UNIVERSITY OF RATUWA, SRI LANKA

10/00/ 1114/2012 12;

STRATEGIES TO HARNESS THE FULL HYDRO-ELECTRIC POTENTIAL IN SRI LANKA

Kuruppu Mudiyanselage Indika Nishantha Kuruppu

(07/8424)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Dissertation submitted in partial fulfillment of the requirements for the degree Master

of Science

621.3 (043)

TH

Department of Electrical Engineering

University of Moratuwa, Sri Lanka

June 2012

104043

1 day

104043

Declaration

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

M.I.N. Kuruppu

Date: 25th June, 2012 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

The above candidate has carried out research for the Masters dissertation under my supervision.

Prof. H.Y.R. Perera

Date: 25th June, 2012

Abstract

The existing power generating system in Sri Lanka relies upon a mix of generation from renewable sources, predominantly hydropower, with the balance from fossil fuel sources. While the electricity demand continues to grow at an average rate of $6 \sim 7\%$ per annum, it is projected that the majority of new electricity demand will be met by large centralized coal fired generation plants.

Sri Lanka's increasing dependence on imported fossil fuels put pressure on the national economy, and it also has caused a heavy burden on the operational costs of the Ceylon Electricity Board. Their impact on the environment is also a concern. Therefore, increasing the hydro electric generation of the country to the optimum possible level is extremely important.

Objectives of this research are to explore the remaining hydro electric potential in the country and to propose strategies to harness this potential on a fast-track basis. Subsequent to this, development of the remaining untapped hydro potential to the optimum possible level and improvement of the output from existing plants were investigated.

In this study, remaining hydro electric potential in the country has been estimated to be around 971 MW, and they have the potential of generating about 3,704 GWh, annually. Financial, information, institutional, technical and policy barriers have been identified as main barriers against, their development. Introduction of a new institutional model of project financing and attracting private sector financing through different ownership structures have been identified as main strategies to overcome the financial barriers against large hydro development. Improvement of the public awareness and having a firm national policy on developing the remaining hydro potential have also been identified as feasible strategies to overcome the other barriers. Resolving of evacuation limitations, improvement of research & development capacity, introduction of creative project financing options and streamlining the approval process are among the strategies identified to overcome the main barriers against the small hydro development.

It has also been revealed that additions of about 355 MW of peaking capacity to the existing large hydro plants are feasible and after completing the ongoing renovation works at several power stations, the total hydro capacity would be increased by another 26 MW.

The results of the case study revealed that the generation from Canyon machines could be increased by about 5%, if the maximum efficient operation performance parameters of these machines were considered for their dispatch. Hence, it could be recognized as an effective measure of increasing the generation of existing hydro plants, especially from machines with Francis turbines.

Acknowledgement

First of all, I would like to express my sincere and deepest appreciation to my supervisor, Professor H.Y.Ranjith Perera for his guidance, support, encouragement, kindness and help during the course of my graduate study. His in-depth knowledge, expertise and vision have guided me through the past one year research.

My sincere thanks also go to the officers in Post Graduate Office, Faculty of Engineering, University of Moratuwa for helping in various ways to clarify the things related to my academic work in time with excellent cooperation and guidance. The research experience and knowledge gained here will benefit greatly for my professional career. Sincere gratitude is also extended to the people who serve in the Department of Electrical Engineering office.

Furthermore, I offer my sincere gratitude to AGMs, DGMs, CEs, EEs and people working in Ceylon Electricity Board for their kind cooperation and guidance. Special thanks should go to engineers working at System Control Gentre and Laxapana complex for extending their support By providing data to carry out this work. www.lib.mrt.ac.lk

Finally, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. May be I could not have made it without their support.

K.M.I.N. Kuruppu

TABLE OF CONTENTS

Decla	aration			i
Abst	ract			ii
Ackr	nowledg	ments		iii
Table	e of Con	ents		iv
List	of Figur	·S		viii
List	of Table	3		ix
List	of Abbro	viations		xii
List	of Appe	ndices		xiv
1.	Intro	duction		1
	1.1	Background		1
	1.2	Organization of the Thesis		3
2.	Und	veloped Potential for Large 1	Hydro	4
	2.1	Introduction		4
	2.2	Studies carried out on ilarge b	stdropotentiati. Lanka	4
		2.2.1 Electronic The	ses & Dissertations	4
	2.3	Estimation on large hydro po	tential	7
		2.3.1 Methodology		7
		2.3.2 Data analysis		8
		2.3.3 Undeveloped large h	ydro potential	10
	2.4	Details on candidate large hy	dro projects	10
	2.5	Strategies to harness this larg	e hydro potential	11
		2.5.1 Strategies to remove	financial barriers	12
		2.5.2 Strategies to remove	information barriers	14
		2.5.3 Strategies to remove	policy barriers	15
3.	Und	eveloped Potential for Small 1	Hvdro	16
5.	3.1	Introduction	-,	16
	3.2	Calculation of small hydro p	ower plant capacity	16
	3.3	Studies carried out on small	nydro potential	17
		3.3.1 Master Plan studies.		17
		3.3.2 ITDG Studies		18

3.4	LOI ba	sed estimation on small hydro potential	20
	3.4.1	Methodology	21
	3.4.2	Data analysis	22
3.5	Strateg	ties to harness this small hydro potential	24
	3.5.1	Strategies to remove technical barriers	24
	3.5.2	Strategies to remove financial barriers	25
	3.5.3	Strategies to remove information barriers	26
	3.5.4	Strategies to remove policy barriers	26
	3.5.5	Strategies to remove institutional barriers	26
Imp	rovemen	nt of the Generation of Existing Hydro Plants	27
4.1	Introdu	uction	27
4.2	Capac	ity improvement by additional plants	27
	4.2.1	Samanalawewa	27
	4.2.2	Laxapana complex	28
	4.2.3	Mahaweli complex	28
4.3	Impro	vement by renovating and up rating plantanka	28
	4.3.1	Possible actionies Theses & Dissertations www.lib.mrt.ac.lk	29
	4.3.2	Approach for selecting activities	29
	4.3.3	Examples of R & M projects	30
4.4	Other	improvements of existing plants	33
	4.4.1	Operating machines at their maximum efficient	
		operating point	33
	4.4.2	Replacement of intake pipe portion at Canyon intake	33
Case	e Study	on Maximum Efficient Operation Performance of	
Can	yon Ma	chines	34
5.1	Introd	uction	34
5.2	Scope	of the case study	34
5.3	Canyo	on power station	35
5.4	Effici	ency of Canyon machines	36
	5.4.1	Turbine efficiency testing	36
	5.4.2	Generator efficiency testing	40
	5.4.3	Calculation of total efficiency of Canyon machines.	43

4.

5

	5.4.4	Machine efficiency results	43
	5.4.5	Analysis of machine efficiency results	47
	5.4.6	Recommendations based on efficiency study results	47
5.5	Dispate	h of hydro generators at Laxapana complex	48
	5.5.1	Up-stream reservoir's water level	48
	5.5.2	Pond balancing in a cascaded systems	48
	5.5.3	Spinning reserve criteria	49
5.6	Operati	ing pattern analysis of Canyon machines	50
	5.6.1	Methodology	50
	5.6.2	Selected dates for the analysis	50
	5.6.3	System demand data	51
	5.6.4	Spinning reserve requirement	51
	5.6.5	Down-stream pond balancing	51
	5.6.6	Observations on the operating pattern analysis on	
		22.02.2011	51
	5.6.7	Observations on the operating pattern analysis on	
	5.6.8	23.02.201iversity of Moratuwa, Sri Lanka. Electronic Theses & Dissertations servations on the operating pattern analysis on www.lib.mrt.ac.lk 24.02.2011	52 53
5.7	Altern	ative dispatch schedule for Canyon machines	54
	5.7.1	Methodology	54
	5.7.2	Checking for spilling at ponds	55
	5.7.3	Computations of savings with the alternative dispatch	55
	5.7.4	Alternative dispatch schedule for 22.02.2011	56
	5.7.5	Alternative dispatch schedule for 23.02.2011	61
	5.7.6	Alternative dispatch schedule for 24.02.2011	64
5.8	Summa	ary of results	67
Res	ervoir, P	ond and Catchment Management	68
6.1	Introd	uction	68
6.2	Catch	ment management	68
	6.2.1	Reforestation	68
	6.2.2	Preservation of catchment area	68
6.3	Reserv	voir and pond management	69

6

nd balancing)
ake management)
silting)
Recommendations71	l
	2
	1
	7
	5
	l
	nd balancing 69 ake management 70 esilting 70 Recommendations 71 72 72 74 72 74 74 75 85 91 91

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF FIGURES

Page

Figure 2.1	Variation of average thermal generation cost with the price	
	of oil	08
Figure 2.2	Traditional financing model	12
Figure 2.3	Proposed financing model	13
Figure 3.1	Distribution of undeveloped small hydro power sites	23
Figure 3.2	Distribution of undeveloped small hydro power potential	24
Figure 4.1	Before rehabilitation (Old Laxapana stage 1 – 25 MW)	31
Figure 4.2	After rehabilitation (Old Laxapana stage I – 25 MW)	31
Figure 4.3	Before rehabilitation of control system (Polpitiya 75 MW)	32
Figure 4.4	After rehabilitation of control system (Polpitiya 75 MW)	32
Figure 5.1	Generator Efficiency Vs Generator Input	43
Figure 5.2	Unit discharge Vs output power of Canyon machines	46
Figure 6.1	Reservoir system of Laxapana hydro power complex	69
Figure A4.1	System Demand Curve on 22,02,2011 Sri Lanka	92
Figure A4.2	System Denian & Cutveron 23:02:20&1 Dissertations	94
Figure A4.3	System Demand Curve on 24.02.2011	96
Figure A4.4	Canyon pond capacity curve	106
Figure A4.5	Laxapana pond capacity curve	107

LIST OF TABLES

Page

Table 2.1	Main characteristics of potential hydro projects	9
Table 2.2	Characteristics of candidate hydro projects	10
Table 2.3	Specific costs of candidate hydro projects	10
Table 2.4	Comparison of financing	12
Table 3.1	Total estimated energy potential	18
Table 3.2	Distribution of all sites by the status of sites and capacity	20
Table 3.3	Distribution of undeveloped small hydro power sites and	
	their potential	23
Table 5.1	Comparison of main dimensions of model and prototype	37
Table 5.2	Converted Efficiency Performance of Prototype Turbine	
	Equivalent to Upper Reservoir Level of 1,167.38 m (1	
	Unit operation)	38
Table 5.3	Converted Efficiency Performance of Prototype Turbine	
	Equivalent to Upper Reservoir Level of 1,164.34 m (1) Electronic Theses & Dissertations	30
Table 5.4	Converted Efficiency Performance of Prototype Turbine	57
1 4010 5.4	Equivalent to Upper Reservoir Level of 1 145.44 m (1	
	Unit operation)	30
Table 5.5	Converted Efficiency Performance of Prototype Turbine	57
Table 5.5	Equivalent to Upper Performance of Prototype Turbine	
	Lucit exercises)	20
Table 5 (Converted Efficiency Performance of Prototype Turbing	39
Table 5.6	E i data Univers Baseria Level of 1 164.24 m (2	
	Equivalent to Upper Reservoir Level of 1,164.34 m (2	10
T 11 6 7	Unit operation)	40
Table 5.7	Converted Efficiency Performance of Prototype Turbine	
	Equivalent to Upper Reservoir Level of 1,145.44 m (2	
	Unit operation)	40
Table 5.8	Efficiency of the generator at power factor = 0.85	42
Table 5.9	Efficiency Performance of Equivalent to Upper	
	Reservoir Level of 1,167.38 m (1 Unit operation)	44

Table 5.10	Efficiency Performance of Equivalent to Upper	
	Reservoir Level of 1,164.34 m (1 Unit operation)	44
Table 5.11	Efficiency Performance of Equivalent to Upper	
	Reservoir Level of 1,145.44 m (1 Unit operation)	44
Table 5.12	Efficiency Performance of Equivalent to Upper	
	Reservoir Level of 1,167.38 m (2 Unit operation)	45
Table 5.13	Efficiency Performance of Equivalent to Upper	
	Reservoir Level of 1,164.34 m (2 Unit operation)	45
Table 5.14	Efficiency Performance of Equivalent to Upper	
	Reservoir Level of 1,145.44 m (2 Unit operation)	45
Table 5.15	Calculation of spinning reserve requirements in different	
	systems	49
Table 5.16	Change of net volume at Canyon pond due to the change	
	of Canyon loads	57
Table 5.17	Hypothetical Alternative Dispatch Schedule for	
	Laxapana Hydro Complex Machines for 22/02/2011	59
Table 5.18	Savings as per the Alternative Dispatch Schedule for	
	Laxapana Hydro Complex Machines for 22/02/2011	60
Table 5.19	Hypothetical Alternative Dispatch Schedule for	
	Laxapana Hydro Complex Machines for 23/02/2011	62
Table 5.20	Savings as per the Alternative Dispatch Schedule for	
	Laxapana Hydro Complex Machines for 23/02/2011	63
Table 5.21	Hypothetical Alternative Dispatch Schedule for	
	Laxapana Hydro Complex Machines for 24/02/2011	65
Table 5.22	Savings as per the Alternative Dispatch Schedule for	
	Laxapana Hydro Complex Machines for 24/02/2011	66
Table 5.23	Savings from Canyon Machines with Alternative	
	Dispatch Schedules	67
Table A1.1	Main characteristics of candidate hydro power projects	74
Table A1.2	Details of candidate hydro power projects	75
Table A2.1	Details of LOI obtained small hydro projects by	
	31.12.2010	77
Table A2.2	Details of SPPA signed small hydro projects by 31,12,2010	83

Table A3.1	Variation of specific weight of water with temperature	
	corresponding to the latitude of 35.5°	85
Table A3.2	Variation of specific weight of mercury with temperature	85
Table A4.1	System Demand on 22.02.2011	91
Table A4.2	System Demand on 23.02.2011	93
Table A4.3	System Demand on 24.02.2011	95
Table A4.4	Mahaweli & Other hydro complexes spinning reserve	
	details on 22/02/2011	97
Table A4.5	Total major hydro spinning reserve details on	
	22/02/2011	98
Table A4.6	Mahaweli & Other hydro complexes spinning reserve	
	details on 23/02/2011	99
Table A4.7	Total major hydro spinning reserve details on	
	23/02/2011	100
Table A4.8	Mahaweli & Other hydro complexes spinning reserve	
	details on 24/02/2011	101
Table A4.9	Total major Ellegetronicspinning & reserve tatitetails on	
	24/02/2011	102
Table A4.10	Operating Pattern of Laxapana Hydro Complex	
	Machines on 22/02/2011	103
Table A4.11	Operating Pattern of Laxapana Hydro Complex	
	Machines on 23/02/2011	104
Table A4.12	Operating Pattern of Laxapana Hydro Complex	
	Machines on 24/02/2011	105

LIST OF ABBREVIATIONS

Abbreviation	Description
ADF	Average Daily Flow
BLT	Build Lease Transfer
BOO	Build Own Operate
BOOT	Build Own Operate Transfer
BOT	Build Operate Transfer
CCGT	Combined Cycle Gas Turbine
CEB	Ceylon Electricity Board
CECB	Central Engineering Consultancy Bureau, Sri Lanka
CPS 01	Unit 01 Machine at Canyon Power Station
CPS 02	Unit 02 Machine at Canyon Power Station
EIRR	Economic Internal Rate of Return
FIRR	Financial Internal Rate of Return
FSL	Full Supply Servery of Moratuwa, Sri Lanka.
ft asl	Eeers above mean sea level
GSS	Grid Sub Station
GWh	Giga Watt Hours
IPP	Independent Power Producers
ITDG	Intermediate Technology Development Group
kWh	Kilo Watt Hours
LOI	Letter of Intent
m asl	Meters above mean sea level
МСМ	Million Cubic Meters
MOL	Minimum Operating Level
MVA	Mega Volt Amperes
MW	Mega Watts
MWh	Mega Watt Hours
NCRE	Non Conventional Renewable Energy
N/LAX 01	Unit 01 Machine at New Laxapana Power Station
N/LAX 02	Unit 02 Machine at New Laxapana Power Station
OEM	Original Equipment Manufacturer

Abbreviation	Description
O/LAX 01	Unit 01 Machine at Old Laxapana Power Station
O/LAX 02	Unit 02 Machine at Old Laxapana Power Station
O/LAX 03	Unit 03 Machine at Old Laxapana Power Station
O/LAX 04	Unit 04 Machine at Old Laxapana Power Station
O/LAX 05	Unit 05 Machine at Old Laxapana Power Station
R&D	Research & Development
R&M	Renovation & Modernization
RLT	Rehabilitation Lease Transfer
ROR	Run-of-River
SCC	System Control Center
SEA	Sustainable Energy Authority
SHP	Small Hydro Power
SPPA	Standardised Power Purchase Agreement
SPS 01	Unit 01 Machine at Samanala Power Station
SPS 02	Unit 02 Machine at SaManala Power Station
WPS 01	Electronic Theses & Dissertations Unit 01 Machine at Wimalasurendra Power Station
WPS 02	Unit 02 Machine at Wimalasurendra Power Station

LIST OF APPENDICES

Appendix	Description	Page
Appendix – 1	Main Characteristics and details of Candidate	74
	Hydro Power Projects	
Appendix – 2	Details of LOI Obtained and SPPA signed	77
	Mini hydro projects by 31.12.2010	
Appendix – 3	Efficiency test of Model turbine	85
Appendix – 4	Tables and Figures relevant to the Case study	91
	Given in Chapter 5	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk