1:

LB/DON/51/03

MINERALOGICAL, TEXTURAL AND FLUID **INCLUSION STUDIES OF CORUNDUM AND** SPINEL IN SRI LANKA

A THESIS PRESENTED

BY

MUTTHARACHCHIGE DON PRASHAN LASANTHA FRANCIS

to the R DRIE WWW WEBSIVY . JUSIA STOLAL : chonic D.CRATURIA Mons w lib mrt ac lk

DEPARTMENT OF EARTH RESOURCES ENGINEERING OF THE UNIVERSITY OF MORATUWA

in partial fulfillment of the requirement for the degree of

DOCTOR OF PHILOSOPHY

of the

622. "0.3" 622.37

UNIVERSITY OF MORATUWA

University of Moratuwa

SRI LANKA

May 2003

78151

78151

To my Parents,

Ì

À

Whose lifelong ambition was to educate their children

to reach the pinnacle of their desired path

DECLARATION

I do hereby declare that the work reported in this project report/ thesis was exclusively carried out by me under the supervision of Prof. P.G.R. Dharmaratne. It describes the results of my own independent research except where due references have been made in the text. No part of this project report/ thesis has been submitted earlier or concurrently for the same or any other degree.

Date: 26-02-2003

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk **UOM Verified Signature**

Signature of the Cadidate

Certified by :

UOM Verified Signature

Name and signature of the supervisor

Prof. P. G. R. Daharmaratne

Date: 26/02/2003

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Prof. P.G.R. Dharmaratne, Professor of Earth Resources Engineering and Chairman, National Gem and Jewellery Authority, for his guidance to complete this task successfully and on schedule. I greatly appreciate the manner in which he monitored my work, allowing me to use my discretion in many instances and also providing a lot of samples for studies.

I am deeply indebted to Prof. Mrs. Niranjani Ratnayake, Director Postgraduate Studies for the support given throughout the period of this study.

I sincerely thank Dr. Kithsiri Dissanayaka, Head, Department of Earth Resources Engineering, for his help and constant encouragement.

University of Moratuwa, Sri Lanka,

I am very grateful to Mr. Dayananda Dillimuni, Visiting Lecturer, University of Moratuwa, for helping me to find relevant information and prepare the samples.

My most sincere thanks are due to Prof. Hiroharu Matsueda, Hokkaido University, Japan, for the analysis of fluid inclusions and Dr. Reto Giere, Associate Professor of Geochemistry, Purdue University, USA for Electron Microprobe Analysis.

Π

I wish to thank the academic and technical staff of the Department of Earth Resources Engineering, specially Mr. Harsha Waidyasekera, for their co-operation and assistance.

My most sincere thanks are due to all my friends who helped me in so many ways such as to collect samples from the study areas.

Financial assistance by the Asian development bank is gratefully acknowledged.

Last, but not least, I am grateful to my parents for their constant encouragement and blessings.

٨.

ABSTRACT

Corundum and spinel are the most prominent gem minerals found in Sri Lanka that account for more than half its gem exports. Further, Sri Lanka is a major supplier of top quality sapphire.

The main objective of this study was to (i) identify as many properties as possible of Sri Lankan corundum and spinel, not recorded so far and (ii) list the properties supposed to be unique to certain terrains such as alkali magmatic terrains in other countries, which were helpful to understand the origin of corundum and spinel of Sri Lanka.

For this study samples representative of the Precambrian metasedimentary terrain of Sri Lanka were collected. For detailed investigations, samples from only Balangoda and Kaltota were chosen, because these areas were underlain by different gem-bearing source rocks.

Several features unique to alkali magmatic terrains such as plagioclase crust around the crystal, surface features resembling needle - like patterns, radial cracks around zircon inclusions and inclusions of zircon clusters were observed in relation to Sri Lankan corundum.

Chemical fingerprinting, a methodology adopted to determine the origin of corundum, was carried out for a limited number of selected samples of which, two were identified as magmatic.

Several microscopic and macroscopic reaction textures provided evidence for the confirmation of metamorphic growth. These reactions were also confirmed by EPMA analysis.

IV

Fluid inclusions representing the Precambrian rocks of Sri Lanka were scrutinized using petrological microscope, Raman microprobe and thermal stage microscope.

During this study it was possible to confirm the theory that Sri Lankan fluid inclusions contained more or less pure CO_{2} , and also the theory that the most common daughter minerals were graphite and diaspore. Necking too was observed and the process was similar to what was mostly observed in the corundum of Malawi.

A classification of corundum on the basis of fluid inclusions was formulated based on the shape, size and composition of fluid inclusions. The classification led to four categories.

Sapphirine too was found as an inclusion, in contact with spinel, in corundum. Hence it was possible to calculate the sapphirine/spinel thermometry. The calculation revealed that the crystallization temperature of Sri Lankan corundum was 761 $^{\circ}$ C (Fe²⁺ calculation).

Finally the features unique to corundum found in other alkali magmatic terrains of the world, which are now identified in Sri Lanka too are taken into consideration. These features were plagioclase crust around corundum, surface features of needle-like pattern, zircon clusters and radial cracks around zircon inclusions in corundum. Two instances found by chemical fingerprinting to be of magmatic nature indicated the origin as such, while the reaction textures associated with the corundum bearing rock indicated metamorphic origin. These findings proved that the corundum of Sri Lanka displayed a combination of both magmatic and metamorphic properties. Hence the origin of corundum could not be attributed to metamorphism alone with certainty.

V

LIST OF FIGURES

Daga

RI La

		rage
Figure 1.1 :	Distribution of gem minerals in Sri Lanka	3
	(after Gunaratne and Dissanayake, 1995)	
Figure 1.2 :	Schematic cross section showing different modes of occurrences of gemstones (after Dahanayake, 1980)	4
Figure 1.3 :	Distribution of gem deposits in Sri Lanka (Source: Dissanayake and Rupasinghe, 1993)	9
Figure 1.4 :	A polyhedral model of the structure of corundum (after Hughes, 1990)	12
Figure 1.5 :	Various crystal habits of corundum (after Themelis, 1992)	13
Figure 1.6 :	Atomic structure of spinel (after William and William, 1988)	16
Figure 1.7 :	Common habits of spinel (modified after Webster, 1994)	17
Figure 1.8 :	Distribution of corundum and spinel deposits in the world	19
Figure 2.1 :	Geological subdivision of Sri Lanka based on rock type and metamorphic grade (after Cooray, 1984)	23
Figure 2.2 :	Geological subdivision of Sri Lanka (After Kröner et al., 1991 and Cooray, 1994)	24

VI

Figure 2.3 :	Regional distribution of maximum temperatures and pressures within Highland Complex, using core composition of garnet, orthopyroxene and plagioclase (after Hartey, 1984, Newton & perkins, 1982)	29
Figure 2.4 :	Literature related to corundum deposits in Sri Lanka	35
Figure 4.1 :	Geological map of the Heramitiyagala area (Source- GSMB 1:100,000 map of Nuwara Eliya- Haputale)	41
Figure 4.2 :	Geological map of the Kaltota area (Source- GSMB 1:100,000 map of Nuwara Eliya- Haputale)	42
Figure 4.3 :	Highly weathered corundum-bearing granulitic gneiss	46
Figure 4.4 :	Fresh granulitic gneiss, embedded with K-feldspar coated corundum	46
Figure 4.5 :	Hypersthene mineral present in the corundum bearing granulitic gneiss	46
Figure 4.6 :	Comparison of the composition of four calc-silicate samples collected from Kaltota and Heramitiyagala areas	48
Figure 4.7 :	Gray coloured industrial quality corundum crystals embedded in rock. The composition of the rock somewhat resembles that of metasyenite	49

VII

Figure 4.8 :	Corundum and spinel, which was confined to	50
	hexagonal shapes embedded in the calc-silicate	
	rock from Kaltota area	
Figure 4.9 :	Corundum approaching the quality of geuda	51
	embedded within a soft micaceous rock	
	enrocaded within a soft micaecous rook	
Figure 4.10:	Calc-silicate rocks containing corundum. Spinel	52
	is not found in these rock types	
Figure 4.11:	Corundum bearing calc-silicate rock (type-4)	53
	doubly polished to facilitate the FPMA analysis	00
	Snots to be analyzed are also indicated	
	spots to be unaryzed are also indicated	
Figure 4.12:	Element (Al) map of a section of the sample is	54
	illustrated. The lighter colours indicate the Al	
	richer minerals while the darker portions indicate	
	minerals deficient or completely lacking in Al	
Figure 4 13.	Pure marble containing blue spinel	56
rigui e 4.13.	i die marbie containing blue spiner	50
Figure 4.14:	Soft micaceous rock containing blue spinel	57
Figure 4.15:	Impure marble embedded with red spinel	57
Figure 4.16:	Fe and trace element variation of spinel vs locality	62
Figure 5.1 :	Scenario explaining the plagioclase covering of	66
	corundum in the ascending basalt, protecting the	
	stone partly from corrosion (after Krzemnicki et	
	al., 1996)	
	·	

VIII

Figure 5.2 :	Scenario explaining the plagioclase shielding effect of corundum, where the corrosion of partly exposed section of the crystal reduced in to a shape similar to "dog's tooth" (after Coenraads, 1992)	66 D
Figure 5.3 :	Muscovite and magarite rims around corundum (source: Australian Gemmologist, Vol.21, 2001)	66
Figure 5.4 :	Green tourmaline growth as a crust around the corundum on a specimen found at Elehera	66
Figure 5.5 :	Schematic illustration of textures in Trapiche ruby (after, Sunagawa et al., 1999 and Schmetzer et al., 1996,1999)	67
Figure 5.6 :	Trigon marks on the surface of spinel, developed due to the effect of twining	69
Figure 5.7 :	Location map of the insitu corundum (granulitic gneiss) (Source: Survey Dept. 1:63,360 topographic map of Ratnapura)	71
Figure 5.8 :	Corundum bearing granulitic gneiss, along with its corundum wrapped around with K-feldspar rims	71
Figure 5.9 :	Translucent/opaque corundum crystals	71
Figure 5.10:	Corundum bearing calc-silicate rock	73
Figure 5.11:	Microphotograph illustrating the corundum, which is surrounded by re-crystallized plagioclase grains	73

Figure 5.12:	Microphotograph illustrating the corundum, which is partially surrounded by re-crystallized plagioclase grains in the process of forming phlogopite mica	74
Figure 5.13:	Schematic illustration of the plagioclase shielding effect on corundum	74
Figure 5.14:	Corundum crystals having a thin spinel crust	77
Figure 5.15:	Eroded corundum crystals having thick spinel rim	77
Figure 5.16:	Schematic illustration of the non-uniform enlargement of the spinel rim due to the reaction of corundum and phlogopite (after Francis and Dharmaratne, 2002)	78
Figure 5.17:	Comparison of spinel composition before and after the reaction (Observation-1)	82
Figure 5.18:	Schematic illustration of corundum/spinel, (corundum<===>spinel) transformation described in observation-2 (after Francis and Dharmaratne, 2002)	85
Figure 5.19:	White coloured rim surrounding the corundum crystal	88
Figure 5.20:	Element distribution maps for the white coloured rim surrounding the corundum crystal shown in Figure 5.19	89

Х

Figure 5.21:	Element distribution maps for the white coloured	90
	rim surrounding the corundum crystal	
	(enlarged portion of Figure 5.20)	
Figure 5.22:	Surface features of a needle-like pattern,	91
	developed due to the residue of former	
	plagioclase coating	
Figure 5.23:	Needle-like surface features radiating from	91
	one central point, sort of a duck's foot	
Figure 5.24:	Microphotograph illustrating a zircon inclusion	92
	within the corundum with its affiliated radial	
	cracks (source rock is granulitic gneiss)	
Figure 5.25:	Photograph of an EPMA specimen, illustrating	93
	a zircon inclusion within the corundum with	
	its affiliated radial cracks (source rock is calc-	
	silicate)	
Figure 5.26:	Schematic illustration showing the effect of	93
	zircon inclusion with respect to the quality of	
	the corundum crystal	
Figure 5.27:	Zircon cluster with aspect ratio (1.4 to 2.3)	94
Figure 5.28:	Mole% MgO+FeO, $Al_2O_3 + Fe_2O_3$, SiO ₂ chemical	97
	variation diagram, showing the composition of	
	sapphirine with respect to the ideal composition	
	of sapphirine (2:2:1). The composition is (7:9:3)	
	and agrees with the other recorded compositions	

¢

XI

(Kriegsman, 1991). This diagram is based on a diagram after Sutherland and Coenraads (1996).

•

Figure 6.1 :	Shapes of the observed fluid inclusions	105
Figure 6.2 :	Percentage of primary and secondary fluid	106
	menusions out of the samples investigated	
Figure 6.3 :	Percentage of primary types out of the	106
	primary fluid inclusions investigated	
Figure 6.4 :	Fluid inclusions (primary type-1), shapes	107
	include circular square, oblongly square,	
	angulate circle (Figure 6.4a) circular square,	
	tabular tubes, angulate circle, amorphism	
	(Figure 6.4b) tabular tubes (Figure 6.4c),	
Figure 6.5 :	Fluid inclusions (primary type-2), shapes	108
	include polygon, circular square (Figure 6.5a),	
	oblongly square, elongate square (Figure 6.5b),	
	triangular shapes (polygon) (Figure 6.5c)	
Figure 6.6 :	Fluid inclusions (primary type-3), shapes	109
	include hexagons with either solid inclusions	
	or gas bubbles or both within the same void	
Figure 6.7 :	Fluid inclusions (secondary type-1), shapes	110
	include oblongly square, polygon and amorphism	

Figure 6.8 :	Classification of fluid inclusions of Sri Lankan corundum on the basis of morphology, size and composition	111
Figure 6.9 :	Photograph depicting all varieties of fluid inclusions including necking	113
Figure 6.10:	Two generation of fluid inclusions, in this instance both are primary inclusions	113
Figure 6.11:	Highly deformed fluid inclusion reported in the Balangoda region	113
Figure 6.12:	Highly deformed fluid inclusion, containing number of growth zones. Black solid inclusion present is graphite	113
Figure 6.13:	Raman spectrogram of corundum depicting sulphur and graphite peaks	118
Figure 6.14:	Raman spectrogram of corundum depicting diaspore peaks	ı 119
Figure 6.15:	Raman spectrogram of corundum depicting sulphur peaks	120
Figure 6.16:	Frequency distribution histogram of homogenization temperatures	123

Figure 6.17:	Frequency distribution histogram of	123
	melting temperatures	
Figuro 6 18.	Paman spectrogram of corundum having	124
rigui e 0.10.	contraction contraction contraction in the contraction of the contraction in the contra	124
	only the CO ₂ peaks (1-chic3a)	
Figure 6.19:	Raman spectrogram of corundum having	124
	only the CO_2 peaks (f-rac31b)	
Figure 6.20:	Raman spectrogram of corundum having	125
	only the CO_2 peaks (f-khc9a)	
Figure 6.21:	Raman spectrogram of corundum having	125
	only the CO ₂ neaks (f-rac14a)	1.40
	University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	
Figure 6.22:	Raman spectrogram of corundum having	126
	only the CO ₂ peaks (f-Kuc4a)	
Figure 6 23.	Raman spectrogram of corundum having	126
rigui e 0.45.	$\frac{1}{2}$	120
	Using the CO_2 peaks (1-rac270)	
Figure 6.24:	Fluid necking sequence (after Grubessi	128
	and Marcon, 1986)	
Figure (25	Naching down and see down of the	100
r igure 0.25:	inecking down process, during this stage	129
	two inclusions connected by a tiny tube	
	can be seen	

- Figure 6.26:
 Necking down process, during this stage
 129

 fluid inclusion breaks. A hump-like feature
 129

 can be observed in the fluid inclusions
 129
- Figure 6.27:
 Final stages of necking down process, single
 129

 inclusion can be seen surrounded by tiny fluid
 inclusions just like a galaxy in the sky
- Figure 6.28:
 Schematic illustration of fluid inclusions in
 132

 relation to the formation of corundum in Sri
 Lanka

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Pages

LADI

Table 4.1 :	Abbreviations for mineral names used in the text	44
Table 4.2 :	Some mineral assemblages recorded from the study areas	44
Table 4.3 :	Some oxide percentages of the calc-silicate rocks of the areas (four samples)	47
Table 4.4 :	Spot analysis of the corundum-1 (Figure 4.12)	54
Table 4.5 :	Spot analysis of the corundum-2 (Figure 4.12)	55
Table 4.6 :	Spot analysis of the calcite (c1) (Figure 4.12)	55
Table 4.7 :	Spot analysis of the Feldspar-1 (Figure 4.12)	55
Table 4.8 :	Spot analysis of the Feldspar-2 (Figure 4.12)	56
Table 4.9 :	Empirical element classification (after Sutherland et al., 1988)	58
Table 4.10:	Quantitative EDXRF analyses of selected corundum samples	59
Table 4.11:	Fe and trace element variation of similar spinel collected from different areas	61
Table 5.1 :	Spot analysis of the plagioclase rim (Figure 5.11)	75
	VV/I	ي د ميني . د ميني

.4

Table 5.2 :	Spot analysis of the spinel rim	80
	(Observation-1, Figure 5.14)	
Table 5.3 :	Spot analysis of corundum	81
	(Observation-1, Figure 5.15)	
Table 5.4 :	Spot analysis of the spinel rim	81
	(Observation-1, Figure 5.15)	
Table 5.5 :	EPMA analysis of the included minerals	82
	(inclusions) (Observation 1, Figure 5.15)	
Table 5.6 :	Spot analysis of corundum	86
	(Observation-2, Figure 5.18a and 5.18b)	
Table 5.7 :	Spot analysis of spinelatuwa, Sri Lanka.	86
	(Observation-2, Figure 5.18c and 5.18d)	
Table 5.8 :	Spot analysis of the rim-matrix (Figure 5.18a)	87
Table 5.9 :	Spot analysis of sapphirine as an inclusion	96
	(Observation-1, Figure 5.15)	
Table 6.1 :	Fluid inclusion data of the corundum	115

LIST OF APPENDICES

Appendix 1:	Raman spectrograms of corundum having only the CO2 peaks	143
Appendix 2:	Raman spectrogram of corundum depicting sulphur and diaspore peaks	144
Appendix 3 :	Element distribution map illustrates the formation of spinel as a byproduct of the reaction between phlogopite mica and corundum. Red and yellow within the K map, indicate K rich areas, probably contain phlogopite	145

LIST OF ABBREVIATIONS

PPL	= Plane polarized light
CPL	= Cross polarized light
AAS	= Atomic absorption spectrophotometry
EPMA	= Electron probe micro analyzer
XRMF	= X-ray micro fluorescence
EDXRF	= Energy dispersive x-ray fluorescence
WDS	= Wavelength dispersive spectrometer
EDS	= Energy dispersive spectrometer
SEM	= Scanning electron microscope
NA	= Not analyzed
GSMB	= Geological Survey and Mines Bureau

XIX

CONTENTS

	Page
DECLARATION	Ι
ACKNOWLEDGEMENTS	Π
ABSTRACT	IV
List of figures	VI
List of tables	XVI
List of appendices	XVIII
List of abbreviations	XIX

CHAPTER 1 - INTRODUCTION

1.1	Gem deposits of Sri Lanka	1
	1.1.1 Historical aspects	5
	1.1.2 Present aspects	7
1.2	Corundum Sector Corundum Corundum Corundum	. 10
1.3	Spinel	14
1.4	World occurrences	18

CHAPTER 2 - LITERATURE REVIEW

4

2.1	Introd	uction to the geology of Sri Lanka	20
	2.1.1	Structural and tectonic setting	25
	2.1.2	Thermal and baric evaluation	26
2.2	Previo	us work on corundum and spinel	30
CH	APTER	3 - OBJECTIVES	36
СН	APTER	4 - GEOLOGY AND GEOCHEMIC	AL STUDIES

4.1 Geological setting of the corundum and spinel deposits 38

	4.1.1	Geology of the Kaltota and Heramitiyagala areas	38
	4.1.2	Rock sampling	43
	4.1.3	General lithology of the areas	43
4.2	Descrip	ption of corundum bearing rocks of these areas	
	4.2.1	Corundum bearing granulitic gneiss	45
	4.2.2	Corundum bearing clac- silicate rock	47
	4.2.3	Spinel-bearing rocks	56
4.3	Chemi	cal fingerprinting	58
	4.3.1	Results	60
4.4	Chemie	cal differences of spinel locality-wise	61
4.5	Discuss	sion	63

CHAPTER 5 - TEXTURAL STUDIES

ف.

5.1 Introduction to reaction rims/textures and surface features of corundum

	5.1.1	Introduction to reaction rims	65
	5.1.2	Introduction to reaction textures	67
	5.1.3	Introduction to surface features	68
	5.1.4	Methodology of studying reaction rims/textures	69
		and surface features	
5.2	Reaction	on rims of corundum (Sri Lanka)	
	5.2.1	Reaction rims of corundum (granulitic gneiss)	70
	5.2.2	Reaction rims of corundum (calc-silicate)	72
5.3	Reaction	on textures of corundum (Sri Lanka)	
	5.3.1	1 st Observation	76
	5.3.2	EPMA confirmation of Observation-1	79
	5.3.3	2 nd Observation	83

	5.3.4	XRMF study of rim matrix surrounding	87
		the corundum	
5.4	Surfac	e features, radial cracks and zircon clusters	
of Sri Lankan corundum			
	5.4.1	Surface features on corundum (Sri Lanka)	91
	5.4.2	Radial cracks	92
	5.4.3	Zircon clusters as an inclusion in corundum	93
5.5	Sapphi	irine/spinel thermometry	95
5.6	Discus	sion	98

CHAPTER 6 – FLUID INCLUSION STUDIES

6.1	Introd	uction	101
	6.1.1	Methodology	102
	6.1.2	Classification of fluid inclusions	104
	6.1.3	The classification of Sri Lankan corundum	106
		on the basis of fluid inclusions	
	6.1.4	Microscopic analysis of fluid inclusions	112
6.2	Micros	copic, Raman and thermometric methods	114
	6.2.1	Description of daughter minerals	117
	6.2.2	Results	121
	6.2.3	Necking of fluid inclusion	127
	6.2.4	Fluid inclusions in relation to the formation of corundum	130
6.3	Disccu	ssion	133
СН	APTER	7 - DISCUSSION AND CONCLUSIONS	136
7.1	Appen	dix	143
7.2	Refere	nces	146