«. H 03 /48 1B/DON/13/2013

DEVELOPMENT OF NR/CIIR RUBBER BLENDS WITH CARBON BLACK AND SILICA FILLERS FOR TYRE INNER LINERS

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

T.A.A.I.Siriwardana

(8208)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Thesis submitted in partial fulfillment of the requirements for the

degree Master of Science

University of Moratuwa 104531

Department of Chemical & Processing Engineering

University of Moratuwa

Sri Lanka

December 2012

TH

1D Pelamin

ON TO YTIEREHUULI

104531

8 (043)

Tech.

104531

DECLARATION BY THE CANDIDATE

The work described in this thesis was carried out by me under the supervision of Dr. (Mrs.) Dilhara G. Edirisinghe (Actg. Head Rubber Technology & Development Department, Rubber Research Institute of Sri Lanaka, Ratmalana) and Dr. (Mrs.) Shantha Egodage (Senior Lecturer, Department of Chemical & Process Engineering, University of Moratuwa) and report on this has not been submitted in whole or part to any University or any other Institution for another Degree/Diploma. I also certify that this thesis does not include, without acknowledgement, any materials previously submitted for a degree in any universities, and to the best of my knowledge and belief it does not contain any materials previously published, written or oral communicated by University of Son.

UOM Verified Signature

т. А. А. I. С¹и¹---- и ----

T.A.A.I.Siriwardana

Date

DECLARATION OF THR SUPERVISORS

We certify that the above statement made by the candidate is true and that this thesis is suitable for submission to the university for the purpose of evaluation.

UOM Verified Signature UOM Verified Signature Dr. (Mrs.) Shantha Egodage Dr (Mrs.) Dilhara G.Edirisinghe Senior Lecturer, Actg. Head, Department Chemical & Rubber Technology & Process Engineering, Development Department, Rubber Research Institute of Sri Lanka, University of Moratuwa, Sri Lanka, Ratmalana Electronic Theses & Dissertations www.lib.mrt.ac.lk

Date: 02.01.2013

ACKNOWLEDGEMENTS

First, and foremost, I would very much like to express my sincere gratitude to Dr. (Mrs.) Dilhara Edirisinghe, Actg. Head, Rubber Technology & Development Department of the Rubber Research Institute of Sri Lanka, who was my project supervisor, for the encouragement, guidance and numerous helpful comments and suggestions given to me right throughout the project.

I wish to express my sincere thanks to Dr. (Mrs.) Shantha Egodage, Senior Lecturer, Department of Chemical and Process Engineering, Dr. Jagath Premachandra, Senior Lecturer, Department of Chemical and Process Engineering and Dr.Shantha Walpalage, Senior Lecturer, Department of Chemical and Process Engineering of the University of Moratuwa, Sri Lanka, for the keen interest taken in co-ordinating the MSc. Course in Polymer Science & Technology and making arrangements for me to undertake this project.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

I wish to express on gratitude to Dr. W.M.G.Seneviratne, Director, and other officers of the Rubber Research Institute of Sri Lanka, for providing me the necessary facilities to carry out this work at the Institute's Laboratories situated at Ratmalana. The technical assistance given by the staff of Rubber Technology & Development Department, Polymer Chemistry Department, Raw Rubber and Chemical Analysis Department, and Raw Rubber Processing & Chemical Engineering Department of the Rubber Research Institute of Sri Lanka also gratefully acknowledged.

Also, I wish to express my thanks to my colleagues for their invaluable services, advice, generous support at all times, too numerous to mention here and above all, for the inspiration and encouragement to make this onerous task a success.

My special thanks are also to Sri Lanka Institute Nano Technology (SLINTEC), D. Samson Industries (Pvt.) Ltd, Associated Motorways (Pvt.) Ltd, and Elastomeric Engineering (Pvt.) Ltd, for their unfailing help and kind cooperation given throughout the project.

A very special word of thanks to my parents and family members for their generous help towards my academic achievements, at all times.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Inner liner of a tubeless tyre is currently constructed using a speciality synthetic rubber called chlorobutyl rubber (CIIR). Blending of CIIR with natural rubber (NR) will enable to achieve improvement in physico-mechanical properties with a reduced compound cost. Also, use of CIIR/NR blends for inner liners are best at retaining air pressure and minimizing the temperature dependence of air permeability. The property increase is enhanced by addition of a mix of carbon black and silica fillers, which are reinforcing fillers. One reason for carrying out this research is to enhance the market opportunities of NR by developing NR/CIIR blends to reach the end product requirements. In this study, different series of compounds were prepared, one with CIIR alone by varying the cIIR to NR blend ratio at 10 phr intervals, other with CIIR/NR blends by varying the CIIR to NR blend ratio at 20% intervals. Total filler loading was kept constant at 60 phr.

Melt viscosity, hardness, tensile strength, modulus at 300 % and tear strength increased with silica loading, while scorch time, abrasion volume loss and air permeability decreased above silica loading of 30 phr.. Cure time did not show any variation with type of filler. When replacing CIIR with NR, cure rate index increased significantly from 40% NR and hence the cure time decreased. Mechanical properties and air permeability varied significantly. Materials used for the inner liner mainly chlorobutyl rubber are very expensive and hence by using the above mentioned blend with the optimum filler loading, the production cost can be minimized. Results in overall showed optimum properties for the 20.80 CIR/NR blend at sl0:50 carbon black /silica filler ratio.

Key words: Chlorobutyl rubber, Natural rubber, Rubber blends, Physico-mechanical properties, Air permeability, Combined effect of carbon black and silica fillers

TABLE OF CONTENTS

	Page
Declaration of the Candidate	i
Declaration of the Supervisor	ii
Acknowledgements	iii
Abstract	v
Table of Contents	vi
List of Figures	xiii
List of Tables	xviii
List of Abbreviations	xix
List of Appendices	xxi
CHAPTER ONE – INTRODUCTION	1
ES L Conservations	
1.1 Background	1
1.2 Objectives University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	4
CHAPTER TWO-LITERATURE REVIEW	5
2.1 Natural Rubber	5
2.1.1 Structure and properties of natural rubber	5
2.1.2 Applications of natural rubber	6
2.2 Butyl Rubber	6
2.2.1 Structure, properties and applications of butyl rubber	6
2.2.2 Processing and compounding of butyl rubber	8

2.3 Reinforcement with Carbon Black and Silica Fillers		
2.3.1	The nature of carbon black	9
2.3.2	The phenomena of reinforcement	10
2.3.3	The nature of silica	10
2.3.4	Applications of silica	11
2.4 Rubbe	er Mixing	12
2.4.1	Process variables and control	13
2.5 Comp	ounding and Vulcanization	15
2.5.1	Compounding	15
2.5.2	Compounding ingredients	16
2.5.3	Vulcanization University of Moratuwa, Sri Lanka.	19
2.5.4	Sulphur (uring system ronic Theses & Dissertations	19
2.5.5	The chemistry of accelerated sulphur vulcanization	20
2.5.6	Influence of fillers on vulcanization	22
2.5.7	Cure system and cure characteristics of chlorobutyl rubber	23
2.6 Swell	ing of Rubber Networks	24
2.6.1	Swelling of Filled Rubber	25
2.7 Air Pe	ermeability	26
2.7.1	Air permeability of inner liners of tubeless tyre	27
CHAPTI	ER THREE – EXPERIMENTAL	30

3.1	.1 Materials		
3.2	Experi	mental Procedures	30
	3.2.1	Determination of Mooney viscosity of raw rubber	30
	3.2.2	Preparation of chlorobutyl rubber compounds with different	
		- combinations of fillers	32
	3.2.3	Preparation of chlorobutyl rubber/natural rubber blend compounds	
		- with different blend ratios	33
	3.2.4	Determination of cure characteristics of rubber compounds	37
	3.2.5	Determination of tensile strength of rubber vulcanizates	38
	3.2.6	Determination of tear strength of rubber vulcanizates	40
	3.2.7	Determination of ageing resistance of rubber vulcanizates	41
	3.2.8	Determination of hardness of rubber vulcanizates	42
	3.2.9	Determination of rebound resilience of rubber sulcanizates	42
	3.2.10	Determination of gas permeability of rubber vulcanizates www.lib.mrt.ac.lk	43
	3.2.11	Determination of compression set of rubber vulcanizates	45
	3.2.12	Determination of abrasion resistance of rubber vulcanizates	46
	3.2.13	Determination of density of rubber vulcanizates	46
	3.2.14	Determination of water swelling of rubber vulcanizates	47
	3.2.15	Determination of rolling resistance of rubber vulcanizates	47
	3.2.16	Determination of flex cracking resistance of rubber vulcanizates	47
Cł	IAPTE	R FOUR – RESULTS AND DISCUSSION	49

4.1 Cure Characteristics of CIIR Compounds

49

	4.1.1	Minimum torque and scorch time	49
	4.1.2	Maximum torque and delta cure	50
	4.1.3	Cure rate index	50
	4.1.4	Cure time	51
4.2	Physic	o-mechanical Properties of CIIR Compounds	52
	4.2.1	Tensile properties (before ageing)	52
	4.2.2	Elongation at break (before ageing)	53
	4.2.3	Tensile properties (after ageing)	53
	4.2.4	Elongation at break (after ageing)	54
	4.2.5	Tear strength (before ageing)	55
	4.2.6	Tear strength (after ageing)	55
	4.2.7	Hardness	56
	4.2.8	Rebound resilience	57
	4.2.9	Compression set niversity of Moratuwa, Sri Lanka.	58
		Abrasion volumedossonic Theses & Dissertations	58
	4.2.11	Water swelling www.lib.mrt.ac.lk	59
	4.2.12	Tan δ at 60 $^{\circ}$ C	60
	4.2.13	Resistance to Flex-cracking	60
4.3	Cure c	haracteristics of the series of CIIR /NR Blends with a carbon -	
	black:	silica filler ratio of 50:10	61
	4.3.1	Minimum torque and scorch time	61
	4.3.2	Maximum torque and delta cure	62
	4.3.3	Cure time	62
	4.3.4	Cure rate index	63

4.4	Physico	o-mechanical Properties of CIIR /NR Blends with a carbon -			
	black: silica filler ratio of 50:10				
	4.4.1	Tensile properties (before ageing)	64		
	4.4.2	Elongation at break (before ageing)	65		
	4.4.3	Tensile properties (after ageing)	65		
	4.4.4	Elongation at break (after ageing)	66		
	4.4.5	Tear strength (before ageing)	67		
	4.4.6	Tear strength (after ageing)	67		
	4.4.7	Hardness	68		
	4.4.8	Rebound resilience	69		
	4.4.9	Compression set	69		
	4.4.10	Abrasion volume loss	70		
	4.4.11	Water swelling	71		
	4.4.12	Tan δ at 60 $^{\circ}C$	71		
	4.4.13	Resistance Universitace in Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	72		
4.5	5 Cure c	haracteristics of the series of CIIR /NR Blends with a carbon -			
	black:	silica filler ratio of 20:40	72		
	4.5.1	Minimum torque and scorch time	72		
	4.5.2	Maximum torque and delta cure	73		
	4.5.3	Cure rate index	74		
	4.5.4	Cure time	75		
4.6	6 Physic	co-mechanical Properties of CIIR /NR Blends with a carbon -			
	black:	silica filler ratio of 20:40	75		

	4.6.1	Tensile properties (before ageing)	75
	4.6.2	Elongation at break (before ageing)	76
	4.6.3	Tensile properties (after ageing)	77
	4.6.4	Elongation at break (after ageing)	77
	4.6.5	Tear strength (before ageing)	78
	4.6.6	Tear strength (after ageing)	79
	4.6.7	Hardness	79
	4.6.8	Rebound resilience	80
	4.6.9	Compression set	81
	4.6.10	Abrasion volume loss	81
	4.6.11	Water swelling	82
	4.6.12	Tan δ at 60 0 C	83
	4.6.13	Resistance to Flex-cracking	83
4.7		haracteristics of the series of CIIR /NR Blends with a carbon - silica filler ratio of high Sity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	84
	4.7.1	Minimum torque and scorch time	84
	4.7.2	Maximum torque and delta cure	84
	4.7.3	Cure rate index	85
	4.7.4	Cure time	86
4.8		o-mechanical Properties of CIIR /NR Blends with a carbon -	
	black:	silica filler ratio of 10:50	86
	4.8.1	Tensile properties (before ageing)	86
	4.8.2	Elongation at break (before ageing)	87
	4.8.3	Tensile properties (after ageing)	88
	4.8.4	Elongation at break (after ageing)	89
	1.0.1	Etongation at oroun (artor agoing)	

4.8.5 Tear strength (before ageing)	89
4.8.6 Tear strength (after ageing)	90
4.8.7 Hardness	91
4.8.8 Rebound resilience	91
4.8.9 Compression set	92
4.8.10 Abrasion volume loss	93
4.8.11 Water swelling	94
4.8.12 Tan δ at 60 0 C	94
4.8.13 Resistance to Flex-cracking	95
4.9 Air Permeability of Compounds	95
CHAPTER FIVE – CONCLUSIONS & RECOMMENDATION FOR FUTURE WORK	97
5.1 Conclusions	97
5.2 Recommendation for Future Work Moratuwa, Sri Lanka.	98
REFERENCES www.lib.mrt.ac.lk	99
Appendix 1	103
Appendix 2	111
Appendix 3	117

LIST OF FIGURES

Page

Figure	2.1	Structure of cis-1, 4- polyisoprene	5
Figure	2.2	Structure of chlorobutyl rubber	7
Figure	3.1	Description of a cure curve	38
Figure	3.2	Diagram of a dumb bell test piece used for the analysis of	
		tensile strength	40
Figure	3.3	Diagram of the angle test piece used for the analysis of tear	
		Strength	41
Figure	3.4	Gas permeability tester	45
Figure	4.1	Variation of minimum torque and scorch time with carbon	
		black: silica filler ratio	49
Figure	4.2	Variation of maximum torque and delta cure with carbon	
		black: silica filler ratio	50
Figure	4.3	Variation of cure rate index with carbon black silica	
		filler ratio Electronic Theses & Dissertations	51
Figure	4.4	Variation of cure time with carbon black: silica filler ratio	51
Figure	4.5	Variation of tensile properties (before ageing) with carbon	
		black: silica filler ratio	52
Figure	4.6	Variation of elongation at break (before ageing) with carbon	
		black: silica filler ratio	53
Figure	4.7	Variation of tensile properties (after ageing) with carbon	
		black: silica filler ratio	54
Figure	4.8	Variation of elongation at break (after ageing) with carbon	
		black: silica filler ratio	54
Figure	4.9	Variation of tear strength (before ageing) with carbon	
		black: silica filler ratio	55

Figure	4.10	Variation of tear strength (after ageing) with carbon	
		black: silica filler ratio	56
Figure	4.11	Variation of hardness with carbon black: silica filler ratio	57
Figure	4.12	Variation of resilience with carbon black: silica	
		filler ratio	57
Figure	4.13	Variation of compression set with carbon black: silica	
		filler ratio	58
Figure	4.14	Variation of abrasion volume loss with carbon	
		black: silica filler ratio	59
Figure	4.15	Variation of water swelling with carbon black: silica	
		filler ratio	59
Figure	4.16	Variation of tan δ at 60 ⁰ C with carbon black: silica	
		filler ratio	60
Figure	4.17	Variation of minimum torque and scorch time with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	61
Figure	4.18	Variation of maximum torque and delta sure with CILEAR ratio composed blackes in a fine ratio is 50:10)	62
Figure	4.19	Variation of cure time with CIIR:NR ratio	
		(carbon black: silica filler ratio is 50:10)	63
Figure	4.20	Variation of cure rate index with CIIR:NR ratio	
		(carbon black: silica filler ratio is 50:10)	63
Figure	4.21	Variation of tensile properties (before ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	64
Figure	4.22	Variation of elongation at break (before ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	65
Figure	4.23	Variation of tensile properties (after ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	66
Figure	4.24	Variation of elongation at break (after ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	66

Figure	4.25	Variation of tear strength (before ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	67
Figure	4.26	Variation of tear strength (after ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	68
Figure	4.27	Variation of hardness with CIIR:NR ratio	
		(carbon black: silica filler ratio is 50:10)	68
Figure	4.28	Variation of resilience with CIIR:NR ratio	
		(carbon black: silica filler ratio is 50:10)	69
Figure	4.29	Variation of compression set with CIIR:NR ratio	
		(carbon black: silica filler ratio is 50:10)	70
Figure	4.30	Variation of abrasion volume loss set with	
		CIIR: NR ratio (carbon black: silica filler ratio is 50:10)	70
Figure	4.31	Variation of water swelling with CIIR:NR ratio	
		(carbon black: silica filler ratio is 50:10)	71
Figure	4.32	Variation of tan δ at 60 ⁰ C with CIIR:NR ratio	
		(carbon blacki silies filler ratio is 50 al, 93 ri Lanka.	72
Figure	4.33	Variation of Institution Torques and Scioren affier with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	73
Figure	4.34	Variation of maximum torque and delta cure with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	74
Figure	4.35	Variation of cure rate index with CIIR:NR ratio	
		(carbon black: silica filler ratio is 20:40)	74
Figure	4.36	Variation of cure time with CIIR:NR ratio	
		(carbon black: silica filler ratio is 20:40)	75
Figure	4.37	Variation of tensile properties (before ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	76
Figure	4.38	Variation of elongation at break (before ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	76

Figure	4.39	Variation of tensile properties (after ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	77
Figure	4.40	Variation of elongation at break (after ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	
Figure	4.41	Variation of tear strength (before ageing) with	78
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	78
Figure	4.42	Variation of tear strength (after ageing) with	
		CIIR: NR ratio (carbon black: silica filler ratio is 20:40)	79
Figure	4.43	Variation of hardness with CIIR:NR ratio	
		(carbon black: silica filler ratio is 20:40)	80
Figure	4.44	Variation of resilience with CIIR:NR ratio	
		(carbon black: silica filler ratio is 20:40)	80
Figure	4.45	Variation of compression set with CIIR:NR ratio	
		(carbon black: silica filler ratio is 20:40)	81
Figure	4.46	Variation of abrasion volume loss with CIIR:NR ratio	
		(carbon blacki silica fillenvatio is 20;49) i Lanka.	82
Figure	4.47	Variation of water swelling with CliRANR hatto	
		(carbon black: silica filler ratio is 20:40)	82
Figure	4.48	Variation of tan δ at 60 ^o C with CIIR:NR ratio	
		(carbon black: silica filler ratio is 10:50)	83
Figure	4.49	Variation of minimum torque and scorch time with	
		CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	84
Figure	4.50	Variation of maximum torque and delta cure with	
		CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	85
Figure	4.51	Variation of cure rate index with CIIR:NR ratio	
		(carbon black: silica filler ratio is 10:50)	85
Figure	4.52	Variation of cure time with CIIR:NR ratio	
		(carbon black: silica filler ratio is 10:50)	86

Figure 4.53 Variation of tensile properties (before ageing) with	
CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	87
Figure 4.54 Variation of elongation at break (before ageing) with	
CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	88
Figure 4.55 Variation of tensile properties (after ageing) with	
CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	88
Figure 4.56 Variation of elongation at break (after ageing) with	
CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	89
Figure 4.57 Variation of tear strength (before ageing) with	
CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	90
Figure 4.58 Variation of tear strength (after ageing) with	
CIIR: NR ratio (carbon black: silica filler ratio is 10:50)	90
Figure 4.59 Variation of hardness with CIIR:NR ratio	
(carbon black: silica filler ratio is 10:50)	91
Figure 4.60 Variation of resilience with CIIR:NR ratio	
(carbon black; silica filler ratio is 10:50) ri Lanka.	92
Figure 4.61 Variation of compression set with Clipson Rivation	
(carbon black: silica filler ratio is 10:50)	93
Figure: 4.62 Variation of abrasion volume loss with CIIR:NR ratio	
(carbon black: silica filler ratio is 10:50)	93
Figure: 4.63 Variation of water swelling with CIIR:NR ratio	
(carbon black: silica filler ratio is 10:50)	94
Figure: 4.64 Variation of tan δ at 60 ⁰ C with CIIR:NR ratio	
(carbon black: silica filler ratio is 10:50)	95

LIST OF TABLES

Table	3.1	Formulations of CIIR compounds	32
Table	3.2	Formulations of CIIR/NR blend compounds containing	
		a 50:10 carbon black: silica filler ratio	34
Table	3.3	Formulations of NR/CIIR blend compounds containing	
		a 20:40 carbon black: silica filler ratio	35
Table	3.4	Formulations of NR/CIIR blend compounds containing	
		a 10:50 carbon black: silica filler ratio	36
Table	3.5	Mixing cycle of NR/CIIR blend compounds	37
Table	4.1	Air permeability values of compounds prepared with different	
		CIIR: NR blend ratios	96

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

Abbreviation		Description
BR		Butadiene rubber
⁰ С		Centigrade
CV		Conventional Vulcanization
CR		Chloroprene rubber
СВ		Carbon black
CV		Conventional vulcanization
CIIR		Chloro butyl rubber
СТАВ		Cetyltrimethylammonium Bromide
DEG		Diethylene Glycol
EPDM		Ethylene propylene diene ter polymer
EB		Elongation at Break
EV		Efficient Vulcanization
F	la la	MaximumitfordeMoratuwa, Sri Lanka.
G		Electronic Theses & Dissertations www.lib.mrt.ac.lk
IR	8	www.lib.mrt.ac.lk Isoprene rubber
IIR		Butyl rubber
IPPD		N- phenyl, N'- isopropyl paraphenylene Diammine
IRHD		International Rubber Hardness Degrees
Kg		Kilogram
М		Mass
m		Meter
mm		Milli meter
MPa		Mega Pascal
MDR		Moving Die Rheometer
MBT		Mercaptobenzthiazole
MBTS		Dibenzothiazyl di sulfide
M _H		maximum torque

M _L	Minimum torque	
MOD	Modulus	
100 % MOD	Modulus at 100 % elongation	
300 % MOD	Modulus at 300 % elongation	
500 % MOD	Modulus at 500 % elongation	
NR	Natural Rubber	
N	Normal cure	
NBR	Acrylonitrile butadiene rubber (Nitrile Rubbe	r)
O ₂	Oxygen	
O ₃	Ozone	
%	Percentage	
phr	Parts per hundred rubber	
PVI	Pre vulcanizing inhibitor	
S	Sulphur	
Semi EV	Semi Efficient Vulcanization	
Si 69	bis-(3-triethoxysilylpropyl) tetrasulfane	
SBR	styrene bitadiene habberwa, Sri Lanka.	
VGC	Electronic Theses & Dissertations	
ZnO	Zinc Oxide	

Appendices

Description	Page
Cure characteristics and physico-mechanical properties	
of CIIR compounds	103
Cure characteristics and physico-mechanical properties of	
CIIR /NR blend compounds with 50:10 carbon black: silica	
filler ratio	105
Cure characteristics and physico-mechanical properties of	
CIIR /NR blend compounds with 20:40 carbon black: silica	
filler ratio	107
Cure characteristics and physico-mechanical properties of University of Moratuwa, Sri Lanka Curry NR blend compounds with 10:50 carbon black: silica Electronic Theses & Dissertations filter ratiowww.lib.mrt.ac.lk	109
	Cure characteristics and physico-mechanical properties of CIIR compounds Cure characteristics and physico-mechanical properties of CIIR /NR blend compounds with 50:10 carbon black: silica filler ratio Cure characteristics and physico-mechanical properties of CIIR /NR blend compounds with 20:40 carbon black: silica filler ratio

Appendix 2

Table 1	Tensile properties of CIIR: NR blends for selected carbon	
	black: silica ratios	111
Table 2	Tear strength of CIIR: NR blends for selected carbon	
	black: silica ratios	112
Table 3	Elongation at break of CIIR: NR blends for selected	
	carbon black: silica ratios	113
Table 4	Hardness of CIIR: NR blends for selected carbon	
	black: silica ratios	113

Table 5	Abrasion volume loss of CIIR: NR blends for selected	
	carbon black: silica ratios	114
Table 6	Resilience of CIIR: NR blends for selected carbon	
	black: silica ratios	114
Table 7	Compression set of CIIR: NR blends for selected carbon	
	black: silica ratios	115
Table 8	Water swelling of CIIR: NR blends for selected carbon	
	black: silica ratios	116

Appendix 3

Figure 1 Rheograph of compound No. F-1	117
Figure 2 Rheograph of compound No. F-2	117
Figure 3 Rheograph of compound No. F-3	118
Figure 4 Rheograph of compound No. F-4	118
Figure 5 Rheograph of compound No Moratuwa, Sri Lanka.	119
Figure 6 Rheograph of Elempound Nberes & Dissertations	119
Figure 7 Rheograph of compound No. F-7	120
Figure 8 Rheograph of compound No. F-2-2	120
Figure 9 Rheograph of compound No. F-2-3	121
Figure 10 Rheograph of compound No. F-2-4	121
Figure 11 Rheograph of compound No. F-2-5	122
Figure 12 Rheograph of compound No. F-2-6	122
Figure 13 Rheograph of compound No. F-5-2	123
Figure 14 Rheograph of compound No. F-5-3	123
Figure 15 Rheograph of compound No. F-5-4	124
Figure 16 Rheograph of compound No. F-5-5	124
Figure 17 Rheograph of compound No. F-5-6	125
Figure 18 Rheograph of compound No. F-6-2	125

Figure 19 Rheograph of compound No. F-6-3	126
Figure 20 Rheograph of compound No. F-6-4	126
Figure 21 Rheograph of compound No. F-6-5	127
Figure 22 Rheograph of compound No. F-6-6	127

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk