 5, 10)	47
Figure 4-27 - The settlement for 5m width of footing for different depth to the cavity (H=2.5, 5, 10)	47
Figure 4-28 – Settlement (S) Vs. H/B	48
Figure 4-29 - Subsurface Geometry for analysis E and v	49
Figure 4-30 – Vertical stress distribution (VSD) for different E values (young's Modulus)	49
Figure 4-31 – Vertical stress distribution (VSD) for different v (Poison's Ratio) values	50
Figure 4-32 – Major principal displacement contour for without cavity (a) and with cavity (b)	50
Figure 4-33 – Extreme settlement values vs. E	51
Figure 4-34 – Extreme settlement values vs. v	51

LIST OF TABLES

Table 2-1 - Typical value ranges for the Poison's ratio (v) by (Bowles, 1996)	13
Table 2-2 - Typical value ranges for the Young's modulus (E) by (Bowles, 1996)	14
Table 3-1 - Summary of Borehole Investigation 1k	21
Table 3-2 - Summary of the crack survey	21
Table 3-3 – Chemical data of deep tube well and shallow well	22
Table 4-1 - The corrected SPT N and its related Young's Modulus	30
Table 4-2 - Summary of estimated Young's Modulus values	31
Table 4-3 – Material Details of Footing	33
Table 4-4 – Range of values of parameters selected for analysis	33
Table 4-5 - The extreme vertical stress below the bottom of the cavity	40

LIST OF APPENDICES

APPENDIX I	- Figures
------------	-----------

- APPENDIX II Details of Laboratory Tests
- APPENDIX III Logs of Boreholes

LIBRARY