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Abstract

Dengue fever (DF) is a life threatening infectious mosquito borne disease that places a heavy
burden on public health system in Sri Lanka as well as on most of the tropical countries
around the world. Currently, there is no antiviral drug for treatment of DF. The objective of
this study is twofold, first is to analyze the epidemic outbreak patterns of dengue cases in 25
districts in Sri Lanka, second is to identify the association between climatic variables and
dengue counts in Colombo district where dengue is predominant. Weekly data on dengue
cases were obtained between January, 2009 — September, 2014. Temperature (maximum,
minimum, mean), precipitation, visibility, humidity, and wind speed were also recorded as
weekly averages. Wavelet analyses were used to explore the periodicity of dengue cases.
Wavelet coherence was performed to identify the association between dengue and climatic
factors. Further, a Poisson regression combined with distributed lag nonlinear model (dinm)
was used to quantify the impact of climatic factors on dengue counts while taking the lag time
into account. Change point analysis was performed as a complementary analytic method to
identify changes in variance of dengue and climate time series. Dengue dynamics showed
multiple periodic patterns (1-8 weeks, 26 weeks and 52 weeks) across twenty five districts
which can be divided into two groups based on wavelet cluster analysis. Wavelet coherency
revealed a significant non-stationary association between climatic variables and dengue
incidence in annual and semi-annual scale. Results of dinm revealed mean temperature
around 25°C — 26°C prior to 5 weeks, high precipitation (>30mm), humidity 65% - 75% prior
to lag of 10-15 weeks, and high visibility have an harmful impact on increasing relative risk
of dengue incidence. These findings can aid the targeting of vector control interventions and
planning for dengue vaccine implementation.

Keywords:| iRefgle, WavelstcAnatysis)Climate, Distrilauted tlagine r model, Change
point analysi§: =
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CHAPTER 1
INTRODUCTION

1.1 Overview

In this chapter, we provided a brief background of the crucial aspects of climate
change and its adverse impact on the dengue dynamic and transmission. This chapter
describes the background, objectives and the significance of the study in sections 1.2,

1.3 and 1.4, respectively. Organization of the thesis is summarized in section 1.5.

1.2 Background of the Study

“Small bite — big threat”. The theme of World Health Day, 2014 is a timely reminder
of the huge harm caused by small creature, called “vectors”, such as mosquitoes,
ticks, fleas, mites, sand files and freshwater snails. These animals help spread a range
of parasitic, viral and bacterial diseases that affect people of all ages across all socio-

economic backgrounds. Out of these diseases dengue is the world’s most dangerous

viral vector-5oj sease_transmitted yia infective female mosquitoes, namely Aedes
aegypti 1dg§§@m albopictys; (Alshelrl; 2013)Fhe, gequr distribution of
dengue, both=the classical dénguet fevetk( e form dengue
hemorrhagic fever (DHF), has been expanded dramatically in recent decades

(Cazelles, Chavez, McMichael, & Hales, 2005). According to current estimates, this
disease is now endemic in more than 100 countries in Africa, the Americas, the
Eastern Mediterranean, South-east Asia and Western Pacific (Hii, 2013). South-east
Asia and the Western Pacific are the most seriously affected (Hii, 2013). Estimates of
the World Health Organization (WHO) indicated that up to 100 million people get
infected with dengue every year and another 2.5 billion are at risk of getting infected.

First known reported case of dengue virus in Sri Lanka goes back to the middle of the
last century. The presence of virus was serologically confirmed in 1962 (Tissera et al.,
2011). Currently both dengue fever and dengue hemorrhagic fever are endemic in Sri
Lanka. There is a sharp increase in dengue cases since 2009. Transmission takes place
all year round with two seasonal peaks extending from December to April and May to

October. There are two important trends related to dengue outbreaks in Sri Lanka; the



total number of reported dengue cases is significantly increasing, and dengue started
to appear in the districts outside the western province. The infection remains a major
threat to the community well being because it incurs significant health cost to the
society. However, we have a limited understanding of the disease transmission

dynamics in Sri Lanka.

Dengue epidemiology, incorporating both DF and DHF, is determined by a complex
interaction of climate, physical environment and social factors (Morin, Comrie, &
Ernst, 2013). While many factors play a role in the dynamics of dengue transmission
and infection, climate variability has been shown to be important in explaining its
occurrence, and is considered as a major determinant (Serfling, 1963). Temperature,
humidity, and rainfall have been reported to affect the incidence of dengue either
through changes in the duration of mosquitoes and parasite life cycles or through
influences on human (Hii, 2013). The life cycle takes approximately 1-2 weeks or

longer depending on temperature, and availability of water, and other climatic factors.

The aver _ (Banu, 2013). A
study co %ted oy Hii et al. (2013) suggested that’it’is passible Aedes to live up
to approximatety VS given the optin . Further Aedes
can lay S 0 lete dryness for

several months depending on humidity (Banu, 2013; Hii, 2013). Because of this
ability, the eggs can be transported great distances by humans in a wide variety of
containers or objects or by wind. These eggs can then be hatch within a short period
after being exposed to rain and optimal temperature (Hii, 2013). Although heavy
rainfall can potentially flush away immature stage of mosquito, the rainy seasons
creates ample number of artificial and natural habitats for Aedes mosquitoes. Heavy
rainfall can also increase the mortality rate of adult mosquitoes (An & Rocklov, 2014;
Banu, 2013; Hii, 2013).

Even though climate change has a significant impact on the transmission and
incidence of dengue fever there is no clear evidence to show that such impact has
already occurred in the context of Sri Lanka. To date, there is still no effective
vaccine available to control the occurrence and periodic recurrent outbreaks of DF



and DHF. In the absence of a vaccine for the prevention and control of dengue fever,
eliminating the breeding places of Aedes mosquitoes is still the only effective strategy
to interrupt the transmission of the disease. To improve prevention and surveillance,
public health officials need to know much more about the patterns of dengue virus
transmission and about the climatic factors that underlie these patterns. Dengue
prevention and control activities in diseases-endemic setting in Sri Lanka currently
rely on targeted spraying of aduticides to reduce vector populations in and around the
homes of reported patients. However, this does not provide a quantitative measure or
much predictive lead. Therefore, a good understanding of the relationships between
climate and dengue cases is needed to facilitate the analyses in the effort to prevent

their occurrences.

In light of the biological relationship between climate and transmission potential, in
this study, we aimed at estimating the effects of diverse climatic variables, such as
temperatures (maximum, minimum, mean), absolute humidity, rainfall, visibility, and
wind speed on the transmission of dengue and identifying the lag periods that have
significant effec the, dengyerincigencge, - An wnderstanding |of onal patterns of
dengue, uigﬁﬁir satlrer({ dnivers cae provide | vitetanfarniatio controlling and

eliminatino theactivities

In some studies, Generalized Linear Models (GLM) or Generalized Additive Models
(GAM) with Poisson distribution was widely used to estimate association between
meteorological factors and mortality or disease incidence (Kim, Park, & Cheong,
2012). But GAM/ GLM requires the data to be independent among each individual.
Time series data are always autocorrelated, so that it is not proper to fit time series
data with GAM or GLM. Moreover, climatic effect on the dengue incidence may be
distributed in the days of different time lags and this feature has never been addressed
in previous researches (Ma et al., 2013). Therefore, our study has been designed to
estimate the effect of diverse climatic variables on the transmission of dengue fever
while taking the lag time into account. Furthermore, dengue incidence data show
complex nonlinear dynamics with strong seasonality, multiyear oscillations, and
nonstationarity (changes in dominant periodic components over time). These features

of the data mean that conventional statistical methods may be inadequate (Cazelles et



al. 2005). To overcome the above mentioned problems in this thesis, we introduce

wavelet analysis, change point analysis and distributed lag nonlinear models.

1.3 Objectives of the Study

The overall aim of this research is to identify epidemiological outbreak pattern of DF/
DHF in each district in Sri Lanka. Furthermore, this study aims to identify and
quantify the nonlinear, nonstationary association between climatic factors and dengue
counts in Colombo district, the most urbanized and density populated region in Sri
Lanka, where dengue is predominant. The specific objectives are to:

1. To identify periodic pattern in dengue counts and how it progress through time
and space.
2. To identify districts with similar dengue dynamic pattern.

3. To identify nonstationary association between dengue counts and climate

variables

4. Toic / ounts.

5. To i léf)l non-linear association ‘betwéen Climates Variables and dengue
counts. v

6. To namics shifted

transmission pattern in dengue and climate variables.

1.4 Significance of the Study

Sri Lanka is primarily a tropical country with high humidity and warm temperature
throughout the year forming ideal conditions for multiplication of the Aedes mosquito
and the transmission of dengue fever. Even though this has been a great health hazard
in Sri Lanka, there are only a handful of studies conducted to identify the association
between dengue and climate variability. The published studies were mainly limited to
examining the clinical and epidemiological characteristics of dengue (Pathirana,
Kawabata, & Goonatilake, 2009).

Furthermore, there were no known studies that have used the lag effect of several

climatic variables on dengue transmission incidence in Sri Lanka. To improve dengue



prevention and surveillance, public health officials need to know much more about
the patterns of dengue virus transmission and about the factors that underlie these

patterns. This would allow the implementation of timely preventative measures.

Dengue is widely distributed throughout tropical and subtropical regions of the world
and approximalt 50% of world population live in dengue endemic areas. At the same
time many hotspots of dengue fever are also tourists’ hotspots, for example Phuket,
Rio de Janeiro, Sri Lanka etc. As foreign travel to tropical locations becomes more
accessible and popular, dengue fever is becoming a big threat to the tourism industry.
This has a serious impact for a country in which the tourism sector contributes greater
portion to national GDP. Recently, countries such as the UK have issued dengue fever
warning for travellers to areas where the disease in endemic. Moreover, according to
current estimates, the annual social cost incurred due to dengue is Rs. 7 billion and,
the cost to the government for treating a dengue patient in the Intensive Care Unit is
about Rs. 50,000-60,000 a day (“Dengue battle”, 2014).

The moc ! onship between
climatic ,Eﬁass | “dengue ~outbreaks. “This™ provides ‘time “for the allocation of
resource vir‘ﬁer ¢h as preparing [ creased number
of dengue patie ' breeding sites.

Further, because of time lags involved in the climate-disease transmission system
lagged observed climate variables could provide some predictive lead for forecasting

disease epidemics.

The CEO of Appllo Munich Healthcare claimed dengue care is a good entry point to
insurance as dengue is understood by all. He argued selling health insurance can be
difficult because general public is mostly reluctant to pay a monthly insurance fee for
a benefit they would claim only in the case of illness or accident but dengue fever
insurance product would help people to taste insurance. Indonesia has already
introduced dengue fever insurance to the public. So the results of this study would
benefit for both actuaries and policy makers in the field of finance.

Studies on prevalence of dengue are important not only to assess the problem of

dengue in a given region, but also to analyses the effectiveness of strategies for



primary and secondary prevention as well as its quality and impact. Economic burden
of dengue due to hospitalization, mortality and morbidity costs along with opportunity
costs of time and productivity losses due to illness far exceed the cost of vector
control. Public health systems are already overburdened in many countries. Thus, the
results of this study would benefit for optimizing current dengue surveillance and

control programmes.
1.5 Outline of the Thesis

This report consists of eight chapters. Chapter 2 presents a systematic review of
literature illustrating the nature of the impact of climate change on health, related
factors and research studies with statistical modeling approaches related to climate
change and health. It also discusses the methodology used by the previous
researchers, identifies research gaps and gives recommendations for the future studies.
Chapter 3 gives a brief overview of the two data sets used in the research:
epidemiology data and climate data. We also describe the study population and
coverage ar,éa%and data management. This chapter further describes statistical
approaches'especially the wavelet analysis, change point detection and distributed lag
nonlinear mtrﬁaexling approach used in the study. We illustrate a brief overview of the
theoretical descriptions of the above methods. In chapter 4, we give a brief overview
of the two data sets used in the research: Epidemiological data and climate data.
Chapter 5 presents the results of wavelet analysis of each district. Results of wavelet
cluster analysis and wavelet coherency analysis also present under this chapter.
Chapter 6 presents the results of change point analysis. In chapter 7, we present the
results of Poisson regression model combined with distributed lag nonlinear model.

Chapter 8 concludes the thesis and describes some of the limitations of the research.



CHAPTER 02
LITERATURE REVIEW

2.1 Overview

The first part of this chapter focuses on dengue fever, its epidemiology, the role of
climate in the dengue transmission cycle and previous studies linking climate to
dengue worldwide. Section 2.3 is a systematic review of the relationship between
climatic factors and dengue incidence around the world and some of the modeling
techniques that have been used to find the association between climatic variables and
dengue incidence. This review will help to identify and highlight the knowledge

needed to develop a successful model for dengue risk based on climate information.

2.2 Dengue

Dengue Fever (DF) is a mosquito-borne disease endemic to tropical and subtropical

areas, which is transmitted by mosquitoes Aedes aegypti and Aedes albopictus. Aedes

aegypti

N mrrrm o mrgmml  amdkme Lo PN L e T~ PR D

a highly domesticated

mosquito. The A albopictus §s the secoindary vector o DFESThe hot and humidity
3

Wlth mo rdfe-«fan Kbl mate ‘i tronical aveae fartieantidaal ca n for them to be

active all vear : L 2 exists in 4 \V 1- 4, within

which there is considerable genetic variation (Fansiri et al., 2013).

Dengue fever (DF) is characterized by high fever, severe headache, and vomiting and
low blood cell count. Dengue fever has the potential of escalating to DHF and dengue
Dengue Shock Syndrome (DSS), which are potentially deadly complications (Lam et
al., 2013). These are characterized by high fevers, enlargement of the liver and in
worse case situations, circulatory failure (Harris et al., 2000). DF transmission is most
common in urban areas due to overcrowding, unplanned urbanization and
environment pollution. Transmission occurs when a female mosquito bites and sucks
blood containing the dengue virus from infected person which then goes through
incubation period of approximately 10 days. At this stage the virus is capable of being
transferred to a human host when the mosquito probes the skin. After that, the

mosquito remains infective for the rest of its life. As there are no specific antiviral



medicines treating or vaccines preventing dengue, the only way to control or prevent

the disease is through the management of mosquito populations (Lowe et al., 2011).

2.3 Mosquito Lifecycle

Changes in temperature and precipitation have well-defined roles in the transmission
cycle and may thus play a role in changing incidence levels (Johansson, Cummings,
& Glass, 2009). The life cycle of a mosquito consists of four stages; egg, larva, pupa
and adult. Each of these stages can be easily recognized by their special appearance.
Figure 2.1 displays the life cycle of the Aedes mosquito. The lifecycle starts by laying
eggs on the surface of the water. The pupa and larval states of the mosquito will take
place in the water reservoir where a female adult mosquito lays her eggs. On average,
a female Aedes mosquito can lay about 300 eggs during her life span (Banu, 2013). A
period of about 48 hours is required for the eggs to hatch into larva but under optimal
condition the eggs of an Aedes mosquito can hatch into a larva in less than a
day(Banu, 2013). The larva then takes about four days to develop into pupa
dependina on nutrient levels, temperature and water condition. Then after two days
adult mosquite will emerge frorm pypa] dhreg daysafter thelsmosquito has bitten a
person takes’%,blood, itovithilay egos;sandcycle Legrnslagain. So it is clear Aedes
mosquito asl"é?‘.biological creatire' needs 'few climatic factors to complete their life
cycle. Therefore, a good undersianding of the reiationships between climate and

dengue cases is needed to facilitate the analyses in the effort to prevent their
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Figure 2.1: Aedes mosquito lifecycle
Source: http://www.nature.com/scitable/topicpage/dengue-transmission-22399758
(assessed on: 1 - 12 - 2014)
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2.4 Geographical Distribution of Dengue

Dengue is the most rapidly spreading mosquito-borne viral disease in the world
(Alshehri, 2013). The World Health Organization (WHO) ranks dengue among the
most important infectious disease with major impact on international public health
(Descloux, 2012; Wu et al., 2009). The geographical distribution expanding and the
transmission rates are increasing. Today it is estimated that over two fifth (2.5 billion)
of the world population live in dengue endemic areas, of whom fifty million are
infected annually. Dengue incidence has dramatically increased globally over the last
two decades due to population growth, unplanned urbanization, increased travel and
transportation of goods, lack of political will and limited resources for implementing
effective control measures (Hu, Clements, Williams, & Tong, 2010). The disease is
now endemic in more than 100 countries in Africa, the Americas, the Eastern
Mediterranean, South-east Asia and Western Pacific (Xiao et al., 2013). South-east

Asia and the Western Pacific are the most seriously affected.

Dengue, countries or areas at risk, 2011
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Figure 2.2: Dengue, countries or areas at risk, 2011
Source: http://www.humanosphere.org/2013/08/denque-fever-spreading-brazil/
(assessed on: 1 —12- 2014)
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2.5 Dengue Epidemiology in Sri Lanka

Sri Lanka has geographic and climatic features that are conducive for the propagation
of vectors of dengue fever and its epidemics. All four serotypes of dengue virus have
already been identified in Sri Lanka (Messer et al., 2002). Geographical distribution is
spreading and transmission rates have increased over the last decades.
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Figure 2.3: Reported dengue cases in January 2014

Source: http://www.sundaytimes.lk/140209/news/denque-battle-costs-billions-so-
why-the-soaring-deaths-85137.html (assessed on: 1 - 12- 2014)

Dengue cases were serologically confirmed in Sri Lanka since 1962. Initially, the
disease was mainly spread in the western costal belt and later found in other suburbs
as well. In 1965, there was a dengue outbreak throughout the country with 51 cases
and 15 deaths. The first epidemic of DHF/DSS occurred during 1989-90 and the
etiological agent was DENV-3, which was reported to have a genetic change resulting

in increased epidemic potential/ virulence. Since then outbreaks with successive ones

10
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being larger in dimension than previous ones have occurred, and currently DF and

DHF are endemic to Sri Lanka.
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2.6 Determ_i;;_tw ts of Dengue. I'ransmissign and Modeling Approaches

There are many Tactors such virus, vecior, host, and environment that are involved in
the transmission cycle of DF. Numerous human activities such as population growth,
unplanned urbanization commonly associated with insufficient waste collection,
increased transportation of goods facilitates breeding sites for the mosquito and
movement of infected mosquitoes across regions (Cheong, Burkart, Leitao, & Lakes,
2013). Climate is an important determinant of temporal and spatial distribution of DF
vector. Rainfall, temperature and relative humidity are thought as important factors
attributing towards the growth and dispersion of mosquito vector and potential of DF
outbreaks (Banu, 2013).

In light of these biological relationships between climate and transmission potential,
several studies have suggested an association between dengue epidemics and climatic
factors. Different methods were used to evaluate the association between climatic

variables, non-climatic variables and DF incidence or mosquito density. The methods
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used range in complexity, from simple descriptive analysis to the applications of more
sophisticated methods. These modeling techniques can be divided into six categories
as; 1) linear regression models, 2) lagged time Poisson regression models, 3) time
series models, 4) Bayesian models, 5) Wavelet analysis and 6) Spatial Analysis.
Weather and climate variables generally included temperature, rainfall, humidity, and
an El Ni"no index ( Hu et al., 2010; Cheong et al., 2013; Tissera., 2011). Most of the
studies used reported cases and some used laboratory confirmed data as response

variable.
2.6.1 Linear regression models

Colon — Gonzalez, Lake, and Bentham (2011) used multiple linear regressions to
explore the relationship between climate variability and dengue incidence in Mexico
from 1985 to 2007. They found that the incidence was higher during EI-Nino events
and in the warm and wet season, especially during the cool and dry. Similarly,

Nakhapakorn and Tripathi (2005) explored the empirical relationship between

climatic _ inear regression
approact \éﬁht ound” that dengue " incidence generalty occurred when average
temperat qTﬁ«:r e, normal and rainfall sely lower and
humidity was h ts. Further these

models were not able to capture the nonlinear effect of response variables.
2.6.2 Lagged time Poisson regression models

Lagged time Poisson regression has been widely used technique to identify the
association between dengue incidence and weather variables ( Chen et al., 2010;
Fairos, Azaki, Alias, & Wah, 2010; Pham et al., 2011). Hii (2013) examined the
relationship between climate and dengue incidence in Singapore with the aim of
developing early warning system to forecast dengue outbreaks. To analyze the
relationship between dengue incidence and temperature and rainfall, a Poisson
regression model was developed using weekly data from 2000 — 2010. Quasi Poisson
was applied to allow for over — dispersion of the data. This study suggested that the
optimal time for dengue incidence forecast was at least three months. Further results

showed that the higher risk occurred at a lag of 3 and 4 months subsequent to mean

12



temperature and cumulative rainfall. Author mentioned risk factors such as
population, climate and human behavior can be unique to different study areas hence
dengue forecasting models needs to study area specific. Dengue fever has become a
major health concern in the tropical countries. Similarly, Fairos et al. (2010)
conducted a study in Malaysia using weekly climate data. The dependent variable
used is the number of dengue cases while the explanatory variables were daily
cloudiness, daily relative humidity, daily rainfall, maximum daily temperature,
minimum daily temperature and daily wind speed. In addition to Poisson regression
model, they used Negative binomial regression model since the variation of data is
higher than the mean. They conclude lagged operator of 14 and 21 days climate
significantly influenced the climate break.

Chen et al. (2010) conducted a study in Taiwan using weekly confirmed cases from
January 1998 to October 2008 and weekly meteorological data to identify link
between meteorological data and mosquito abundance to dengue fever dynamics. A

Poisson regression analysis was performed by using a generalized estimating

equations (GEE roach:~TFhek - study was, dane-in twolareas I and Kaohsing,
where majolcdeRyuel olitbteaksi ocdiireee: in/olithen Mailan: on the cross —
correlation anabysis, 1*-Vmbnth’laglof rainfal \um temperature
and 4 — month lag of relative humidity seiecied as independent variables for Taipei

while for Kaohsing, 3 — month lag of rainfall, 3 — month lag of minimum
temperatures, 3 — month lag of relative humidity and 1 — month lag of Breteau index
level was chosen. Authors suggested that warmer temperature with a 3 — month lag

and elevated humidity increased transmission rate of dengue fever.

However in all the above models the response variable may be correlated with the
adjacent point in time so it is necessary to embody autocorrelation of the response
variable when modeling. But all the above models described how the response
variable is related to explanatory variables without considering how response can be
correlated with its past values. In addition, when estimating parameters
autocorrelation causes trouble because GLM and GAM essentially requires each
observation to be independently distributed. Violation of this assumption can lead to
problematic estimates. In order to avoid above problems Yang et al. (2012) introduced

13



GAM with Autoregressive terms (GAMAR) which is derived from Generalized
Autoregressive Moving Average models to study the effect of daily temperature on
mortality. Authors stated GAMAR has two advantages over GAM: 1) It is a model
for generalized time series analysis rather than a probabilistic model like GAM; 2) the
AR part of the GAMAR can explain the autocorrelation structure of observations.
Briet, Amerasinghe, and Vounatsou (2013) extended GARMA to generalized
seasonal autoregressive integrated moving average (GSARIMA) to model monthly
malaria cases in Sri Lanka. Model fit was carried out using full Bayesian Inference.
This approach is effective in modeling non Gaussian, non stationary and/ or seasonal

time series of count data.
2.6.3 Time series models

Time series modeling approaches have been extensively used to identify the impact of
climatic variables on dengue incidence (Cazelles et al., 2005; Gharbi et al., 2011; Hu
et al., 2010; Pinto, Coelho, Oliver, & Massad, 2011; Thai et al., 2010). Out of

different _ y useful when
forecasting %ﬁﬁg cidence (Chaves & Koenraadt, 2010, Martinez & Silva, 2011).
Gharbi #h=2(2009) j..seasonal a\ ve | noving average
(SARIM mo in French West

Indies. Weekly laboratory confirmed cases from 2000 — 2007 were used for the study.
They found temperature improves dengue outbreaks forecasts better than humidity
and rainfall. Their results are results consistent with those of other studies dealing
with the effect of climate on dengue incidence (Focks et al., 2006; Luz et al.,2011;
Serfling, 1963; Wu et al., 2007). Similarly, Hu et al. (2010) fitted a SARIMA model
to examine the impact of El — Nino on the occurrence of dengue in Queensland,
Australia for the period 1993 — 2005.

SARIMA models have been successively used in epidemiology studies to predict
other infectious diseases such as Malaria, Cryptosporidiosis, etc. (Hu, Tong,
Mengersen & Connell, 2007; Yang et al., 2012]. For example, with the aim of
developing a forecasting system in Sri Lanka, Briet et al. (2013) used SARIMA

model to forecast malaria incidence in Sri Lanka. The addition of covariates such as

14



the number of malaria cases in neighbouring districts, rainfall improves the prediction
of models. One main advantage in this method is it allows the integration of external

factors that may lead to increase the predictive power.

But there are some several drawbacks in these models. Mainly, these models were not
sufficient to capture the non — linear relationship between dengue incidence and

climatic variables.

2.6.4 Bayesian models

Bayesian modeling approach has been often used in epidemiological studies to
understand the spatial and temporal pattern of infectious diseases (Castillo, Korbl,
Stewart, Gonzalez and Ponce, 2011). Zacarias et al. (2010) used Bayesian modeling
approach to analyze the spatial and temporal pattern of malaria and which climatic
variables influence the distribution of malaria incidence in Mozambique, for the

period 1999 — 2008. Prates, Dey, and Lachos (2012) developed novel approach to

capture : maintaining the
conditional %Q-ﬁgu’ sSive structdre. Bayesian hierarchical-method was used to fit the
model. Appropiic " the model was ! ver infection in
the state of Rio

2.6.5 Wavelet analysis

Among the various approaches developed to study nonstationary data, wavelet
analysis is probably the most efficient (Fairos et al., 2010; Pham et al., 2011).
Wavelet analysis is now frequently used to extract information from ecological and
epidemic time series (Cazelles and Chavez, 2014). Wavelet analysis provides the
possibility of investigating the quantifying the temporal evolution of time series with
different rhythmic components. In addition, wavelet analysis allows detection of
changes in periodicity in time. Wavelet time series models have been applied in
determining the relationship between climate variables and dengue incidence in
Puerto Rico, Mexico, and Thailand particularly, with the aim of identifying time and
frequency specific association (Johansson et al., 2009). Cazelles and Chavez (2014)

used wavelet time series analysis to demonstrate association between dengue
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incidence and EI-Nino in Thailand from 1986 to 1992. Different transformation
techniques on dengue incidence time series were used before analysis to reduce
skewing and standardized the amplitude. ( Descloux et al., 2012; Pham et al., 2011).
Study conducted by Thai et al, (2010) trend was suppressed before analysis by
removing the periodic components with period components greater than 8 years by

using a classical low pass filter.

Unlike conventional statistical methods (i.e. spectral density analysis), wavelet
coherence measures the cross correlation between two time series as a function of
their frequencies, providing information about those periods where two nonstationary
signals are linearly correlated with each other (Cazelles et al., 2014). More
specifically, wavelet coherence analysis determines if the presence of a particular
frequency in a disease series at a specific time is related to the same frequency and at

the same time in a given covariate.

Thai et al. (2010) investigated dengue transmission dynamics in nine districts in Binh
Thuan p _ /avelet analyses
were pe ugaeo 5 to detect and
quantify dengue’| icity,, to describe S\ time and space
and to investiga ysis was used to
estimate the relationship between dengue incidence and El Nino-Southern Oscillation
(ENSO) indices. Wavelet analyses of time series data from nine districts of Binh
Thuan province displayed periodicity for all districts. More specifically, periodicities
were detected in the 1-year and the 2-3 year bands. Further dengue dynamics showed
different evolutions across the nine time series which can be divided into three groups
based on wavelet cluster analysis. The first group consists of three districts in which a
multi-annual cycle was predominant and the annual cycle was week. Second group
consist three districts in which the annual cycle was predominant and the last group
consists of districts in which both annual and muti-annual cycle were present.
Wavelet coherence revealed a strong non-stationary association between ENSO
indices and climate variables. This study revealed interesting information on dengue
transmission dynamics in Binh Thuan province. However, there was a limitation;

dengue data used in this study were based on notified clinically-suspected dengue

16



cases from hospitals or clinics without laboratory confirmation. These numbers may

be an underestimation of the true incidence.

Cazelles et al. (2005) estimated associations between severe dengue (henceforth
dengue) incidence in Bangkok and the averaged incidence for the rest of Thailand,
and the Nino-3 index, the Southern Oscillation Index, and average monthly
temperature and precipitation over the period 1983-1997. Wavelet analysis was
selected because, as previously explained, it allows the quantification of the temporal
evolution of a time series with different cyclic components (Cazelles et al., 2007).
Statistical relationships between the dengue and climatic time series were estimated
using wavelet coherence analysis. The dengue series showed strong seasonal
oscillations, indicating a strong influence of the annual cycle on dengue dynamics.
The El Ni'no series on the other hand, was dominated by cycles of about 4-6 years.
Both dengue series have in-phase cycles of about 2-3 years (with a mean delay of
three months in the rest of Thailand with respect to Bangkok) only over the period

1984-1992 where there is high coherence with El Nino cycles. Over the periods

1983-1956 ang 1+5997 the-anhpal jescitliations @fe dofmipant, showing a mean
delay of m&%or mdBdngkok witit sespect [th the mestiofn I 1d. Dengue and
precipitatiofn=wete sighificantly-associtied wal scale. Both
series are in-phase in most of the country; however, dengue incidence in Bangkok

follows the seasonal peak of precipitation after a short lag time (length not specified
by the authors). Over the period 1986-1991, dengue and precipitation were
significantly associated for cycles of about 2-3 years. Similar but weaker patterns of

oscillation were observed for temperature in both series.

2.6.6 Spatial analysis

Seng, Chong, and Moore (2005) conducted a research to analyse the spatial pattern
and diffusion of dengue fever in Malaysia by incorporating epidemiological and
statistical techniques into a Geographical Information System (GIS). It has been
widely used in disease monitoring and surveillance and identification of high — risk

areas and population at risk (Seng et al., 2005). All suspected and indeterminate cases
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of dengue fever reported in the Johar State for 2004 were used in the study. With the
aim of implementing effective vector control programs space — time cluster analysis
was used and it identified a total of 31 clusters in the Johor State. Geographical
weighted regression (GWR) analysis has been utilized in this study to identify
association between dengue fever prevalence, population distribution and
meteorological factors and characteristics of space time clusters in the Johor State.
GWR analysis illustrates that 10 to 14 days of accumulative rainfall is sufficient to
support mosquito breeding cycle and the dengue virus incubation period in the Johor
Bahru district is 15 days. Jeefoo (2012) used GIS to analyze the spatial factors related
to dengue fever, dengue hemorrhagic fever and dengue shock syndrome epidemics in
Thailand. Spatial autocorrelation statistics and kernel-density estimation was
employed by the author. Spatial autocorrelation is a valuable technique to study how
spatial patterns change over time. Finally they developed a risk zone map for the
incidence. Similarly, Wu et al. (2009) used GIS to illustrate the spatial patterns of
dengue fever incidence, climate and non-climatic factors of the 358 townships in

Taiwan. Y with complete
temperature geso O monitoring stations with complete rainfall records from
1998 to 2002 Fur y notification of « seriod of 1998 —
2006, in ing isease on set for

each case were used for the study. In addition in this research they used several non-
climatic factors such as population density, income, percentage of service and
agriculture occupancy, home ownership and number of clinics. Number of months
with average temperature higher than 18°C per year and degree of urbanization were
found to be associated with increasing risk of dengue fever at township level.

2.6.7 Distributed log nonlinear modeling approach

Horta et al. (2003) applied distributed lag nonlinear modeling framework to determine
the time-lag effect of meteorological factors on the relative risk of dengue incidence
in Coronel Fabriciano city, Brazil. The weekly number of notified dengue cases
during the period 2004-2010 was used for analysis. They found when considering the

rainfall, the highest RR (1.2) was observed for lag 10. Further authors have shown
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that DF incidence was associated with weekly cumulative precipitation at lag 5-8 and
9-12. Weekly precipitation was associated with dengue incidence at lag of 7-12
weeks. Increasing weekly cumulative precipitation posed increasing risk on dengue
outbreaks until time lag of 14 weeks, whereas highest RR for weeks after rainfall
peaked at time lag 10. In addition to above discussed methods Yusof and Mustaffa
(2011) used least square support vector machine approach to predict dengue outbreaks
in Malaysia. Support vector machine is efficient approach for solving problems in

nonlinear classification and regression.

In summary, this review indicates that climate change likely to affect the pattern of
dengue incidence. The quantitative models employed for evaluating the relationship
between climate variables and dengue incidence have been typically different with
respect to nature of the relationship (linear or nonlinear), distributional assumptions
(normal or poisson), spatial dynamics. These studies have highlighted that many
climatic variables play a key role in dengue transmission and its distribution. The
most important predictor variables in the model were temperature, humidity, rainfall
and urbamzaétan Many of the studies highlighted the impaortance of delayed effect of

climatic varlables on dengue.incidence,
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CHAPTER 03

METHODOLOGY

3.1 Overview

This chapter describes in detail the procedures employed in achieving the aims and
objectives of this research. The chapter is organized as follows: Sections 3.2, 3.3
discuss the study area and description of data used in the study. Section 3.4 is
devoted to the establishing of theoretical background of wavelet analysis. In section
3.5 we give an overview of change point analysis of variation by using PELT
segmentation. Detail explanation distributed non linear lag models is given in sections
3.6.

3.2 Study Area

Sri Lanka is an island located in southeastern tip of India (7°N, 81°E) with a total area
of 65610km? with 64740km? of lang- and 870km? of.water. It is primarily a tropical
country vvithfﬁ@gh humidity.-and warm.tempgratare. throughaqui.the year. This climate
condition pla)fs',,an impertant roleyirtcandlcive for transmission of dengue fever. The
topography of the country is divided into three distinct areas namely; plains, the
coastal belt and the central highlands. The average yearly temperature for the whole
country ranges from 28 to 30°C. The mean temperature in central highland is 15.9°C.
The coldest month with respect to mean temperature is January while the warmest
months are April and August. The rainfall pattern in Sri Lanka is influenced by the
monsoon winds. According to the to the climate characteristics of 12 month the island
can be divided into 4 climate seasons as; first monsoon (March - April), southwest
monsoon (May — September), second inter monsoon (October - November), Northeast
monsoon (December - February). Relative humidity ranges from 60% to 90% during

different seasons and areas of the country.

The association between dengue incidence and climatic factors were studied in the
Colombo District, where there is a marked increase of dengue cases evidenced during

the last few years. It is located in the southwest of Sri Lanka and has an area of

20



699km?. Colombo district is the most urbanized and density populated region of Sri
Lanka and has a number of urban centres including Colombo, the capital (Figure 3.1).
The main features of the climate are the relatively stable temperature and relative
humidity year-round, forming an ideal condition for the growth of the vector of

dengue fever mosquito.
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[iep date ©2015 Google
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Source:
https://www.google.lk/maps/place/Sri+Lanka/data=!4m2!3m1!1s0x3ae2593cf65ale9
d:0xe13da4b400e2d38c?sa=X&ei=eLoOVeWqM5CiugT4uYHYAg&sqi=2&ved=0C
BsQ8gEWAA (assessed on: 2 — 2 - 2015)
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Figure 3.2: Climatic zones of Sri Lanka

(Source: http://jayaneththi.blogspot.com/2011/03/trunk-of-rubber-tree.html, assessed
on: 2 - 2 - 2015)
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3.3 Data Description

The data used in this study can be divided into two parts; (i) epidemiological data and
(i) climatic factors. Section 3.3.1 gives the brief description of the epidemiological

data used in the study while section 3.3.2 illustrates the meteorological factors.

3.3.1 Epidemiological data

Dengue incidence is reported in Sri Lanka through a national network that covers the
whole country. These dengue data includes records from health posts and centres, and
hospitals complied at district level. It includes both microscopically and clinically
confirmed cases. These counts are registered daily and used to generate Weekly
Epidemiology Bulletin. They are collected and summarized by each district health
department and reported to provincial health Officers’ monthly. These values are
published as weekly epidemiological reports (WERs) by the Epidemiology Unit,
Ministry of Health, Sri Lanka.

Weekly notiﬁ:@%'dengue casesing?3 distriotsiin Sridsanka weresobtained from weekly
epidemiologi"cé.lr repoyts published by. the Epidemiology Unit, Ministry of Health, Sri
Lanka. Daia inciude cases from 52" week of (December) 2008 through 36" week
(September) of 2014.

3.3.2 Climatic data

Daily climate data were obtained from an online source (www.tutiempo.net/en/). The

data from this source was obtained directly from the local weather station in
Colombo. Daily mean, minimum and maximum temperatures, mean visibility, mean
wind speed, maximum sustained wind speed, relative humidity and precipitation for
the years 52" week of 2008 to 36" week of 2014 were obtained. The daily values

were used to obtain weekly averages.
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Table 3.1: Climate Variables, Variable Label and Unit of Measurement

Climate Variable Variable Label Unit of Measurements
Mean Temperature TEM °C

Maximum temperature ™ oC

Minimum temperature Tm °C

Mean humidity H %

Precipitation amount PP mm

Mean visibility \AY/ km

Mean wind speed \Y/ km/h

Maximum sustained wind speed VM km/h

3.4 Data Analysis
3.4.1 Exploratory data analysis
In the initial stage of the quantitative data analysis descriptive statistics were

performed. Descriptive analysis and graphical analysis were useful to gain insights

into data. They highlighted erroys,in the try. Since, th vere no missing
in dengL Caﬁéﬁ SUDSLIUTION. Were Made, puL. 1N, Clmale C ere were some

=

missing values: T hose missing vatues were jhboring station

b

data values.

3.4.2 Determining dengue periodicity: Wavelet analysis

According to the exploratory data analysis it reveals time series of dengue incidence
are characterized by non stationary, non linear dynamics with strong seasonality and
various oscillations. Therefore, conventional methods such as Fourier analysis,
generalized linear models (GLM), Box Jenkins time series are inadequate to capture
those effects. According to Cazelles et al. (2005) among the different approaches of
studying non stationary data wavelet analysis is probably the most efficient. In this
research we applied wavelet analysis on time series of dengue cases in each district to
explore the periodicity in the dengue incidence and how periodicity change with time.
In contrast to Fourier analysis, wavelet analysis is well suited for the study of signals
whose spectra change with time. This time-frequency analysis of the signal provides

information on the different frequencies as time progresses.
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To explore the periodicity in the dengue incidence time series continuous wavelet
transform was performed which decomposes the time series into time and frequency
components. Wavelet power spectrum quantifies the distribution of the variance of the
time series in the time — frequency domain. Wavelet coherency analysis was
performed to identify association between dengue cases and climate conditions.
Coherence is similar to some classical correlation, but it pertains to the oscillating in a
given frequency mode. Wavelet coherence generalizes the possibilities of wavelets for
quantifying the dependencies between two signals.

3.4.2.1 Computing environment

All analyses were performed using the statistical package R (verion 3.1.2 and version
3.1.3). Much of the code was adapted from MATLAB code by Torrence and Compo
(1998) and Grinsted, Moore and Jevrejeva (2004). The wavelet analysis was based on

the results of the R package “biwavelet”.

3.4.2.2C

5

k.
The wavelettrans elatively new been developed
by Morl d | transformation

goes back to the 18" century, in work by Fourier and others. In general, an integral
transformation can be expressed as follows:
Tf(w) =[ K(t, w)f (t)dt

By multiplying the original function, f, by a kernal function, K, and integrating, a new
function, Tf, is produced. Depending on the properties of the kernal function chosen,
the output function may be a unique representation of the data within a new domain
on the variable ®. The wavelet transformation constitutes a set of criteria which the
kernal function must satisfy. The intention of the wavelet transformation is to
represent the function in both frequency and spatial domains, such as position or time,
simultaneously. By using wavelet analysis we can identify which frequencies

dominate, and where in space or time they occur.
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3.4.2.3 The wavelet transform

wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and
then decreases back to zero (An and Rocklov, 2014). Wavelets are quite literally
‘mini waves’. Rather than being a wave that goes on forever, like sin() or cos(),

wavelets are a short ‘burst’ of waves that quickly die away, like the figure below:

Sine wave (goes on forever) Wavelets

Figure 3.3: Cé‘hﬁparison of sine wave and wavelets

(Source:http://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-

processing-fourier-transforms-and-heisenberg/)

3.4.2.4 Continuous Wavelet Transformation (CWT)
. 1 t—

Wavelets are defined as ¢, ; (t) = N4 (TT) .

where a— scale of the wavelets

T — time position

The wavelet transform of a continuous signal of infinite duration with mother function

o (t) is:

W, (a,1) = =7 x(t)¢" (55)dt = 7 2Oz (Odt oo (1)

26


http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Amplitude
http://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/
http://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/

Where * denotes the complex conjugate form. The wavelet coefficients, W, (a,1),
represent the contribution of the scales (the a values) to the signal at different time
positions (the t vallues). The wavelet transformation can be thought as a cross
correlation of signal x(t) with a set of wavelets of various “widths” or “scales” a, at

different time positions .

3.4.2.5 Selection of a basis function for the wavelet transformation: The Morlet
Wavelet

The Morlet wavelet was used, in all analysis. It is a complex sine wave localized by a
Gaussian distribution,

Wo(n) = m~Y4elwone=n*/2 ... )

where 1 is a scaled time unit and w, describes the relative frequency of the sine wave
(wy = 6 here to satisfy admission criteria). Because it is a localized periodic function,
it is ideal for analyzing periodic behavior such as multiyear climatic variables or
seasonal

«~
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1

Figure 3.4: (a) Morlet wavelet of arbitrary width and amplitude, with time along the

5 ATV
LT

x- axis. (b) Construction of Morlet wavelet (blue dashed) as a Sine curve (green)
modulated by a Gaussian (red).

3.4.2.6 The continuous wavelet transform of a discrete sequence
As seen in the definition of the CWT, the transformation of the analysisng signal with

a dilated and translated wavelet function and assumes a continuous signal as input.

However, in empirical applications, data are recorded discretely with time steps
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denoted by &t. Therefore, a discrete computation of the CWT need to be performed.
The continuous wavelet transform of a discrete sequence is the convolution of the
series x, and the wavelet ¥, at time t and scale s, where x, is a series of

observations x,, x;,...,xy_, €qually spaced in time by &; . This is defined as

Whs = SN, e (B8 3)

n=0"n s

where ¥* is the complex conjugate. By varying the wavelet scale s and translating
along the localized time index n, one can construct a picture showing both the
amplitude of any features versus the scale and how this amplitude varies with time.
To ensure that the wavelet transforms at each scale s are directly comparable to each
other and to the transforms of other time series, the wavelet function at each scale s is

normalized to have unit energy. In convolution formula (2), the normalization is

\P[(n’—n)&] _ (ﬂ)l/ 2 w, [(n'—n)st]

N N S

where ¥
The power; ‘%’Vrzsl indicated thestrenath-of thelvwatrate tr LUk e' B r at every pOint
and is presented f

3.4.2.7 Wavelet coherence analyses

To identify the dependencies between dengue incidence in Colombo district and
climatic factors wavelet coherence analyses was performed. In addition, it allows
checking whether various periodic modes of various climatic factors and dengue
incidence tend to oscillate simultaneously, falling and rising together and quantifying
the synchrony of these two time series. In addition phase analysis was calculated
between climatic factors and dengue incidence. It provides an information on the sign
of the relationship such as in phase, out of phase, lead by /2. The details of the
method can be found in ‘a practical guide to wavelet analysis’ (Torrence & Compo,
1998).
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3.4.2.8 Significance of the wavelet power spectrum

Significance of the wavelet power spectrum is assessed by comparison with simulated
or theoretical spectra representing a null hypothesis: the variability of the observed
time-series is equivalent to the expected variability of a random process with similar
first-order autocorrelation. ‘“biwavelet” package in R estimate the first-order
autocorrelation of the time series to be analyzed and create a theoretical Fourier
power spectrum of a Gaussian process with equivalent first-order autocorrelation and
x? estimator was used to establish 95% confidence bounds for the null hypothesis. In
order to test the significance of coherence Monte Carlo simulations was used. The
details of the method can be found elsewhere (Castillo et al., 2011; Cazelles et al.
2005; Cazelles et al., 2014; Torrence & Compo, 1998).

3.4.3 Change point detection in variance: the PELT — TREE method

Change point analysis was performed with statistical software R (version 3.1.2)

package ! ‘ yoint algorithms
1) binar dgﬁ!\l—, 0N, 2)” sequent_neighbourhoods and"3) proposed pruned exact
linear time (FELT nalysis we use cently proposed
by Killic nd | neighbourhood

algorithm but it is more computationally efficient, due to its use of dynamic
programming. The mean assumption is that the number of changepoints increased
linearly as the data set grows, controls the computational time. Graphical inspection
of the dengue time series indicates that there is a change in the mean constantly

throughout the study period. Hence our study focused on changes in variance.

Suppose we have an ordered sequence of data, y;., = (1, ..., y»). Changepoint, is
said to occur within this set when there exists a time, te {l,...,n-1}, such that the

statistical properties of {y; ... y;} and {y; 1 ... y,. } are different in some way.

The most common approach to identify multiple changepoints in the literature is to

minimize

?:il[c(y(‘ci_l+1):ri)] + Bf(m)
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where C is a cost function for a segment e.g., negative log-likelihood and Bf (m) is a
penalty to guard against over fitting ( a multiple changepoint version of the threshold
c). In PELT algorithm cost function is minimized by dynamic programming

technique.

3.4.4 Distributed Lag Non-linear Models

A Poisson regression model combined with distributed lag non-linear model (DLNM)
was used to examine the effects of climate variables on dengue incidence. The
objective of developing the DLNM model are to justify the impact of lag effect of
climate on dengue incidence and to identify the structure of the lag-period for
different climate variables and to capture the nonlinear nature of the data by

introducing appropriate smoothing techniques.

DLNM, was proposed recently by Gasparrini et al. (2010) is a flexible model to

describe ul ) ange on dengue
incidenc gﬂsl ["a™**crogs-basis” function fl i wo dimensional
relations Naqlfgnr e dimensiens of.climate ne cross-basis is
specifiec the a set of possible

options such as splines, polynomials, or step functions. In our study, the choice of lag
period is varies for various meteorological factors. We decided the lag period based
on the literature review and provided the maximum plausible weeks as the lag for all
the variables to improve the precision of the DLNM model. Table 3.2 summarizes the
choice of lag period, variable basis and basis for lag for each climatic variable. Except
for precipitation, in this study, we used natural spline (ns) basis for all the variables
used in the model. B-spline function was used as the basis function for precipitation
while polynomial function was used as the basis for lag. The degree of freedom for all
variable basis and lag basis are based on the results of exploratory data analysis,
previous studies from literature and also judging by the AIC/ BIC results tested under
various values of degree of freedom. In this analysis we placed the knots of variables

at equally spaced values on the log scale of lags.
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Table 3.2 Choice of lag period, variable basis and lag basis

Variable Lag Period Basis for Variable Basis for Lag
(weeks)
Mean Temperature 30 ns with degree 1 ns with lagnots
Maximum 30 ns with degree 1 ns with lagnots
Temperature
Precipitation 25 B-spline with Polynomial with
degree 4 and 5df | degree 3

Humidity 20 ns with degree 2 ns with lagnots
Maximum 20 ns with degree 2 ns with lagnots
sustained wind
speed
Visibility 20 ns with degree 2 ns with lagnots

The applied poisson model can be written as follows.
Ln(E(Y,)) =a+ B TEM,, + B,TMAX, | + B;PP,, + B, H | + VM, + u;week; +y, year,

Where t refers to the week of the observation; (Y:) denotes the observed weekly
PP, ,H

1 and

e

dengue counts on week t; o is the model intercept. TEM, ;, TMAX el 7

VM, are theéf‘@ss basis.matrix obtained. to. meapmtemperature,, maximum temperature,
precipitationi; fhumidity and limaimim Lsustained wind speed respectively. B;'s
represent ine vecior of coefiicients for corresponding cross basis and | is the lag

weeks. Week; (= 1, 2, 3, ....52) denotes week effects that were controlled by a
categorical variable yearx denotes the year (k=2009, 2010, 2011, 2012, 2013, 2014).

Since the study population was relatively stationary during the time period from 2009
— 2014 with annual growth rate below 1% the trend of incidence during the study
period could be similarly prescribed by the trend of disease counts. (According to
2001 census Colombo district population 2251300, 2012 census population in
Colombo district equals 2310100, population growth from 2001 to 2012 is 2.61%)
Hence we used the dengue counts as the response variable in our model. Finally the
residuals were checked to evaluate the adequacy of the model. Sensitivity analyses
were performed by varying the degrees of freedom (df). All statistical analyses related

to DLNM were performed with R software version 3.1.3 using the package dinm.
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CHAPTER 04
EXPLORATORY DATA ANALYYSIS

4.1 Overview

In recent years dengue has become the number one killer mosquito borne infection in
Sri Lanka. The number of cases of dengue appears to be rising each year. Earlier the
disease was mainly restricted to urban and semi urban areas of the country. However,
over the years DF and DHF has been found in all provinces in Sri Lanka due to
population movement through transport development, economic activities and change
in climatic factors. This chapter includes the presentation of dengue incidence in Sri
Lanka from 2009 to 36" week of 2014. Initial examination of the data is presented in

descriptive manner.

4.2 Descriptive Statistics of Dengue Cases

4.2.1 Western province

“Over 2060, Ugamél[\[)((f( d dengue cases have been reported to the Epidemiology Unit
from all OVeE, the island during the last 8 months of this year. Approximately 57.85
percent of dengue cases were reported from the Western province, Ministry of Health
revealed.”

http://www.news.lk/news/sri-lanka/item/2350-57-85-dengue-cases-reported-from-

western-province

(Accessed on 14 — 9 - 2014)

Dengue infection is predominant in Western province where majority of the country’s
population live. The disease keeps on increasing year by year. The Western Province,
consisting of Colombo, Gampaha and Kalutara Districts, is the most socio-
economically developed part in Sri Lanka. It contributes more than fifty percent to the
Gross Domestic Product (GDP). Population of Western province in Sri Lanka is 5.72
million and the total extent of area is 3,709 km?.
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4.2.1.1 Colombo district

Colombo District, Sri Lanka where there is a marked increase of dengue cases
evidenced during the last few years. Colombo district is the most urbanized and
density populated region of Sri Lanka and has a number of urban centers including
Colombo, the capital. The main features of the climate are the relatively stable
temperature and relative humidity year-round, forming an ideal condition for the
growth of the vector of dengue fever mosquito. In the total 298 weeks of the study
period, there were 36949 dengue cases (including Dengue and dengue hemorrhagic
fever) reported in Colombo District. Table 4.1 shows the summary statistics of weekly
dengue cases from 2009 to 2014. The highest mean weekly cases occurred in 2014
followed by 2011. During the study period, the weekly mean dengue cases were 125.
There was a small decline in mean number of dengue incidence in 2012. Even though
the year 2014 consists data from 36 weeks total number of cases in that year was
highest than other years.

Table 4.1: Dasgriptive Statistics@f BengueGases.— Calamba,District

Year o Dengue Cases

: R/Ixinimum Median Mean SD Maximum  Total

2009 20 62.5 80.06 56.31 288 4163
2010 8 63 95.6 81.5 334 4971
2011 25 114 145.3 98.6 475 7557
2012 0 99 108.25 70.36 297 5629
2013 41 127 138.71 64.74 329 6797
2014* 42 143 217.1 133 491 7817
Overall 42 171 125.68 93.88 491 36949
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Figure 4.1 : Distribution of weekly mean number of dengue cases — Colombo District
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Figure 4.2: Weekly distribution of confirmed dengue cases in Colombo district

Figure 4.1 shows that a high number of dengue cases generally occurred from week
18 to week 36 that is from May to October. The highest number of dengue cases were
reported during the twenty sixth week. Interestingly, disease pattern indicate that the
critical months of incidence were during the May to September, which is the rainy
season. Again there Figure 4.2 tend to exhibit repetitive behavior, with regular

seasonal that are easily visible. According to figure 4.2 drastic downward trend in the
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end of 2010 was partially due to the effectiveness of strengthened vector control
programs. But a drastic upward trend can be observed in the middle of 2011. The

worst incidence noted was in July 2011 with more than 300 cases.

4.2.1.2 Gampaha district

Gampaha District is located in the west of Sri Lanka and has an area of 1,387 square
kilometres (536 sq mi). It is bounded by Kurunegala and Puttalam districts from
north, Kegalle District from east, Colombo District from south and by the Indian
Ocean from west. The descriptive statistics of dengue cases for the study period (2009

to 36" week of 2014) in Gampaha district is given in table 4.4.

Table 4.2: Descriptive Statistics of Dengue Cases — Gampaha District

Year Dengue Cases
Minimum Median Mean SD Maximum  Total
2009 46 6456 50.33 )4 3198
2010 “ﬁf Electrozes Thesessr Dissertuigor 31 2541
2011 L 5O Al by )1 2936
- 2012 0 57.5 66.87 49.14 256 3477
2013 9 44 49.37 21.74 110 2419
2014* 8 67.5 80.69 59.74 296 2905
Overall 0 49.5 59.47 45.27 296 17483

The distribution of DF/ DHF incidence in years 2009 - 2014; Week 36 is shown in
figure 4.3. Interestingly, disease patterns indicate that the critical months of incidence
were during May to September, which is in the Southwest monsoon season.
According to figure 4.4 the worst incidence noted was in 3@ week of 2012 with more
than 250 cases. But a drastic downward trend can be seen within the same year from
May to June.
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Figure 4.3: Distribution of weekly mean number of dengue cases — Gampaha District
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Figure 4.4: Weekly distribution of confirmed dengue cases in Gampaha district

4.2.1.3 Kalutara district

Kalutara District is located in the south west of Sri Lanka and has an area of 1,598
square kilometres (617 sq m). Kalutara District is bordered by the sea to the west,
Ratnapura District to the East, Galle District to the South and Colombo District to the
North. Kalutara District is in the wet zone and the main characteristics of the climate

are low rainfall, high temperature and high humidity throughout the year. The
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monsoon seasons extending from May to August and October to January include

heavy rains, slightly lower temperatures periods of lower humidity.

Table 4.3: Descriptive Statistics of Dengue Cases — Kalutara District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 3 11.5 16.4 13.32 75 853
2010 2 20 22.96 18.23 66 1194
2011 1 19 20.15 12.54 60 1048
2012 0 23.5 23.5 18.42 67 1222
2013 6 26 27.51 10.05 49 1348
2014* 9 37.5 44.42 26.11 101 1599
Overall 0 22 24.71 18.46 101 7265
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Figure 4.5: Distribution of weekly mean number of dengue cases — Kalutara District

According to figure 4.5 the highest number of dengue cases were reported between
week 21 to week 31. As shown in figure 4.6, weekly dengue cases peaked in the June,
2009 and plunged to a low in August, 2009. Again a dramatic upward trend can be
seen during the period of May to September in 2010 and 2011. At that time, the
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epidemic took approximately 20 weeks starting on May. The largest outbreak of

dengue cases was observed in the year of 2014.
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Figure 4.6: Weekly distribution of confirmed dengue cases in Kalutara district

Further, accogding to,4.6.the disease has,a seasonal trend, wheye two peaks of dengue
occur follovif(éféfmonsoon rains in dune-July anghQctober, = December. The DF/ DHF
distribution ",if':r;éampaha Districtiand iKalltara District had a similar pattern over the
study period. Further, DF and DHF distribution in the whole province having its
highest incidence in rainy season and had a similar trend for every year.

4.2.2 Central province

The central province consists of three administrative districts, namely, Kandy, Matale
and Nuwara Eliya. The climate is cool, and many areas about 1500 meters. The
western slopes are very wet, some places having almost 7000 mm of rain per year.
The eastern slopes are parts of the mid-dry zone as it is receiving rain only from
North-Eastern monsoon. The Temperatures range from 24°C at Kandy to just 16°C in
Nuwara Eliya, which is located 1,889 m above sea level. The highest mountains in Sri
Lanka are located in the Central Province.
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4.2.2.1 Kandy district

It has an area of 1906.3 km2. Kandy city is the second largest city in the country after
Colombo. With Kandy located in the centre of the island and in a high elevation, the
city has relatively wetter and cooler temperatures than that of the tropical climate of
the rest of the country, especially the coastal regions. Nuwara Eliya is south to it and
has a cooler climate due to its higher elevation. The city has its dry season from
December through to April. From May through to July and December to January the
region experiences its monsoon season, during this time the weather is rough and
unstable. The island being in the northern hemisphere gives Kandy it coldest month in
January and its hottest in July. From March through the middle of May is the inter

monsoonal period, during this time there is light rain and strong humidity.

Over the study period, a total of 9287 cases of dengue were reported to the
epidemiology unit of Sri Lanka. The worst incidence noted was in June — July, 2009
with more than 200 cases. According to the figure 4.8 it is clear that the dengue has a
decreasil n administrative

plans by «%@&d
ey

Table 4.4: Deseriptive'statistics o DenguelC

W DEngue wases

Minimum Median Mean SD Maximum  Total

2009 5 38 59.06 50.82 217 3071
2010 1 20 23.69 19.21 69 1232
2011 0 23 29.10 23.12 94 1513
2012 0 28 25.56 18.29 66 1329
2013 0 25 24.22 13.42 60 1187
2014* 3 16 26.22 20.31 75 944
Overall 0 26.50 31.59 30.17 217 9287
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Figure 4.7: Distribution of weekly mean number of dengue cases — Kandy District
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Figure 4.8: Weekly distribution of confirmed dengue cases in Kandy district

4.2.2.2 Matale district

Matale District is located in Central, with a population of 445866 habitants. The
estimate terrain elevation above sea level is 213 meters. The descriptive statistics of
reported number of dengue cases for the study period is given in table 4.5. During the
year 2009 one of the highest outbreak year, 1852 patients were suspected with DF/
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DHF. According to figure 4.9 significant numbers of cases were reported in the month

of July are reaching a peak in August and gradually decrease.

Table 4.5: Descriptive Statistics of Dengue Cases — Matale District

Year Dengue Cases
Minimum Median Mean SD Maximum Total
2009 3 20.5 35.62 31.43 130 1852
2010 0 7 9.40 8.03 44 469
2011 0 5 6.481 4.52 19 337
2012 0 6 6.538 5.66 21 340
2013 0 6 6.341 4.18 20 311
2014* 1 5 7.06 6.67 34 254
Overall 0 7 12.20 17.89 130 3587
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Figure 4.9: Distribution of weekly mean number of dengue cases — Matale District

According to figure 4.10 the number of reported dengue cases varied by year. Over

the study period, highest cases of dengue were reported in 2009 and lowest in the

following three years. The worst incidence noted was in June — July , 2009 with more

than 100 cases.
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Figure 4.10: Weekly distribution of confirmed dengue cases — Matale District

4.2.2.3 Nuwara Eliya district

Due to its high altitude, it has a sub tropical highland climate. The average annual
temperature yaries between 11-20 C2 and the recorded.lowest temperature is 0.4 C°

and the recoﬁgi highest. temperature. is 24 7eCTyManthly rainfall varies between 70-

225 mm andf_was an average| dnnuattrainfald figure or precipitation of 1900 mm. The
maximum rainfall is generally in October and the minimum rainfall is in March.

During the year it has a relative humidity between 65%-87%.

Table 4.6: Descriptive Statistics of Dengue Cases — Nuwara Eliya District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 4 5.346 5.753 24 278
2010 0 3 3.865 4 15 201
2011 0 3 4.135 4.005 20 215
2012 0 4 3.923 3.486 14 204
2013 0 4 3.959 2.661 12 194
2014* 1 3.5 4.917 3.872 14 177
Overall 1 3 4.316 4.098 24 1269
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Figure 4.11: Distribution of weekly mean number of dengue cases — Nuwara Eliya
District
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Figure 4.12: Weekly distribution of confirmed dengue cases in Nuwara Eliya District

Similar to Kandy District and Matale District the highest number of dengue cases was
reported in the year of 2009. It has reached to peak during the twenty sixth week of
2009 and gradually decreased. Again in the middle of 2010 it has reached to a peak of
15 cases. Figure 4.12 tend to exhibits multiple repetitive behaviors. Seasonal pattern
is similar to the pattern of Colombo District.
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4.2.3 Southern province

Southern Province is the 7th largest province by area and is home to 2.5 million
people, the 3rd most populated province. The Southern Province is a small geographic

area consisting of the districts of Galle, Matara and Hambantota
4.2.3.1 Galle district

Galle features a tropical rainforest climate. The city has no true dry season, though it
is noticeably drier in the months of January and February. As is commonplace with
many cities with this type of climate, temperatures show little variation throughout the
course of the year, with average temperatures hovering at around 26 degrees Celsius

throughout. During 2009 to 36" week of 2014 a total of 4132 cases were reported.

Table 4.7: Descriptive statistics of dengue cases — Galle District

Year Dengue Cases
Minimum Median Mean SD Maximum  Total
2009 i 3 1181 127 3 614
2010 | f 0 El 18 Thescss&7 Disscidsd 0 955
2011 2 o WWWIggTreachs 1 651
2012 0 12 13.79 10.68 39 717
2013 1 13 13.76 6.97 30 674
2014* 0 11 14.47 13.02 46 521
Overall 0 11 14.10 11.81 70 4132

According to the table 4.7 highest number of cases were reported in the year of 2010.
According to figure 4.14 the highest number of dengue cases were reported from June

to September.
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Figure 4.13: Distribution of weekly mean number of dengue cases — Galle District
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Figure 4.14: Weekly incidence rate of confirmed dengue cases in Galle District

Figure 4.14 tend to exhibit repetitive behavior, with regular cycles that are easily
visible. Except the year 2012 the number of dengue cases reached to a peak during the
month of July. Significant peak can be observed in 2009, 2010 and 2012. The data
show that the dengue fever case has a decreasing trend since end of 2012 due to

vector control programs implemented by the administration.
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4.2.3.2 Hambantota district

The highest number of dengue cases were reported in the year of 2009. The worst
incidence was also in 2009 with more than 85 cases. The year 2013 had
comparatively lower number of dengue cases. In Hambantota District also peak
dengue incidence was between July and September, corresponding with peak rainfall.
According to Figure 4.16 since mid 2012 number of dengue cases gradually decrease.

But there has been a drastic upward trend in the year of 2014.

Table 4.8: Descriptive statistics of Dengue Cases — Hambantota District

Year Dengue Cases
Minimum  Median Mean SD Maximum  Total
2009 0 105 1696 1807 87 882
2010 0 85 1265  10.96 40 658
2011 0 5 6.40 6.24 35 333
2012 0 7 7.44 5.65 20 387
2013 0 5 5.27 2,64 14 258
2014 {0 B . 1033 1228 64 372
Overall o 0 6 986  11.26 87 2890
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Figure 4.15: Distribution of weekly mean number of dengue cases — Hambantota
District
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Figure 4.16: Weekly distribution of confirmed dengue cases in Hambantota District

4.2.3.3 Matara district

Significant number of cases was reported in the year of 2012. But the highest peak

was recorded in the year of 2009 which is more than 75. Number of dengue counts

reported in Z?Q?t,and 2012 are twice. as much as the'number of dengue counts in other

districts. Slmﬁar to qther_ tw,districts inSouthern Province most of the cases were

reported durirn_grmonsoon in each year except in the year 2012. Since the beginning of

2013 number of dengue cases were gradually decrease. Seasonal pattern is evident

from the figure 4.18. This seasonal pattern is similar to pattern that was appeared in
Galle District.

Table 4.9: Descriptive Statistics of Dengue Cases — Matara District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 1 14 20.23 19.38 76 1052
2010 0 8 10.69 9.84 45 556
2011 1 11.5 13.31 11.02 51 692
2012 0 28 24.90 18.21 58 1295
2013 2 8 8.31 4.50 27 407
2014* 0 8.5 11.25 8.43 32 405
Overall 0 10 15.04 14.46 76 4407
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Figure 4.17: Distribution of weekly mean number of dengue cases — Matara District
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Figure 4.18: Weekly distribution of confirmed dengue cases in Matara District

4.2.4 Nothern province

The Sri Lankan 30 year civil war had its roots in this province. Northern Province is
located in the north of Sri Lanka and is just 22 miles (35 km) from India. Northern
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Province is covered in tropical forests, with numerous rivers flowing through them

and this province has a number of lagoons.
4.2.4.1 Jaffna district

Jaffna District is the capital of Nothern Province. The number of dengue cases
reached to a peak in the year of 2010. The reason might be 30 year war was ended in
year 2009 and due to the re-habitat programs and infrastructure development projects.

Table 4.10: Descriptive statistics of Dengue Cases — Jaffna District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 0 3.65 15.88 112 190
2010 0 18 35.19 54.68 329 1830
2011 0 5 6.29 4.80 26 327
2012 0 7 14.60 18.48 94 759
2013 4 11 13.88 8.55 37 680
2014* 4 1P 20038 110.42 52 732
Overall 0 9 TH42 241Y 329 4518
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Figure 4.19: Distribution of weekly mean number of dengue cases — Jaffna District
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According to figure 4.20 it is clear that the worst outbreak was happened in the year

of 2010 due to the unplanned urbanization, infrastructure development and migration.
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Figure 4.20: Weekly distribution of confirmed dengue cases in Jaffna District

4.2.4.2 Killingchchi district

The climatiégﬁ}condition P Killinochehisdistrict!issdiy humid and tropical. Rainfall
receives duriﬁé* the period' from"September to December by North — East monsoon
periodical wind. The remaining period other than afore said of the year is dry and
warm. According to the figure 4.22 there was a sharp rise in dengue cases from mid

2010. The larges outbreak was recorded in the year of 2010.

Table 4.11: Descriptive statistics of Dengue Cases — Killinochchie District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 0 0 0 0 0

2010 0 0 0.88 1.72 9 46

2011 0 0 0.60 1.17 6 31

2012 0 0 0.46 1.01 6 24

2013 0 0 0.63 1.17 6 31

2014* 0 0 0.61 0.96 4 22
Overall 0 0 0.52 1.16 9 154
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Figure 4.21: Distribution of weekly mean number of dengue cases — Killinochchie
District
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Figure 4.22: Weekly distribution of confirmed dengue cases in Killinochchie District
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4.2.4.3 Mannar district

Mannar district is located in northwestern Sri Lanka. Low rainfall and high
temperatures characterize the climate. According to figure 4.24 we have seen a
dramatic rise in the number of dengue cases in the year of 2010. The next highest
outbreak was recorded in the year of 2011. According to figure 4.23 there were two
peaks per year. First peak occurred during weeks 31 -33 while the next peak occurred

in week 49 — week 3 of the next year.

Table 4.12: Descriptive statistics of Dengue Cases — Mannar District

Year Dengue Cases
Minimum Median Mean SD Maximum Total
2009 0 0 0.288 0.92 5 15
2010 0 5 9.06 13.66 84 471
2011 0 1 1.81 3.93 19 94
2012 0 1 2.42 3.39 15 126
2013 0 1 1.25 1.84 10 61
2014* 0 0] 1.17 1.91 3 42
Overall - 0 1 2.76 6.89 84 809
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Figure 4.23: Distribution of weekly mean number of dengue cases — Mannar District
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Figure 4.24: Weekly distribution of confirmed dengue cases in Mannar District

4.2.4.4 Vavuniya district

Vavuniya district is located in the North of Sri Lanka. The district is categorized

under the argéffsf?gry zonalofgril Lanka. DACCarding to figlre-4126 there was a sharp rise

in the dengt}i n_:‘ﬂéidence at ‘the end of the'each year Similarto-other districts in North
of Sri Lanka”Vé{/uniya district shows a sharp rise in the year of 2009, from week 50 -

53.

Table 4.13: Descriptive statistics of Dengue Cases — Vavuniya District

Year Dengue Cases
Minimum Median Mean SD Maximum  Total
2009 0 0 20.81 48.17 209 1082
2010 0 2 10.35 27.13 174 538
2011 0 1 1.35 1.67 10 70
2012 0 1 1.81 2.61 10 94
2013 0 1 1.10 1.14 5 54
2014* 0 1 1.94 3.07 12 70
Overall 0 1 6.51 24.33 209 1908
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Figure 4.25: Distribution of weekly mean number of dengue cases — Vavuniya
District
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Figure 4.26: Weekly distribution of confirmed dengue cases in Vavuniya District
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4.2.4.5 Mulative district

Mulative District is located on the eastern coast of Sri Lanka. Dengue incidence
pattern in Mulative district is similar to dengue incidence pattern in Killinochchie
district. The number of cases are too low before mid of 2010 for any clear pattern to
be visible. We have seen a dramatic rise in the number of dengue cases after 2010.

There was a significant increase in the total number of dengue cases in year 2013.

Table 4.14: Descriptive statistics of Dengue Cases — Mulative District

Year Dengue Cases
Minimum Median Mean SD Maximum Total
2009 0 0 0 0 0 0
2010 0 0 0.21 0.70 4 11
2011 0 0 0.27 0.69 3 14
2012 0 0 0.40 0.10 4 21
2013 0 1 1.61 1.90 8 79
2014* 0 0.5 1.22 1,59 5] 44
Overall 0 0 0.58 1.25 3 169
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Figure 4.27: Distribution of weekly mean number of dengue cases — Mulative District
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Figure 4.28: Weekly distribution of confirmed dengue cases in Mulative District

4.2.5 Eastern province
4.2.5.1 Batticalo district

Batticalo dlstrlct is located in the Eastern province of Sri Lanka. Batticaloa has a
tropical wet gag dry climate. DUring the mohsoon ‘season Trom November to February
heavy rains are sécorded, with,average temperature of 25°C. According to figure 4.29
there are fwo peaks per year, at the beginning of the year and at the end of the year.
According to figure 4.30 in the year of 2010 there was a sharp rise in dengue
incidence. The highest peak of 134 cases was recorded in January 2012. The period
which shows large increase in dengue incidence coincide with the monsoon season

from November to February.

Table 4.15: Descriptive statistics of Dengue Cases — Batticalo District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 9 11.13 10.12 49 579
2010 0 9.5 17.88 21.16 78 930
2011 0 15.5 26.85 31.40 134 1396
2012 0 55 10.83 13.76 62 563
2013 0 7 8.02 6.14 28 393
2014* 1 14 15.42 10.18 47 555
Overall 0 9 15.07 18.98 134 4416
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Figure 4.29: Distribution of weekly mean number of dengue cases — Batticalo District
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Figure 4.30: Weekly distribution of confirmed dengue cases in Batticalo District

4.2.5.2 Ampara district

Ampara district is located in Eastern Province, Sri Lanka. Dengue incidence in
Ampara district possesses annual seasonality with peak during the beginning of the
year and end of the year. Relatively higher number of dengue cases reported in both
2009 and 2010. Similar to other districts in eastern province and North province
highest peak was recorded in 2010.
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Table 4.16: Descriptive statistics of Dengue Cases — Ampara District

3 r
LR o B

Year Dengue Cases
Minimum Median Mean SD Maximum Total

2009 0 7 8.10 7.36 37 421
2010 0 5 9.61 11.76 61 484
2011 0 2 3.83 4.48 24 199
2012 0 2 3.39 4.03 17 176
2013 0 5 7.82 9.17 47 383
2014* 0 4 456 3.17 12 164
Overall 0 4 6.24 7.78 61 1827
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Figure 4.31: Distribution of weekly mean number of dengue cases — Ampara District
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Figure 4.32: Weekly distribution of confirmed dengue cases in Ampara District

4.2.5.3 Trincomalee district

Trincomalee district possess a tropical wet and dry climate. The time series of weekly
dengue cases,in Trincomalee generated g peak in 2010 and the next peak was reported
in the year 05@14 Yisual.inspection showsefrem 2011 10 2013 the number of cases

are too low foiany cleatypatter e be visible.

Table 4.17: Descriptive statistics of Dengue Cases — Trincomalee District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 2 3.8 4.78 19 200
2010 0 5.5 11.48 16.34 81 597
2011 0 2.5 2.73 2.49 9 142
2012 0 1 231 2.74 11 120
2013 0 1 2.76 2.84 13 135
2014* 0 8 10.50 9.32 40 378
Overall 0 3 5.37 8.89 81 1572
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Figure 4.33: Distribution of weekly mean number of dengue cases — Trincomalee
District
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Figure 4.34: Weekly distribution of confirmed dengue cases in Trincomalee District
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4.2.6 North Western province
4.2.6.1 Kurunagala districts

Climate in Kurunagala district is topical throughout the year. During the monsoons
from May to August and October to January, heavy rains can be expected. According
to figure 4.36 dengue cases revealed a strong seasonal pattern. There are two peaks
per year. The peak occurred during week 25 — 31 is more significant than the peak

occurred in December — January.

Table 4.18: Descriptive statistics of Dengue Cases — Kurunagala District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total
2009 4 25 45.69 46.82 228 2376
2010 1 19.5 23.23 19.89 91 1208
2011 1 17 16.67 8.33 38 867
2012 1 36 39.58 35.39 219 2058
2013 7 27 33.29 24.63 130 1631
2014* _31 24.5 . 32.60 2414 86 1170
Overall = 1 23 .77 30.85 228 9310
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Figure 4.35: Distribution of weekly mean number of dengue cases — Kurunagala
District

61



200
1

150
1

Dengue Cases

100
1

50
|

2009 2010 2011 2012 2013 2014

Year

Figure 4.36: Weekly distribution of confirmed dengue cases in Kurunagala District

4.2.6.2 Puttalam district

Puttalam district is in North. Western province of Sri Lanka. Puttalam district

experiencedﬂéi%?mnexpected autbreak in.2010 that was.out of the sequence with the

typical epidﬁ e cyele-Anptherwpexpacted outbreak was observed in 2013, the

second outbreak is substantially higher than the first one in 2010. In contrast there

was a drastic downward trend in 2012 was partially due to the effectiveness of

strengthened vector control programmes implemented in year 2012.

Table 4.19: Descriptive statistics of Dengue Cases — Puttalam District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 6.5 12.94 16.9 85 673
2010 1 8 12.94 14.58 84 673
2011 0 6 7.25 6.07 31 377
2012 0 10 19.77 25.49 123 1028
2013 0 10 12.94 9.91 45 634
2014* 0 8.5 9.69 8.24 38 349
Overall 0 8 12.74 15.54 123 3734
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Figure 4.37: Distribution of weekly mean number of dengue cases — Puttalam District
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Figure 4.38: Weekly distribution of confirmed dengue cases in Puttalam District
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4.2.7 North Central province
4.2.7.1 Anuradhapura district

Anaradhapura district is in the dry zone of Sri Lanka. Dengue cases were recorded
once or several times a year without a clear seasonal pattern. Incidence rates of DF
have increased significantly during 2009 — 2010. Number of dengue cases recorded in
the year 2010 is thrice as much as the number of cases in year 2012. After 2010 there
was a downward trend in the incidence of dengue cases. Variation of dengue cases in

2011 is relatively low compared to other years.

Table 4.20: Descriptive statistics of Dengue Cases — Anuradhapura District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 5.5 10.75 10.37 40 559
2010 0 9 15.94 19.94 112 829
2011 0 4 4.40 2.99 15 229
2012 0 4 5.50 6.25 31 286
2013 0 6 LA 9:80 24 378
2014* 0 B1% 6.39 4162 20 230
Overall e 0 o 8.57 10.99 112 2511
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Figure 4.39: Distribution of weekly mean number of dengue cases — Anuradhapura
District
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Figure 4.40: Weekly distribution of confirmed dengue cases in Anuradhapura District

4.2.7.2 Polonnaruwa district

7"5"trict has a tropical climate most of the yeaf. The incidence of dengue

strongly fluétgfafed from year to year and between months within a year. According to
figure 4.41 én_dgfigure 4.42 higher numbers of cases generally occurred from June to
September. The drastic downward trend in 2014 was partially due to the effectiveness

of strengthened vector control programs implemented at the end of 2013.

Table 4.21: Descriptive statistics of Dengue Cases — Polonnaruwa District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 2 3.173 3.568 21 165
2010 0 4 6.538 6.254 23 340
2011 0 3 3.712 3.114 13 193
2012 0 2 2.827 3.154 14 147
2013 0 6 6.735 5.028 21 330
2014* 0 0 3.111 4.868 17 112
Overall 0 3 4.392 4,713 23 1287
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Figure 4.41: Distribution of weekly mean number of dengue cases — Polonnaruwa
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Figure 4.42: Weekly distribution of confirmed dengue cases in Polonnaruwa District
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4.2.8 Uva province
4.2.8.1 Badulla district

Badulla district is situated hilly parts of the island. The time series of monthly dengue

cases in Badulla district shows a drastic upward trend in 2010 and 2011. Even though

Badulla possess cold climate, fair number of dengue cases has been recorded

throughout the study period. According to figure 4.43 and 4.44 higher number of

dengue cases generally occurred during the mid of the year. This peak was less

distinct after 2012.

Table 4.22: Descriptive statistics of Dengue Cases — Badulla District

Year Dengue Cases
Minimum Median Mean SD Maximum Total
2009 0 4 5.654 6.15 36 294
2010 0 9 16.19 19.68 112 842
2011 0 7 10.17 11.85 73 529
2012 0 3 450 457 16 234
2013 0 6 6.86 4:21 22 336
2014* %, 0 9 9.69 6197 31 349
Overall ~= 0 6 8819 11.27 112 2584
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Figure 4.43: Distribution of weekly mean number of dengue cases — Badulla District
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Figure 4.44: Weekly distribution of confirmed dengue cases in Badulla District

4.2.8.2 Monaragala district

Monaragala District is situated in Uva Province. According to figure 4.45 there has
been a drastic upward trend in the year of 2010. As shown in figure 4.45 and figure
4.46 higher number of dengue-tases generaliyldecarred fromiltne to September. This
, ;,_',_lzjsftinct after 2010.

peak was |38

Table 4.23: Descriptive statistics of Dengue Cases — Monaragala District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 2 3.29 3.61 14 171
2010 1 9 15.08 17.52 95 784
2011 0 5 4.87 3.50 18 253
2012 0 3 2.86 2.19 9 147
2013 0 3 3.35 2.38 10 164
2014* 0 4 4.56 3.20 12 164
Overall 0 4 5.744 8.966 95 1683
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Figure 4.45: Distribution of weekly mean number of dengue cases — Monaragala
District
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Figure 4.46: Weekly distribution of confirmed dengue cases in Monaragala District
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4.2.9 Sabaragamuwa province

4.2.9 Ratnapura district

Ratnapura district features a tropical rainforest climate. In contrast to other districts a

large peak of dengue cases occurred in 2014. Sudden upward outbreaks can be seen in

2009, 2010 and 2012. These peaks are of roughly equal magnitudes. As shown in

figure 4.47 higher number of cases generally occurred from May to September. Even

though the year 2014 consists 36 weeks, throughout the study period highest number

of dengue cases recorded in 2014.

Table 4.24: Descriptive statistics of Dengue Cases — Ratnapura District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 0 9.5 27.33 32.79 112 1421
2010 1 24 34.08 29.47 121 1772
2011 1 15.5 14.56 8.25 33 757
2012 5 27 32.56 23.86 128 1693
2013 4 20 2151 1.3.49 57 1054
2014* 0 1K 438 5845 234 1576
Overall == () 18 28.24 31.15 234 8273
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Figure 4.47: Distribution of weekly mean number of dengue cases — Ratnapura

District
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Figure 4.48: Weekly distribution of confirmed dengue cases in Ratnapura District

4.2.9.2 Kegalle district

There is no ¢lear segspnal pattern in.the occurrence of.dengue incidence in Kegalle

district. ngk@?g umbhes of .cases geperally.ogcurred from June to October. Similar to

other districﬁ _dfastic wpyvard tkenehean belseen in the year of 2009.

Table 4.25: Descriptive statistics of Dengue Cases — Kegalle District

Year Dengue Cases

Minimum Median Mean SD Maximum  Total

2009 1 24 43.83 47.56 250 2279
2010 0 10.5 13.35 11.00 39 694
2011 0 14 17.06 13.47 63 887
2012 0 28 22.90 17.92 80 1451
2013 1 19 19.78 8.78 49 969
2014* 3 19.5 27.47 21.11 86 989
Overall 0 19 24.81 25.99 250 7269
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Figure 4.49: Distribution of weekly mean number of dengue cases — Kegalle District
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4.3 Descriptive Statistics of Climatic Variables

To understand how climate in Colombo district might affect dengue incidence it is

important to first be aware of patterns in climatic factors; mean temperature,

maximum temperature, minimum temperature, precipitation, wind speed, visibility,

humidity and wind speed.

Temperature

Temperature,

precipitation,

and humidity are critical

to mosquito survival,

reproduction, and development and can influence mosquito presence and abundance.

Temperature affects the dengue system through numerous biological mechanisms.

Vast majority of studies examining the effects of temperature on dengue virus

transmission most often used mean temperature as the temperature representative. In

nature, however, mosquitoes and their pathogens do not simply experience mean

conditions, but instead subjected to temperatures that fluctuate throughout the day.

Hence we consider three states of temperature; mean temperature, minimum

temperature and maximui eaperature,|Buring 2009~ September, 2014, the weekly

mean tempeﬁare rafigectfrom 124°Chitos30°E, withsan 1averaliimean of 27.7°C. Mean

air temperattjtéﬂremains retativelyiconstant. The highest mean value was recorded in
2009. According to Nakhapakorii and Tripathi, (2005) temperature higher than 20°C

is the favorable for Aedes aegypti mosquitoes.

Table 4.26: Descriptive Statistics of weekly mean temperature

Year Weekly mean temperature
Minimum Median Mean SD Maximum
2009 26.175 27.657 27.659 0.781 29.657
2010 25.229 27.793 27.656 0.965 29.477
2011 24.186 27.750 27.599 1.014 29.357
2012 25.757 26.657 27.640 0.883 29.557
2013 26.029 27.550 27.641 0.818 29.657
2014* 26.243 28.379 28.180 0.824 29.500
Overall 24.186 27.723 27.705 0.899 29.657
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Descriptive statistics of weekly maximum temperature by year is presented in table
4.27. For the study period (52" week, 2008 — 36" week, 2014), the maximum

temperature ranged from 27°C to 33°C, where the highest occurred in 2013. Mean

temperature of 2014 is slightly higher than other years. Mean value of minimum

temperature for the period 2011 — 2013 was below the overall mean value of 25°C;

while it was above the overall mean for years 2009, 2010 and 2014.

Table 4.27: Descriptive Statistics of weekly maximum temperature

Year Maximum temperature
Minimum Median Mean SD Maximum
2009 29.700 30.712 30.789 0.754 32.700
2010 28.186 30.457 30.768 1.143 32.786
2011 27.314 30.720 30.653 0.887 32.986
2012 29.014 30.993 30.996 0.662 32.229
2013 29.343 30.793 30.936 0.930 33.714
2014 74 33.229
~ Over: ém 73147 30871 30911, 0.905 33.714
Table 4.28: Descriptive Statistics of weekly minimum temperature
Year Minimum temperature
Minimum Median Mean SD Maximum
2009 22.180 24.986 25.203 1.442 27.700
2010 22.629 25.221 25.103 1.099 27.071
2011 21.400 24.707 24.954 1.363 27.843
2012 20.829 24.486 24.664 1.421 27.414
2013 20.071 25.114 24.945 1.182 27.114
2014* 22.200 25.400 25.357 1.470 28.043
Overall 20.829 24.979 25.021 1.336 28.043
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Precipitation

Precipitation is one of the most important environmental factors affecting biological
process of mosquitoes, including their interaction with virus. During the study period,
the weekly mean precipitation ranged from Omm to 71mm. In contrast to temperature
variation the variation of precipitation is higher than the temperature components. The
reason for that might be Sri Lanka gets rainfall mainly from two rainy seasons:
southwest monsoon (May to August) and northeast monsoon (November to
February). As shown in table 4.29, Colombo experienced highest mean weekly
precipitation in year 2013 followed by 2010.

Table 4.29: Descriptive Statistics of weekly precipitation

Year Precipitation
Minimum Median Mean SD Maximum
2009 0.000 3.380 5.620 8.420 55.240
2010 0.000 2.430 9.070 14.710 65.860
2011 .. Q.00 2.05 40 33.273
2012 (1€3F) 9:090 4.209 6:390 68 29.646
2013 &2 0000 190 000 71.340
2014~ 0.000 2.279 3.997 4.298 19.849
Overall 0.000 2.994 6.193 9.539 71.340
Humidity

Sri Lanka is primarily a tropical country with high humidity and warm temperature
throughout the year. More specifically Colombo district is a coastal district, it would
be expected that relative humidity will be high for most days of the year, thus an
important factor on mosquito density and dengue transmission. Throughout the study

period mean humidity was approximately 80%.
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Table 4.30: Descriptive Statistics of humidity

Year Humidity
Minimum Median Mean SD Maximum
2009 65.200 79.857 79.049 4.629 87.000
2010 69.286 81.500 80.790 5.042 90.286
2011 71.571 79.929 79.786 3.641 89.857
2012 69.286 79.857 79.615 4.208 88.286
2013 62.000 80.143 79.720 4.444 86.857
2014* 68.429 79.607 78.414 4.205 86.857
Overall 62.000 80.000 79.624 4.410 90.286
Mean Visibility

Mean visibility remains constant throughout the study period at a mean of 20km.

Except 2009 visibility

ranged from approximatelt 15km — 20km. But in 2009

minimurm V.Eé_i'gility droped to.“approximategly-.11km. Further variation of mean

visibility in 26@9 is approximately twice.ag much as higher than the other years.

Table 4.31: Descriptive Statistics of visibility

Year Visibility
Minimum Median Mean SD Maximum
2009 10.943 19.486 19.081 1.617 20.000
2010 17.014 19.464 19.264 0.724 20.000
2011 15.229 19.743 19.552 0.725 20.043
2012 16.914 19.864 19.666 0.528 20.114
2013 18.357 19.893 19.751 0.330 20.286
2014* 17.757 19.871 19.603 0.594 20.200
Overall 10.943 19.736 19.478 0.897 20.286
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Wind Speed

Descriptive statistics of mean wind speed and maximum sustained wind speed is
shown in table 4.32 and table 4.33 respectively. Colombo district experienced highest
weekly mean wind speed in 2009 while the lowest mean wind speed also recorded in
the same year. Both the descriptive statistics of mean wind speed and maximum

sustained wind speed revealed that year 2009 experienced lower wind speed.

Table 4.32: Descriptive Statistics of mean wind speed

Year Mean Wind Speed
Minimum Median Mean SD Maximum
2009 0.850 4.781 5.248 2.401 14.386
2010 1.786 5.017 4.868 1.627 8.157
2011 2.271 5.493 5.338 1.738 8.829
2012 1.957 4.664 4.742 1.351 7.800
2013 2.671 5.357 5.521 1.827 10.029
2014* i 3.50¢ 6.037 548 1.535 8.443
Overall % 0.850 5aS¢ 5418 1.806 14.386

Table 4.33: Descriptive Statistics of maximum sustained wind speed

Year Mean Sustained Wind Speed
Minimum Median Mean SD Maximum
2009 4.600 9.064 9.546 3.291 23.271
2010 5.214 10.093 10.166 2.542 20.943
2011 6.586 10.514 10.744 2.522 19.314
2012 6.014 10.057 10.610 2.766 22.029
2013 6.914 10.636 11.584 4.375 29.686
2014* 7.971 10.961 10.827 1.700 17.014
Overall 4.600 10.143 10.559 3.066 29.686
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Pearson’s correlation analyses between all weather parameters were assessed.

According to the table 4.34 there is a strong linear relationship between minimum

temperature and mean temperature. Further there is a strong linear relationship

between wind speed and maximum sustained wind speed. Most of the relations are

statistically significant at 0.05 level of significant. The relationship between

maximum sustained wind speed and minimum temperature is significant at 0.1 level

of significant.

Table 4.34: Pearson’s correlation coefficients matrix of meteorological variables in

Colombo District, Sri Lanka, January 2009 — September 2014

T Tmax Tmin H PP \"AY Vv VM
Tmax  0.531
0.000
Tmin  0.814  0.040
0.000  0.496
H -0.127 0584  0.221
0.0{7} 0.000 0.000
PP 0198 -0.1.99 4.141+ ., 0.A83
0.00_2 0.001 0.034  0.000
\AY/ 0.335 0.169 0.250  -0.214 -0.307
0.000  0.005 0.000  0.000  0.000
\Y 0.220 -0.068 0.355  -0.240 -0.253 -0.059
0.004 0.196 0.000 0.000 0.000 0.156
VM 0.096 -0.024 0.122 -0.139 -0.091 -0.113 0.750
0.168 0.654 0.066  0.017 0.145 0.046  0.000

Cell Contents: Pearson correlation
P-Value
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4.4. Association Between Climate Variables and Dengue Incidence, Colombo
District

It is evident from the figures 4.51 — 4.57 that there is a lag relationship between
climatic variables and dengue incidence. The variation of mean temperature and
minimum temperature is approximately same. There is a slight increase in those
temperature scales from April to June. Maximum temperature is significantly higher
during the period of March - August compared to remaining months of the year.
Maximum temperature is low during from 25" week to 31% week, at the same time
higher number of dengue cases recorded. During the first half of the year maximum
temperature is significantly higher than the 2" half of the year. When the maximum
temperature is higher number of dengue cases is significantly lower. A rise in
temperature may evaporate small ponds and other places for mosquito breeding, thus
reducing the growth of mosquitoes. According to figure 4.54 there is an inverse
relationship between number of dengue cases and precipitation. Precipitation is
significantly higher during the period of week 10 -25 and weeks of 41 — 50. In
contrast, | lificantly lower

compare L(gmoa ausing floods results in the

disappea wcevo‘r ponds and_thereby ' squito breeding.
But at the follov s, because from
10 — 25 weeks heavy rainfall was recorded, following that 25 — 35 higher number of
dengue cases recorded. According to figure 4.55 visibility remains approximately
constant throughout the study period. According to figures 5.56 and figure 4.57
graphical examinations showed that the overall distribution of dengue cases was
similar to the distribution of mean wind speed and maximum sustained wind speed.
According to figure 4.58 relative humidity remains constant throughout the study
period. Humidity contributes to the transmission of dengue fever by influencing the
activities and survival of the mosquito vector. Low humidity causes mosquitoes to
feed more frequently to compensate for dehydration, while high relative humidity

increases the metabolic process in adult mosquitoes
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Figure 4.51: Relationship between weekly mean reported dengue cases and weekly
mean temperature
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Figure 4.52: Relationship between weekly mean reported dengue cases and weekly

mean maximum tem perature
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Figure 4.53: Relationship between weekly mean reported dengue cases and weekly

mean minimum temperature

80



350 25
300 .
" - 20 £
@ 250 A A IS
] N—r
O 200 - 15§
3 JAN 1, JAIA g
2 V - 105
3 / I, A 3
A 100 - \ o
50 - N N 5=
\~ P
0 T rrrrrrrrrrrrrrrrrrTrrTrrTrrTrTT T T T T T T T T T T T T T T TT T T T TT TTTTTTT 0
1357 911131517192123252729313335373941434547495153
mmm Dengue Cases  =Precipitation
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Figure 4.55: Relationship between weekly mean reported dengue cases and mean
visibility
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Figure 4.56: Relationship between weekly mean reported dengue cases and mean
wind speed
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Figure 4.57: Relationship between weekly mean reported dengue cases and maximum

sustained wind speed
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Figure 4.58: Relationship between weekly mean reported dengue cases and relative

humidity
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CHAPTER 05

WAVELET ANALYSES

5.1 Overview

The aim of this chapter is to present the results of wavelet analysis of dengue
incidence and its association with climatic variables. This chapter consists of 5
sections. Section 5.2 illustrates the results of wavelet analysis of aggregated dengue
incidence in 25 districts in Sri Lanka form 2009 to 2014. Note that the time series for
year 2014 exists only up to September. To investigate the spatial differences in
dengue periodicity, we performed wavelet analysis for individual time series of each
province. Wavelet analysis of time series data of dengue incidence from 25 districts of
Sri Lanka are displayed in section 5.3. Further dengue dynamics showed different
evolutions across the 25 time series which can be divided into two groups based on

wavelet cluster analysis. The results of wavelet cluster analysis are shown in section

5.4. In sectiop.. /e.examine the relationships between.climatic factors and dengue
incidence (di§@3kspecially.. explorerthe. phase ryelationships, & :n the climatic
variables and'denguesincidencd bynusing e

5.2 Wavelet Analysis of the Aggregated Dengue Cases in 25 districts in Sri Lanka

Wavelet analysis was performed to explore the periodicity in dengue incidence time
series. Wavelet analysis provides the possibility of investigating and quantifying the
temporal evolution of time series with different rhythmic components. In addition,
wavelet analysis allows detection of changes in periodicity in time. The Morlet
wavelet was used and all analyses were performed with R 3.1.2 software. Prior to
wavelet analyses, the data for all series were square root transformed and normalized

in order to dampen extreme variability.

Figure 5.1 shows the time series of aggregated dengue incidence in 25 districts in Sri
Lanka. Dengue cases occur year round but there is a strong seasonality with most

cases occurring from September to March and reaching a peak from November to
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January. The largest inter-annual variability in dengue cases occurs from October to
December. The country experienced an unexpected dengue outbreak in 2009 and
2010. Drastic downward trends at the end of 2010 and mid of 2012 were partially due
to the effectiveness of strengthened vector control programs implemented by the
government. Large peaks of dengue incidence occurred in 2009 and 2014. Wavelet
power spectrum of aggregated dengue incidence is shown in figure 5.2 and its
corresponding averaged power spectrum is shown in figure 5.3. The plot of wavelet
power spectra show that dengue outbreaks varied at different periods and the
periodicity of the signal varies through time. Colour code for increasing spectrum
intensity varies from blue to red; black solid lines show statistically significant areas.
Significant was set at p < 0.05. ; Parabolic lines demarcate the cone of influence (the
region of the spectrum in which edge effects are significant). Figure 5.2 shows high
power oscillation bands between 26 and 52 week. This oscillation bands are less
distinct during the year of 2013. Moreover, Wavelet analysis reveals a significant 26-
week periodicity during 2009 — 2011, 2012 and in 2014. However, the oscillation
bands are partly outside of the COI due to the limited length of the time series. The
average vvavé}&stpower in figure-5,3 had a much stronger peak in power at period of
26.237673 WEERS because varjability at that particular persisted over the entire study
period. Secorrnaé'ry periodicity was observed in the 30 — 52 week band. The tip of the
secondary peak is located at a periodicity of 41.649710 weeks. The 8-16 week
periodic band cycle presents weak non significant power throughout the study period,
which is consistent with the corresponding averaged power spectrum which shows no
peak for the periodicity of 8-16 weeks. Several very high frequency periodicities with
peaks at 2-8 week periods are also seen in figure 5.6. These periodicities appear in an

intermittent pattern.
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Figure 5.1: Time series plot of square root transformed and normalized aggregated

dengue cases in Sri Lanka, 2009 — September, 2014.
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Figure 5.2: Wavelet power spectrum of the aggregated weekly dengue cases time
series for Sri Lanka, from 2009 — September, 2014.
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Figure 5.4 and figure 5.5 show the wavelet power spectra of each district and their
corresponding mean wavelet power spectra respectively. For each district,
measurements were obtained from 294 weeks starting from 52" week (December) of
2008 to 36" week (September) of 2014. Because the number of cases varies among
populations, that is, the epidemiology patterns may be similar although the magnitude
of the expression may vary, all time series were square root transformed and
normalized before the analysis. This time — frequency analysis of the signal provides

information on the different frequencies as time progresses.

In general for all districts, the wavelet power spectra show periodicities, with
substantial heterogeneity in the relative strength. More specifically, periodicities were
detected in the 2 — 8 week and 26 — 60 week bands. There is no consistent significant

band in any of these 25 districts. Overall, high power bands are mostly distributed in
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26-52 week period. In addition, several very high significant frequency cycles are
seen in the 2 — 6 week band. These periodicities appear in an intermittent fashion. The
8-16 week periodic band cycle presents very weak non-significant power throughout
the study periods.

Throughout the entire time series for districts, with relatively high population density,
Colombo, Gampaha, Kalutara, Kandy, Nuwara Eliya, Galle, Hambantota, Matara and
Batticalo, relatively high and significant power was observed at the 26 — 52 week
period with some intermittently significant fluctuations occurring at the lower periods
(< 8 weeks). Other districts with high population density such as Kurunagala,
Puttalam, Anuradhapura, Monaragala, Ratnapura and kegalle also exhibit a similar
behavior but 26-52 week significant oscillation bands are partly outside of the COI. In
Killinochchie and Mulative, the dark blue portion of the figure corresponds to the
dengue epidemics during the year 2009. Both districts recorded zero number of
dengue cases throughout the whole year. The large significant red portion in
Vavuniya district corresponds to sudden increase in the number of dengue incidence

in the year ofi2(

&7
Largest numbes ¢ gue cases_has bee | f _ ) and Gampaha
districts during 12 and Colombo

exhibits a similar behavior. Both spectra show continuous oscillating modes at both
26 week and 40-52 week during the whole time period indicating both annual and sub
annual periodicity. This annual periodicity is reflected in the DF incidence time series,
by a slow increase of incidence from the beginning of the year to the weeks 50-52
(December), followed by a faster increase of incidence until weeks 26-27 (June).
Nevertheless, these modes of oscillation vary in strength. The dominant mode is 26
week periodicity. This is further confirmed by the average wavelet power spectra.
Moreover, in Colombo district 26 week periodicity is significant in 2010, 2011 — 2012
and in 2014. Gampaha district shows a significant 26 week periodicity in 2009 -2010
and in 2012. In both districts annual periodicity did not reach statistical significant
compared to null hypothesis: the variability of the observed time-series is equivalent
to the expected variability of a random process with similar first-order

autocorrelation. Furthermore, considerable numbers of patients have been reported
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from Kalutara district, which shows significant power around 32 - week and 64 —
week in 2011 — 2013. High power periodicities of 32 week and 64 week were
observed in Hambantota, Matara and Kandy districts. But these periodicities were not
statistically significant.

The wavelet power spectrum of Rathnapura district generated a peak in power around
52 week. Wavelet time series analysis in Nuwara Eliya district identified multiple
significant bands within 26 — 52 week during the period 2009 — 2012. No significant
periodicity was detected after 2013. For Galle district an approximate 52 week cycle
was detected from 2009 to 2012, and then a decreasing period from approximately 52
week to 26 week was clearly seen from the 2" half of 2011 to 2013. After this no
clear significant periodicity was detected but large portion appeared as high power.

Higher concentration of the power was observed, districts in Northern Province,
Eastern Province, North Western Province, North Central province and Uva province
at various periodicities over different periods of time. But the oscillation bands are

less distinct igsKillinochchi-Vavuniye Wdlative and Trincomales.

=) .
The averagewavelet power spectrum for Kandy, Matale, Jaffna, Vavuniya, Badulla,
Monaragala and Kegalle are much greater than at all periods indicating much stronger

variation.
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Figure 5.4: Wavelet power spectra of dengue incidence in Sri Lanka. For each signal, this mathematical decomposition yielded a wavelet power
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5.4 Wavelet Cluster Analysis

Dengue dynamics showed different evolutions across the 25 districts which can be
devided into two groups based on wavelet cluster analysis. The first group consists of
18 districts. Colombo, Gampaha, Kandy, Matale, Nuwara Eliya, Galle, Hambantota,
Matara, Jaffna, Killinochchie, Mannar, Vavuniya, Trincomalee, kurunagala, Puttalam,
Monaragala, Ratnapura and Kegalle are the members of cluster 01 while, Mulative,
Ampara, Batticalo, Anuradhapura, Polonnaruwa and Badulla belong to 2" cluster.
The timing of statistically significant periodicities differs among districts even within
a cluster. Except Kalutara district all other districts in cluster 2 were located on the
east side of the country.

50

£ s & U ty of | |
) Flecirofic Thesek & Diskertdtios
RN - ANy

10

w.arr.dis$dist.mat

Figure 5.6: Dendogram of wavelet cluster analysis of weekly dengue incidence for
each district of Sri Lanka, from 58" week of 2008 to 36" week of 2014
[11-Killinochchi, 23 — Monaragala, 10-Jaffna, 12-Mannar, 17-Trincomalee, 25-
Kegalle, 1-Colombo, 9-Matara, 18-Kurunegala, 24-Ratnapura, 4-kandy, 13-Vavuniya,
5-Matale, 8-Hambantota, 2-Gampaha, 19-Puttalam, 6-Nuwara Eliya, 7-Galle, 16-
Ampara, 3-Kalutara, 21-Polonnaruwa, 14-Mullative, 20-Anuradhapura, 15-Batticaloa,
22-Badulla]
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5.5 Association Between Dengue Counts and Climate Variability

Section 5.5 presents estimated wavelet coherence and phase differences for all
examined pairs of climatic factors with dengue incidence. Prior to wavelet coherence
analysis, the data for all series were square root transformed in order to dampen
extremes in variability. Section 5.5.1 presents the wavelet structure of climate
variables. Results of wavelet coherency between dengue incidence and climate

variables are listed in section 5.5.2.
5.5.1 Wavelet transformation of climatic variables

The wavelet power spectra of climatic variables; mean, minimum, maximum
temperature, humidity, precipitation, visibility, wind speed and maximum sustained
wind speed in Colombo and their corresponding average power spectra are shown in
figure 5.8 and figure 5.9 respectively.

Throughout the entire time series, all climate variables exhibited intermittent

significant ang Wawvelet-power, aty lower perigdsa(s 8 weeks). In general for all
AR N ..

climate ;ri@j&s high |powen ibandsicancke/seéni st 26 yveek § icity and/ or 52

week periodi¢ky, confirfriing lanatialland. sul observed on the

dengue incidence tiime series.

Wavelet analysis reveals significant 52-week periodicity in all temperature measures;
mean temperature, maximum temperature and minimum temperature (figure 5.8
(a,b,c)) that are constant through time. This is further illustrated by average wavelet
power spectra, which has pronounced peak at a 52 week periodicity. The tip of the
peak is located at a periodicity of 52.475346. High power was also present in the 26 -
28 week period range, but did not reach significance compared to autocorrelated null
hypothesis: the variability of the observed time series is equivalent to the expected
variability of a random process with similar first-order autocorrelation. Relative
humidity shows both annual (52 week) and sub-annual (26 week) significant
periodicities as shown in figure 5.8 (d). For humidity, wavelet power at the 26 week

period was consistently high, but significant during the year of 2010.The precipitation
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time series displays discrete character. Precipitation episodes interrupted by periods of
dryness. Wavelet power spectrum of precipitation show a significant continuous band
at 25 — 32 week period for the time period mid of 2009 — mid of 2011. After this no
clear periodicity was detected. Time series plot of mean visibility is not dominated by
any periodic pattern. Except some few irregular variations can be seen in 2009, 2010
and 2011. According to the wavelet power spectrum of mean visibility (figure 5.8 (f))
there is a strong periodic band around 32 week and 64 week persisting continuously
over the interval from 2009 to mid of 2011. For mean wind speed , wavelet power
was consistently high at a period of ~ 26 week with occational significant fluctuatios
(figure 5.8 (g)). A non-significant, less pronounced 52 — week periodicity was also
observed in mean wind speed. In contrast to the other climate variables, statistically
significant continuous oscillation bands are not distinguishable in maximum sustained

wind speed but significant spots can be seen within 2 — 26 week period.

The average wavelet power spectra (figure 5.9) of all climate variables except
precipiation show peak in power at period of ~ 52 weeks. Mean temperature,
maximum te?’a%erature, minimum temperature and Humidity had a much stronger peak
in power at'gerots of ~52 weeks because,yariability at that particular period persisted
over the entizré ;[ime series. This peak exceeds the 95% confidence level, confirming
that the annual cycle, indeed, highly significant. The mean wavelet power for

humidity is much greater than at all periods, indicating much stronger variation.

94



Feriod (weaks)
Feriod (weaks)

I I I I I I
2009 2010 2011 2012 2013

0 7
- -
[:1] [:1]
2 2 .
= = -
(=] (=]
‘= ‘=
[+7) [+7)
& [
[dn]
[ [ [ [ [
2009 2010 2011 2012 2013
f
' 1"" L II Y 1
- - ’-1 ggr 'y
W W 1LY Al
= = W TS
"g" -‘g.- -5 - -- a - - <
= = | -
(=] (=]
‘= ‘= = — r
i1} 1] E—
(W (W —
I loe ot b T T —
2009 2000 200 2012 2013
= -
- -
i &
2 2
= =
(=] (=]
‘= ‘=
[+7) [+7)
(W (W
2009 2010 2011 2012 2013 2009 2010 2011 2012 2013
_I T T _
— o)) o [ ~ = o))
D N ol o o D S
i i i R e e ®
] S = = = 2 2

Figure 5.8: Wavelet power spectra of climatic variables in Colombo districts, (a)
mean temperature, (b) maximum temperature, (c) minimum temperature, (d)
humidity, (e) precipitation, (f) mean visibility, (g) mean wind speed, (f) maximum
sustained wind speed. (The black contour lines show the 5% significance level. The

dashed white line denotes the COI where edge effects become important.)
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5.5.2 Coherences between meteorological variables and DF/ DHF cases in

Colombo

The main purpose of wavelet coherence analysis is to identify the co-movement of
dengue incidence with climatic variables in the time frequency space. Further we can
determine whether the presence of a particular frequency at a given time in the disease
corresponds to the presence of that same frequency at the same time in a climate
covariate and with the cross wavelet phase analysis we determine the time lag
separating these two series as well. The time series plots and cross wavelet power
spectra between dengue incidence and climate variables are shown in figure 5.11 -
figure 5.26.

Cross wavelet coherency analysis revealed that dengue incidence showed significant
coherence with all climatic factors but with different periodicities and phase
relationships. In general, wavelet coherence reveals two main regions of high and
significa _ innual) periodic

band; the sgeand the statistically

significa W?\'te' e are_neither right) nor anti-
phase (a Vs | it all significant
coherence, indicating a lag difference between the climatic variables and dengue
incidence. Except humidity, coherency between the dengue incidence and all the other
climate variables lies in the 26-32 weeks of period band keep a consistent phase

where climatic factors leading dengue cases by 90 degrees.

The strongest and continuous coherencies are found with precipitation and wind speed
over the 26 — 32 weeks of period band during the entire study period. Precipitation
coherency with dengue incidence show a consistent phase where precipitation leads
by 90 degrees (i.e one quarter of a period). Exception is made for the period around
the first half of 2012, where dengue cases leads by 90 degrees. However, dengue
cases mostly lead mean wind speed by 90 degrees, except in 2010 and 2014 years

where they experienced a shift of phase.
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The cross wavelet power spectrums of mean temperature, maximum temperature,
humidity and visibility reveals two significant (p < 0.05) periodic bands (26 — 30
week and 50 — 52 week) from 2009 to 2012. The analysis of phase differences reveals
mean temperature, maximum temperature and visibility lead dengue cases by 90° at
period of around 26 — 30 week while arrows pointing up at annual period (50 — 52
week) band indicate dengue cases lead climatic factors. In contrast, phase relation of
DF/ DHF cases and humidity was opposite to the above, i.e dengue cases lead
humidity by 90° at period of around 52 weeks while humidity lead dengue cases by
90° at sub-annual periodicity. Minimum temperature shows its most persistent
significant coherency with dengue at 50 — 52 week band from 2009 to 2012. During
the period of 2011 — 2013 visibility shows the weakest coherency with dengue
incidence. Maximum sustained wind speed indicates significant coherence over the
26-30 week band of periodicity from 2011 to 2014. Oscillation between maximum
sustained wind speed and dengue incidence were not phase locked (as the direction of

the arrows varied); the lead was first in dengue cases and started shifting towards a

lead for |

i

L)
These resultshighlig at; these, select ' s have a strong
influenc f cross-wavelet

coherence and phase are consistent with those of the cross-correlation functions

shown in figure 5.10.
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Figure 5.10: Cross-correlation between climatic variables and dengue cases

(&) mean temperature, (b) maximum temperature, () minimum temperature, (d)
humidity, (e) precipitation, (f) mean visibility, (g) mean wind speed, (f) maximum
sustained wind speed . Horizontal blue dotted lines materialize the significance
thresholds at p = 0.05.
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Figure 5.11: Time series plot of square root transformed and normalized aggregated

dengue cases (red) and mean temperature (blue)
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Figure 5.12: Wavelet coherency and phase analyses between dengue notifications and
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Figure 5.13: Time series plot of square root transformed and normalized aggregated

dengue cases (red) and minimum temperature (blue)
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Figure 5.14: Wavelet coherency and phase analyses between dengue notifications and
minimum temperature
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Figure 5.15: Time series plot of square root transformed and normalized aggregated

dengue cases (red) and maximum temperature (blue)
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Figure 5.16: Wavelet coherency and phase analyses between dengue notifications and
Maximum sustained wind speed.
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Figure 5.17: Time series plot of square root transformed and normalized aggregated

dengue cases (red) and humidity (blue)
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Figure 5.18: Wavelet coherency and phase analyses between dengue notifications and
humidity.
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Figure 5.19: Time series plot of square root transformed and normalized aggregated
dengue cases (red) and precipitation (blue)
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Figure 5.20: Wavelet coherency and phase analyses between dengue notifications and
precipitation.
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Figure 5.21: Time series plot of square root transformed and normalized aggregated

dengue cases (red) and visibility (blue)
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Figure 5.22: Wavelet coherency and phase analyses between dengue notifications and
visibility.
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Figure 5.23: Time series plot of square root transformed and normalized aggregated
dengue cases (red) and wind speed (blue)
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Figure 5.24: Wavelet coherency and phase analyses between dengue notifications and
wind speed.
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Figure 5.25: Time series plot of square root transformed and normalized aggregated

dengue cases (red) and maximum sustained wind speed (blue)
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Figure 5.26: Wavelet coherency and phase analyses between dengue notifications and
maximum sustained wind speed.
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CHAPTER 06

CHANGE POINT ANALYSIS

6.1 Overview

A change point analysis was performed on data used in the study to investigate the
presence of any abrupt change in variance for the study period. The results of change
point detection are presented in the following subsections.

6.2 Results

Mean temperature, maximum temperature, minimum temperature, humidity and wind
speeds are by nature have a diurnal variability and thus have a periodic mean. This
was confirmed by the figures in Appendix A. In contrast, the variability of the data
appears smaller in some sections and larger in others. This motivates a search for the
association between changes in variability in climatic factors and dengue incidence. R
version 3.1.2es0ftware was-used for-the analysis., “epgvars function in changepoint
package vvaséﬂ:%éd to identify thechehge;peidts invariability:The changes in variance
approaches WATHn the eptivar functionCréguire the data to have a fixed value mean
over time, and thus this periodic must be removed prior 10 analysis. Whilst there are a
range of options for removing this mean, we choose to take first differences as it does
not require any modeling assumptions. Following this, we assume that the differences
follow a Normal distribution with changing variance. Here we using PELT

segmentation algorithm to detect change points.

Table 6.1 presents the results of change point analysis for the time series of dengue
cases and climatic factors. It shows how change points are distributed over time. Cells
contain time point (week number) where the change point was detected. For example,
first change point in variance for dengue cases were detected at 8" week of 2009.
Within a year same colour points represent nearby change points. Figures 6.1 — 6.8
provides more details on the specifications of abrupt changes in climate variables.
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Table 6.1: Summary of the results of change point analysis

Time of the shift detected (week number)

Year |Cases | TEM |TMAX |Tm P H vV VM
8 4 3 8 2 5 5
14 35 5 45 29 14 14
o 20 7 32 47 31
S 30 25 47 36
o 46 32 50 38
44 46
46 50
7 22 46 2 20 16
20 31 52 11 36 20
38 37 17 40
45 20 42
g 29 52
Y 32
36
40
43
49
12 17 11 2 17 3 2 17
. 19 15 9 41 15 17 35
= g 2 , 38
& m 52
5 5 7
B 10 4 27 14 30
«~ 22 42 33 13 31 36
P 34 49 21 42 40
o 39 28 44
42 30
42
14 36 6 47 5 2 2 26 18
16 8 51 4 4 28 29
) 50 17 39
I 20 41
22
5 7 30 27 3 1 6 18
< 26 30 35 35 7 3 30 20
I 30 35 21 13 35 30
35 27 24 35
35 30
35
Total 22 9 21 11 40 13 30 12 26

Row: Total (Total number of change points)
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It can be seen that incidence of dengue, maximum temperature, humidity, wind speed
and precipitation share similar variability in terms of distribution of change points
overtime. During the study period, first change point in variance of dengue cases was
recorded in 8" week of 2009. During 4" week — 7" week of 2009, maximum
temperature, humidity, precipitation, wind speed and maximum sustained wind speed
showed a change points in the variation. Next change points of variation in dengue
cases located in 14™ week of 2009. Within the same week, mean wind speed and
maximum sustained wind speed also show a change in variation. But other climate
variables did not show any variation prior and closer to this change point. At 30"
week of 2009, a variation has increased drastically; this increase might be due to
changes in precipitation and wind speed which were located at 29 — 32 week period.
Both the mean temperature and minimum temperature do not show any change in

their variations in year 2009.

In 2010, three change points were detected in the variation of dengue incidence. In

this year both the precipitation and humidity show similar behavior to dengue

incidenc Jlef loGation {HIE0IT Kot enange POINTS

=)
From 2011:=-20 11 change paints v | in ti tion of dengue
incidenc fod, maximum

temperature, precipitation and humidity also showed very much similar pattern in
terms of change point. More over visibility and maximum sustained wind also showed

considerable number of change points during that period.

In 2013, two change points were detected in the variation of dengue cases. Further
there is no considerable number of change points in both precipitation and humidity.
During this year maximum temperature shows two change points, while precipitation
and humidity show only one change point in 5" week and 4™ week, respectively.
These change points were located two months prior to the change point in dengue
incidence. One change point in visibility was also detected. Other climatic variables
did not show any change points.

Dengue cases from 1% week of 2014 to 36" week of 2014 does not show any change
point with respect to their variation. But, during 26" week — 35" week, all climatic
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variables showed at least two change points with respect to their variation. Since
dengue cases data were not considered after 36" week of 2014, we couldn’t see

whether this variation has some impact on dengue incidence.

According to figure 6.8, it is noted that after a sudden increase in maximum sustained
wind speed there is a sudden drop in dengue incidence. Although it is not established
whether this association is causal, high wind speed could conceivably interfere with

normal mosquito movements and biting behaviors.

,.
UNITU/
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Figure 6.1: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of mean temperature with vertical lines depicting change points identified by PELT segmentation
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Figure 6.2: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of maximum temperature with vertical lines depicting change points identified by PELT segmentation
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Figure 6.3: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of minimum temperature with vertical lines depicting change points identified by PELT segmentation
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Figure 6.4. (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of humidity with vertical lines depicting change points identified by PELT segmentation
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Figure 6.5: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of precipitation with vertical lines depicting change points identified by PELT segmentation

116



300

100
|

Dengue Cases
100
|
3
|
=

=

—

2009 2010 2011 2012 2013 2014

Time

Wisibility

e, A A

I
2009 2010 2011 2012 2013 2014

Time

Figure 6.6: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of visibility with vertical lines depicting change points identified by PELT segmentation
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Figure 6.7: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation

, (b) First difference of wind speed with vertical lines depicting change points identified by PELT segmentation
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Figure 6.8: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation, (b) First

difference of maximum sustained wind speed with vertical lines depicting change points identified by PELT segmentation
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CHAPTER 07

DISTRIBUTED LAG NONLINEAR MODELLING

7.1 Overview

In this chapter, we present the results of Distributed Lag Nonlinear Model (DLNM).
Section 7.2 describes the adequacy of the DLNM model while section 7.3 interprets

the results of proposed final model.
7.2 Adequacy of the DLNM Model

A Poisson regression combined with distributed lag nonlinear model was used to
evaluate and compare the impact of climate variables on dengue incidence from 2009
to 2014 in Colombo district. DLNM was used since it allows for a nonlinear
exposure-response relationship and provides flexibility in modeling the time structure
of the relationship. Parameter estimations of the model is given in table 7.1 (Appendix
C). Mode! selection is still an issue within the DLNM framework, although simulation
studies indicétera good! pérforimance of (methodsibased lon!thel. Akaike information
criterion. Héﬁt?é themodel~ With “mintmunt QAIC-{="8153779) and QBIC ( =
15483.04) vva§ selected. The residuals were checked to evaluate the adequacy of the
model to ensure they were normally distributed and independent over time (Figure 7.1

and figure 7.2).

ACF
04 06 0§
| |

02
|

00

Lag

Figure 7.1: ACF plot of residual
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(model5$resid - mean{model5$resid)lsdimodel5$resid)

norm quantiles

Figure 7.2: Normal probability plot of residuals; Two-sample Kolmogorov-Smirnov
test (p = 0.206)

7.3 Intel .‘egé?g_i(;. fDLNM Results

Three-di ns‘an lots of figure, 43,~ fig onship between
meteorolog y " lag weeks. For
better interpretative purpose, we plotted specific contour plots of the associations. All
the relationship curves were nonlinear, whereas the different variables had different

characteristics.

An overall picture of the effect of mean temperature change on dengue incidence was
depicted in figure 7.3, showing three-dimensional plot of the relative risk (RR) along
temperature change and lags with 27.72265°C as the reference. It is important to note
that the relative risk here is the ratio of the probability of dengue incidence occurring
at a certain value of a weather variable to the probability of the event occurring at a
reference value of the same weather variable. The change of reference may affect the
width of confidence interval but it will not affect the RR curve itself. Hence median of
each climate variable was chosen as the reference value. Overall, the estimated effect

of mean temperature change on dengue was nonlinear. A visual inspection of the
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figure 7.4 suggests that there was an immediate harmful effect of low mean
temperature (<27°C) on dengue incidence at lag 4-9 weeks, and a protective effect
(RR<1) of low temperature at lag 10-25 weeks. Figure 7.5, the three-dimensional plot
shows that the impact of maximum temperature on dengue incidence, is completely

reverse of the behavior of mean temperature.

Figure 7.7 and figure 7.8 show the relationship between precipitation and dengue
incidence. In general, it can be seen that a higher precipitation was associated with a
higher dengue incidence, but this observed relationship does not hold true when
precipitation is 25mm -65mm at lag 5- 25 weeks. According to figure 7.6 the
strongest effect of rainfall occurred at lag 0-5 weeks with more than 60mm
precipitation, and lag 15-20 weeks with 40-50 mm precipitation. Very high
precipitation (>70mm) at lag 15-20 weeks reduce the relative risk of dengue
incidence. Further the precipitation around 30-60mm at lag 0-3 weeks has a protective

impact on the occurrence of dengue incidence.

Figure 7 _ /e humidity on
dengue i J§Mt 1'1tS contoUr plot respectively. Humidity around 60-75 mm has a
positive effegtgn dengue incidence aroun )-18 ‘ umidity (>85%)
has a protective

The estimated effect of wind visibility on dengue cases differed for low and high
visibility (figure 7.11 and figure 7.12). The risk of dengue transmission increases with
visibility. Low visibility (<14 km) has a negative impact on the occurrence of dengue
incidence while the high visibility (> 15km) a positive impact on increase of dengue
incidence. Figure 7.13 and 7.14 shows the overall depiction of maximum sustained
wind speed on dengue incidence. Maximum sustained wind speed (> 25km) at lag O-

10 weeks has a slight positive impact on dengue incidence.
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Figure 7.4: Contour plot of RR of dengue cases by mean temperature
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Figure 7.5: 3D plot of RR of dengue cases by maximum temperature

Contour'plot RR

1.6

1.4

1.2

1.0

0.&

8] T T T | I T
28 29 20 231 22 23

Mlaximum Temperaturs

Figure 7.6: Contour plot of RR of dengue cases by maximum temperature
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Figure 7.7: 3D plot of RR of dengue cases by precipitation
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Figure 7.8: Contour plot of dengue cases by precipitation
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Figure 7.9: 3D plot of RR of dengue cases by humidity
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Figure 7.10: Contour plot of RR of dengue cases by humidity
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Figure 7.12: Contour plot of RR of dengue cases by visibility
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Figure 7.13: 3D plot of RR of dengue cases by wind speed
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Figure 7.14: Contour plot of RR of dengue cases by wind speed

128

3.0

2.5

2.0

1.5

1.0



CHAPTER 8
CONCLUSIONS AND RECOMMENDATIONS

8.1 Overview

This chapter concludes the thesis and describes some of the limitations of the
research. In addition to limitations, we critically evaluate and discuss the finding of

the thesis and we also describe recommendations for future studies.
8.2 Conclusions and Recommendations

The wavelet power spectrum analysis of dengue dynamics indicates periodicities
around 2-8 weeks, 26-32 weeks and 52-64 weeks. 2-8 weeks periodicity appeared in
an intermittent pattern. Though we found high power at annual and semi-annual
scales in wavelet power spectra of all 25 districts, the significance of those bands are
discontinuous. However, dengue dynamics showed different periodicities across 25

districts which can be divided into two clusters based on wavelet cluster analysis.

Except Trincon dist . _were log the left side of
the cout vyﬁ’ije eluster. 02 - exeept _Kalutara, district all the r districts were
located i ietlg ide 0f:thie lsoumitrys ~The influenced from
southwe: , engue incidence

in Kalutara district could be due to rubber cultivation. Massive number of coconut
shells used for collection of rubber milk in the rubber planatation and discarded
coconut shells caused breeding of mosquitoes. Moreover, rubber tree rain gutter
system forms an ideal condition for the proliferation of mosquitoes. Furthermore,
massive pineapple cultivation in rubber states also fueling for dengue vector profusion
in the district. The periodicities of dengue incidence in cluster 01 are accordance with
dengue dynamics in Thailand (Alshehri, 2013; Jeefoo, 2012) and South Vietnam
(Cuong et al., 2011). Annual periodic patterns are a common phenomenon in dengue
transmission and have been reported in many tropical and subtropical countries (Thai
et al., 2010). There was a large decrease in the variability of dengue incidence in
2013. Possible explanations for the observed decrease could be a modification of the

climate conditions, a reduction in transmission due to declining mosquito populations,
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declining contact between human and mosquito populations, and/or modifications in

diagnosis, classification and reporting dengue cases.

Significant periodicity was present on annual scale for mean temperature, minimum
temperature, maximum temperature and humidity. Precipitation showed a significant
periodicity at 26 week. Wavelet coherency revealed a significant non-stationary
association between all climatic variables and dengue incidence. The association
between dengue and climate reported here is strong but transient. Wavelet coherency
analyses revealed that dengue transmission co-varied with mean temperature,
maximum temperature, humidity and visibility at both annual and biannual cycles.
The cross wavelet power spectra for minimum temperature, precipitation, mean wind
speed and maximum sustained wind speed show strong and significant signal for the
26 week period band. This suggests that mean temperature, humidity and precipitation
have well differentiated roles in dengue transmission. Except wind speed, the
significance of the association between dengue incidence and other climatic variables

are discontinuous. Wavelet phase analyses revealed most of the statistically

significant way: oherence-is-neitheyin-phase noranti phase, Most of the arrows
. "F?;T_’i‘; " - L £ - i v 1

are vertical 3&ak; significantcoherenoesdrdicating scldg ldiffer: )etween climate

variables and-det ncidEnde)

In Hanoi dengue transmission demonstrates clear annual cycles that are associated
with a lag of around two months with seasonal increases in mean temperature and
rainfall (Cuong et al., 2011). We observed a significant association between dengue
incidence and wind speed. Other authors (Cuong et al., 2011; Luz et al., 2011) also
noted a pattern of high wind speed being associated with periods of low dengue
notifications. Although it is not established whether this association is casual high
wind speed could conceivable interfere with normal movement and biting behaviors.
A previous study reported no apparent relationship between dengue and climate in
Bangkok between 1966 and 1998 (An & Rocklov, 2014; Fairos et al., 2010).
However, in this work the authors used spectral density analysis, which is not
sensitive to nonstationary effects. Conventional statistical methods may fail to reveal
a strong relationship between climate and a health outcome when discontinuous

associations are present.
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Considering the results of change point analysis, there were 22 change points in the
variation of dengue dynamics in Colombo district. Most of the change points were
detected in 2009, 2011 and 2012. Changes in the variation of dengue incidence in
2009, 2011 and 2012 are very much similar to the changes in the precipitation and
humidity.

Results of distributed lag nonlinear model revealed mean temperature around 25°C —
26°C prior to 5 weeks and 28°C — 29°C temperature prior to lag 10 — 25 weeks , high
precipitation (>30mm), humidity 65% - 75% prior to lag of 10-15 weeks and high
visibility(> 16km) have an harmful impact on increasing relative risk of dengue
incidence. Rainfall season is positively associated with high dengue incidence. This is
line with the studies that reported the highest risk of dengue cases related to rainfall in
Mexico, Brazil (Cheong et al., 2013). Rainfall influences the abundance of dengue
vectors and aquatic populations (eggs, larvae, and pupa). Increased rainfall supports
more suitable breeding sites for the immature development of the aquatic population.

Further verv hiah rainfall (> 70mm) at lag 15 — 20 weeks and rainfall between 30mm

— 60mm have:: tlectiveapact-annthe rogeusrence ,of depgue incidence. Rainfall
directly u@“é}cf 1el defsityiif thecewsquitoess droeter)st rainfall causing
floods may resifts inthE disdpPedraicatof ki 2 feasible places
for mosquito breeding (Gasparrini et ai., 2010). Hence, the impact of rainfall on

mosquito growth and distribution should be viewed within the geographical location
of the study area. For example, if the region under consideration is a plain area with
appropriate and fully covered sanitation systems, mosquito breeding may be less,
while, if the region is an area where water remains stagnant for days, the area would
be more vulnerable to a rapid increase in mosquito population due to rain. According
to the results of distributed lag non linear model we observed high visibility being
associated with high dengue notifications. Although it is not established whether this
association is causal, high visibility could help the mosquito movements and biting
behaviors. In our analyses, temperature, humidity and precipitation explained most

the variance of the dengue cases.

Wavelet analysis, change point detection approach and distributed lag nonlinear

models have revealed several pieces of evidence for a complex, nonstationary,
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nonlinear relationship between climatic variables and dengue incidence and
periodicity of dengue incidence across the island. However, there were some
limitations in this study. We only examined the association between climate variables
and dengue incidence, but non-climatic factors, such as human activities,
socioeconomic status, vector control programs, and drug resistance may also affect
the spread of this disease. However, these non-climatic factors are unlikely to vary
significantly on a weekly scale and were unavailable for this research. Further studies
on the impact of climate change on dengue need to take all the other contributing
factors into consideration in order to make meaningful public policy

recommendations.

Our findings provide insights into the long-term persistence and spatial spread of
dengue throughout Sri Lanka. Further studies on a more extensive time series dataset
of a larger area could shed more light onto the spatio-temporal patterns in Sri Lanka.
There is considerable interest in the role played by climate variability as a factor

driving diseases (An & Rocklov, 2014). Further studies should use this approach to

examine relatic S| petweeni-clipate] apdidengues feven i nal and global
scales. %o
Dengue tings, including

Vietnam (Cuong et al., 2011), currently rely on targeted spraying of adulticides to
reduce vector populations in and around the homes of reported patients. These
activities are usually complemented with public health outreach and some routine
activities to reduce vector breeding sites, within the constraints of limited public
health budgets. Understanding the spatial dynamics and timing of dengue epidemics
might enhance the implementation of current and future interventions by improved
targeting to avert high-incidence dengue seasons. Results of this study provides a
foundation for further investigation into the social and environmental factors
responsible for changing disease patterns and provides data to inform program

planning for dengue prevention control.
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Appendix A: Wavelet analyses of Dengue Cases by Districts
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Figure Al: Time series plot of square root transformed and normalized aggregated

dengue incidence in Colombo District, 2009 — September, 2014.
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Figure A2: Wavelet power spectrum of dengue incidence in Colombo district from
2009 to September, 2014.
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Figure A3: Time series plot of square root transformed and normalized aggregated

dengue incidence in Gampaha District, 2009 — September, 2014.
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Figure A4: wavelet power spectrum of dengue incidence in Gampaha district from

2009 to September, 2014.
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Figure A5: Time series plot of square root transformed and normalized aggregated

dengue incidence in Kalutara District, 2009 — September, 2014.
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Figure A6: wavelet power spectrum of dengue incidence in Kalutara district from
2009 to September, 2014
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Figure A7: Time series plot of square root transformed and normalized aggregated

dengue incidence in Kurunagala District, 2009 — September, 2014.

4

8

Ww W. Mh mre.ac.lk

Period (weeks)

64 32 16

2009 2010 2011 2012

Time

ElcCirmm Thf-: us ‘Q. ["*13‘301"1(111013‘;

6.4e+01
1.6e+01
4.0e+00
1.0e+00
2.5e-01
6.2e-02
1.6e-02

2013 2014

Figure A8: wavelet power spectrum of dengue incidence in Kurunalaga district from

2009 to September, 2014
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Figure A9: Time series plot of square root transformed and normalized aggregated

dengue incidence in Rathnapura District, 2009 — September, 2014.

Period (weeks)

64 32 16

.—ﬂl_l_q].l L]

i

L. Electronig Theses &
* wybw.lib.mrt.acll e " =

% " Un ”gl )1|t3 o T M dm i

- T
Wa. ﬁl-ﬂ[ﬂ'ﬁ]kﬂ

Dissertgtions

T i i
T : ;

2009

2010

2011

2012

2013 2014

Time

—

J

6.4e+01
1.6e+01
4.0e+00

1.0e+00
2.5e-01
6.2e-02
1.6e-02

Figure A10: wavelet power spectrum of dengue incidence in Rathnapura district from
2009 to September, 2014
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Figure A11: Time series plot of square root transformed and normalized aggregated

dengue incidence in Kandy District, 2009 — September, 2014.
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Figure A13: Time series plot of square root transformed and normalized aggregated
dengue incidence in Matale District, 2009 — September, 2014.
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Figure Al4: wavelet power spectrum of dengue incidence in Matale district from
2009 to September, 2014
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Figure A15: Time series plot of square root transformed and normalized aggregated

dengue incidence in Nuwara Eliya District, 2009 — September, 2014.

W LR
q v of Wﬂ‘“‘gf Y dabig 6.4e+01
) ¥ E] dc qOD’l]C Tilc @s.& Disscttations o 1.6e+01
" Wiy 11ib. mMrtac 11& , 4.0e+00

4

8

1.0e+00
2.5e-01
6.2e-02
1.6e-02

Period (weeks)

64 32 16

2009 2010 2011 2012 2013 2014

Time

Figure A16: wavelet power spectrum of dengue incidence in Nuwara Eliya district
from 2009 to September, 2014
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Figure A17: Time series plot of square root transformed and normalized aggregated

dengue incidence in Galle District, 2009 — September, 2014.
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Figure A18: wavelet power spectrum of dengue incidence in Galle district from 2009
to September, 2014
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Figure A19: Time series plot of square root transformed and normalized aggregated

dengue incidence in Hambantota District, 2009 — September, 2014.
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Figure A20: wavelet power spectrum of dengue incidence in Hambantota district from

2009 to September, 2014
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Figure A21: Time series plot of square root transformed and normalized aggregated

dengue incidence in Matara District, 2009 — September, 2014.
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Figure A22: wavelet power spectrum of dengue incidence in Matara district from

2009 to September, 2014
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Figure A23: Time series plot of square root transformed and normalized aggregated
dengue incidence in Jaffna District, 2009 — September, 2014.
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Figure A24: wavelet power spectrum of dengue incidence in Jaffna district from 2009
to September, 2014
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Figure A25: Time series plot of square root transformed and normalized aggregated

dengue incidence in Killinochchie District, 2009 — September, 2014.
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Figure A26: wavelet power spectrum of dengue incidence in Killinochchie district
from 2009 to September, 2014
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Figure A27: Time series plot of square root transformed and normalized aggregated

dengue incidence in Mannar District, 2009 — September, 2014.
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Figure A28: wavelet power spectrum of dengue incidence in Mannar district from
2009 to September, 2014
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Figure A29: Time series plot of square root transformed and normalized aggregated

dengue incidence in Vavuniya District, 2009 — September, 2014.
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Figure A30: wavelet power spectrum of dengue incidence in Vavuniya district from
2009 to September, 2014
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Figure A31: Time series plot of square root transformed and normalized aggregated

dengue incidence in Trincomalee District, 2009 — September, 2014.
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Figure A32: wavelet power spectrum of dengue incidence in Trincomalee district
from 2009 to September, 2014
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Figure A33: Time series plot of square root transformed and normalized aggregated

dengue incidence in Puttalam District, 2009 — September, 2014.
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Figure A34: wavelet power spectrum of dengue incidence in Puttalam district from

2009 to September, 2014
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Figure A35: Time series plot of square root transformed and normalized aggregated

dengue incidence in Monaragala District, 2009 — September, 2014.
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Figure A36: wavelet power spectrum of dengue incidence in Monaragala district from

2009 to September, 2014
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Figure A37: Time series plot of square root transformed and normalized aggregated

dengue incidence in Kegalle District, 2009 — September, 2014.
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Figure A38: wavelet power spectrum of dengue incidence in Kegalle district from

2009 to September, 2014
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Figure A39: Time series plot of square root transformed and normalized aggregated

dengue incidence in Mulative District, 2009 — September, 2014.
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Figure A40: wavelet power spectrum of dengue incidence in Mulative district from
2009 to September, 2014
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Figure A41: Time series plot of square root transformed and normalized aggregated

dengue incidence in Ampara District, 2009 — September, 2014.
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Figure A42: wavelet power spectrum of dengue incidence in Ampara district from

2009 to September, 2014
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Figure A43: Time series plot of square root transformed and normalized aggregated

dengue incidence in Batticalo District, 2009 — September, 2014,
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Figure A44: wavelet power spectrum of dengue incidence in Batticalo district from
2009 to September, 2014
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Figure A45: Time series plot of square root transformed and normalized aggregated

dengue incidence in Anuradapura District, 2009 — September, 2014.
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Figure A46: wavelet power spectrum of dengue incidence in Anuradapura district

from 2009 to September, 2014
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Figure A47: Time series plot of square root transformed and normalized aggregated

dengue incidence in Polonnaruwa District, 2009 — September, 2014.
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Figure A48: wavelet power spectrum of dengue incidence in Plonnaruwa district from
2009 to September, 2014
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Figure A49: Time series plot of square root transformed and normalized aggregated

dengue incidence in Badulla District, 2009 — September, 2014.

1] (W[ i i i r T, W |
~ Unfeehsity J Moratuwa, Sti Lanka
% © Elec®onic Theses & Dissertatio
o - Www:11b. mirt. acslk
=
~ o | L
o] —
2 L
R Y
< e
(o]
I I I I I I
2009 2010 2011 2012 2013 2014

Time

3.2e+01

1.0e+00

3.1e-02

Figure A50: wavelet power spectrum of dengue incidence in Badulla district from

2009 to September, 2014
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Appendix B: Wavelet analyses of Climatic Variables
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Figure B1: Time series plot of weekly mean temperature (°C) from January 2009 —
September 2014
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Figure B2: Wavelet power spectrum of mean temperature in Colombo district from
2009 to September, 2014
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Figure B3: Time series plot of weekly maximum temperature (°C) from January 2009

— September 2014
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Figure B4: Wavelet power spectrum of maximum temperature in Colombo district

from 2009 to September, 2014
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Figure B5: Time series plot of weekly minimum temperature (°C) from January 2009
— September 2014
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Figure B6: Wavelet power spectrum of minimum temperature in Colombo district
from 2009 to September, 2014
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Figure B7: Time series plot of weekly relative humidity (%) from January 2009 —
September 2014
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Figure B8: Wavelet power spectrum of humidity in Colombo district from 2009 to
September, 2014
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Figure B9: Time series plot of weekly precipitation (mm) from January 2009 —
September 2014
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Figure B10: Wavelet power spectrum of precipitation in Colombo district from 2009
to September, 2014
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Figure B11: Time series plot of weekly mean visibility (km) from January 2009 —
September 2014
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Figure B12: Wavelet power spectrum of mean visibility in Colombo district from
2009 to September, 2014
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Figure B13: Time series plot of weekly mean wind speed (km/h) from January 2009 —
September 2014
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Figure B14: Wavelet power spectrum of mean wind speed in Colombo district from
2009 to September, 2014
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Figure B15: Time series plot of weekly maximum sustained wind speed (km/h) from
January 2009 — September 2014
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Figure B16: Wavelet power spectrum of maximum sustained wind speed (km/ h) in
Colombo district from 2009 to September, 2014
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Appendix C: Results of DLNM

Call:

glm(formula = Cases ~ cb.TEM + cb.TMAX + cb.PP + cb.H4 + cb.VM
+ cb.VV + as.factor (Year) + as.factor (Week), family =
quasipoisson())

Deviance Residuals:
Min 10 Median 30 Max

-12.9271 -1.8347 -0.2185 1.9783 8.4264

Coefficients:

Estimate Std. Error t wvalue Pr(>|t])
(Intercept) 2.575496 2.454822 1.049 0.2959
cb.TEMv1.11 0.161887 1.021405 0.158 0.8743
cb.TEMv1.12 -0.808253 1.337494 -0.604 0.5466
cb.TEMv1.13 1.318652 1.326758 0.994 0.3220

cb.TEMv1. k& O 7178318 1.. 406650 0.1049 0.5176

cb . TEMy 1 1£55) nio7Lheges &.MDisseplationgss  0.9239
cb. TMAXv 1 &% Up. Halede. 18 o 986271 -0.742  0.4593
cb.TMAXv1.12 1.303715  1.944450 0.670 0.5037
cb.TMAXv1.13 -2.274978  1.438795 -1.581  0.1161
cb.TMAXv1.14 ~0.514038  0.953365 -0.539  0.5906
cb.TMAXv1.15 ~0.318340  0.698409 -0.456  0.6492
cb.PPv1.11 -0.041687  0.134587 -0.310  0.7572
cb.PPv2.11 0.576822  0.473007 1.219  0.2247
cb.PPV3.11 ~0.521393  1.222512 -0.426 0.6704
cb.PPv4.11 -1.490459  1.849657 -0.806  0.4217
cb.PPV5.11 0.283484  0.596299  0.475  0.6352
cb.PPv1.12 1.560629 1.495528 1.044  0.2985
cb.PPv2.12 0.819295  6.726087 0.122  0.9032
cb.PPV3.12 ~0.900930 15.944428 -0.057  0.9550
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7@éek)23
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factor (Week) 26
factor (Week) 27
factor (Week) 28

factor (Week) 29

.factor (Week) 30

factor (Week) 31
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factor (Week) 33

.factor (Week) 34

factor (Week) 35

.644636

. 714294
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.151776
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.075662
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.362135

.274028
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.130308

.106576
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.124817

.179235

.229195

.317001

-0.

-0.

-0.

0.
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.391

.371
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.265
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. 960

.6963
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.6477

. 7436
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.9656

.8297

.9462
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.8969

.8981
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as.factor (Week) 36 1.658310 2.360789 0.702 0.4836

as.factor (Week) 37 2.137877 2.386563 0.896 0.3719
as.factor (Week) 38 1.695302 2.360851 0.718 0.4739
as.factor (Week) 39 1.818521 2.388858 0.761 0.4478
as.factor (Week) 40 1.731428 2.384401 0.726 0.4690
as.factor (Week) 41 1.342164 2.345245 0.572 0.5680
as.factor (Week) 42 1.451757 2.277326 0.637 0.5249
as.factor (Week) 43 1.155952 2.206702 0.524 0.6012
as.factor (Week) 44 0.5384506 2.143537 0.251 0.8020
as.factor (Week) 45 0.737854 2.029040 0.364 0.7167
as.factor (Week) 46 0.704693 1.895953 0.372 0.7107
as.factor (Week) 47 0.833471 1.713526 0.486 0.6274
as.factor (Week) 48 0.740750 1.510222 0.490 0.6246
as.factor (Week) 49 0.879011 1.238490 0.710 0.4790

as.factor (Week) 50 0.469140 0.980194 0.479 0.6330

as. 0: 3481142 0 .742414 0..470 0.6393

as. ©. ABASEC 0.502842 0.662 0.5091

as.factor (Week) 53 0.245855 0.831679 0.296 0.7680

Signif. codes: 0 ‘***’ (0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.7 0.1 ‘

(Dispersion parameter for quasipoisson family taken to be
16.03292)

Null deviance: 16541.7 on 263 degrees of freedom

Residual deviance: 2501.7 on 140 degrees of freedom

Number of Fisher Scoring iterations: 5
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Appendix D: R codes

# Exploratory Data Analysis - Time series plots of dengue
# incidence

C District=read.csv(file.choose (), header=T)
attach (C District)
a=as.matrix (C District)

rr=as.ts(a,start=c(2008,52), frequency=c(1l,52,52,52,52,49,
36))

for (1 in 5 to 29){
win.graph (width=6.5, height=2.5,pointsize=38)

plot(al,i], type="b",bg=66,col="blue", ylab="Dengue
Cases",xaxt="n", xlab="Year")

lines( al[,1], col="blue")
points( al,i], col="red", pch=19 )

axis( (2, 54,106,158, 210,259), Label's=ct2009,2010,2011
, 2012, 20§§?2014

}

#********************************************************

# Chapter 5 - Wavelet Analyses

# Figure 5.1

C District=read.csv(file.choose (), header=T)
attach (C District)
a=as.matrix (C District[30])

rr=as.ts(a,start=c(2008,52), frequency=c(1l,52,52,52,52,49,
21))

All=sqgrt (All)

ta=cbind(1:294, (All-mean (All))/sd(All))
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rr2=as.ts(tal[,2],start=c(2008,52), frequency=c(1,52,52,52,
52,49,21))

win.graph (width=6.5, height=2.5,pointsize=8)

plot (rr2, type="b",bg=66,col="blue", ylab="square root
transformed and normalized", xaxt="n")

lines( rr2, col="blue")
points( rr2, col="red", pch=19 )

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#********************************************************
#Wavelet transformation of dengue cases

C District=read.csv(file.choose (), header=T)
attach (C District)

- Compute wavelet spectra----—----—-———-—————-—-
llbrary(%igavelet)

Colomboz?%;t(Colombo)

Gampaha=sqrt (Gampaha)

Kalutara=sqgrt (Kalutara)

Kandy=sqgrt (Kandy)

Matale=sqgrt (Matale)

Nuwara.Eliya=sqgrt (Nuwara.Eliya)

Galle=sqgrt(Galle)

Hambantota=sqgrt (Hambantota)

Matara=sqrt (Matara)

Jaffna=sqgrt (Jaffna)

Kilinochchi=sqgrt (Kilinochchi)

Mannar=sqrt (Mannar)
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Vavuniya=sqgrt (Vavuniya)
Mulative=sqgrt (Mulative)
Batticalo=sqgrt (Batticalo)
Ampara=sqgrt (Ampara)
Trincomalee=sqgrt (Trincomalee)
Kurunagala=sqgrt (Kurunagala)
Puttalam=sqgrt (Puttalam)
Anuradhapura=sqgrt (Anuradhapura)
Polonnaruwa=sqgrt (Polonnaruwa)
Badulla=sgrt (Badulla)
Monaragala=sqgrt (Monaragala)
Ratnapura=sgrt (Ratnapura)

Kegalle=sqgrt (Kegalle)

t1=cbind£iﬁ294, (00 Libnbhutrealk(Colombo) ) /sd (Colombo) )
t2=cbind (1:294, (Gampaha-mean (Gampaha) ) /sd (Gampaha))
t3=cbind(1:294, (Kalutara-mean (Kalutara))/sd(Kalutara))
td=cbind(1:294, (Kandy-mean (Kandy)) /sd (Kandy))

t5=cbind (1:294, (Matale-mean (Matale))/sd (Matale))

t6=cbind(1:294, (Nuwara.Eliya-
mean (Nuwara.Eliya))/sd (Nuwara.Eliya))

t7=cbind(1:294, (Galle-mean (Galle)) /sd(Galle))

t8=cbind (1:294, (Hambantota-
mean (Hambantota) ) /sd (Hambantota))

t9=cbind(1:294, (Matara-mean (Matara))/sd (Matara))

t10=cbind (1:294, (Jaffna-mean (Jaffna))/sd(Jaffna))
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tll=cbind(1:294, (Kilinochchi-
mean (Kilinochchi) ) /sd(Kilinochchi))

tl12=cbind(1:294, (Mannar-mean (Mannar))/sd(Mannar))
t13=cbind (1:294, (Vavuniya-mean (Vavuniya)) /sd (Vavuniya))
tl4=cbind(1:294, (Mulative-mean (Mulative))/sd (Mulative))

t15=cbind(1:294, (Batticalo-
mean (Batticalo) ) /sd(Batticalo))

tl6=cbind(1:294, (Ampara-mean (Ampara) ) /sd (Ampara))

tl7=cbind(1:294, (Trincomalee-
mean (Trincomalee) ) /sd (Trincomalee))

t18=cbind(1:294, (Kurunagala-
mean (Kurunagala) ) /sd (Kurunagala))

t19=cbind(1:294, (Puttalam-mean (Puttalam))/sd(Puttalam))

t20=cbind(1:294, (Anuradhapura-
mean (Anuradhapura) ) /sd (Anuradhapura) )

t21=cbin@&§&294, (Polonmaruwa-—
mean(Poléﬁharuwa))/Sd(Polonnaruwa))

t22=cbind (1:294, (Badulla-mean (Badulla)) /sd(Badulla))

t23=cbind(1:294, (Monaragala-
mean (Monaragala)) /sd(Monaragala))

t24=cbind(1:294, (Ratnapura-
mean (Ratnapura) ) /sd (Ratnapura))

t25=cbind(1:294, (Kegalle-mean (Kegalle))/sd(Kegalle))

wt.tl=wt (tl)
wt.t2=wt (t2)
wt.t3=wt (t3)
wt.td=wt (t4)

wt.t5=wt (t5)
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wt.to=wt (t6)
wt.t7=wt (t7)
wt.t8=wt (t8)
wt.t9=wt (t9)
wt.tl0=wt (t10)
wt.tll=wt (tll)
wt.tl2=wt (tl2)
wt.tl3=wt (tl3)
wt.tld=wt (tl4)
wt.tl5=wt (tl)5)
wt.tle=wt (tl6)
wt.tl7=wt (tl7)

wt.tl8=wt (£18)

wt. 19 yfiethi, 0)

WE L £20=ER0 )
wt.t2l=wt (t21l)
wt.t22=wt (£t22)
wt.t23=wt (£t23)
wt.t24=wt (t24)
wt.t25=wt (t25)
# Figure 5.4

par (mfrow=c(4,2) ,mai=c(0.3,0.7,0.2,0.2))

plot (wt.tl, plot.cb=F,
plot.phase=F, xaxt="n",main="a",ylab="Period (weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))
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plot (wt.t2, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="b", ylab="Period

(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.t3, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="c", ylab="Period

(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.t4, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="d", ylab="Period

(weeks) ")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.t5, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="e", ylab="Period

(weeks) ")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot(wt.?@x;plot.ch,
plot.phate%FALSE,xaxt:"n",main:"f",ylab:"Period

(weeks) ™)

axis(l,aﬁgé(2,54,106,158,210,259),labels:c(2009,2010,2011

,2012,2013,2014))

plot (wt.t7, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="g", ylab="Period

(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.t8, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="h", ylab="Period

(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.t9, plot.cb=F,

plot.phase=FALSE, xaxt="n",main="Matara", ylab="Period

(weeks) ™)
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axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t1l0, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Jaffna", ylab="Period
(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot(wt.tll, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Killinochchi", ylab="Perio
d (weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot(wt.tl2, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Mannar", ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

()
plot (wt .&EP, pVotYGhbirl
plot.phase=FALSE, xaxt="n",main="Vavuniya", ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

plot(wt.tl4, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Mulative",ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

plot(wt.tl5, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Batticalo",ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))
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plot (wt.tl6, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Ampara", ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot(wt.tl7, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Trincomalee", ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot(wt.tl8, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Kurunagala",ylab="Period
(weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.tEd, plyfivebaiy
plot.pha%@%FALSE,xaxt:”n”,main:”Puttalam”,ylab:"Period
(weeks) e

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t20, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Anuradhapura", ylab="Perio
d (weeks)")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t21, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Polonnaruwa", ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t22, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Badulla", ylab="Period
(weeks) ")
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axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t23, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Monaragala", ylab="Period
(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t24, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Ratnapura", ylab="Period
(weeks) ")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (wt.t25, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="Kegall", ylab="Period
(weeks)")

axis (1, atEEc (2, Pyt Bee ko Sv2lhn 2 il e lis5612009, 2010, 2011
2012, 2046001 f) )

- S - Migieellglalo-be - —— - - o o o o o o oo
par (mfrow=c (5,5) ,mai=c(0.3,0.3,0.2,0.2))

b=wt.tl$period

a=apply (wt.tlSpower.corr,1l,mean)

plot(b,a,type="1",main
="Colombo",mai=c(0.001,0.001,0.001,0.001))

b=wt.t2$period
a=apply (wt.t2Spower.corr, 1, mean)

plot (b, a, type="1",main
="Gampaha",mai=c(0.001,0.001,0.001,0.001))

b=wt.t3$period

a=apply (wt.t3Spower.corr, 1, mean)
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plot (b, a, type="1",main
="Kalutara",mai=c(0.001,0.001,0.001,0.001))

b=wt.t4$period
a=apply (wt.t4Spower.corr, 1, mean)

plot (b, a, type="1",main
="Kandy",mai=c(0.001,0.001,0.001,0.001))

b=wt.t5%period
a=apply (wt.t5Spower.corr, 1, mean)

plot (b,a,type="1",main
="Matale",mai=c(0.001,0.001,0.001,0.001))

b=wt.t6S$period
a=apply (wt.t6Spower.corr, 1, mean)

plot(b,a,type="1",main ="Nuwara
Eliya",mai=c(0.001,0.001,0.001,0.001))

b=wt.t/5Speriod
a=apply(&Z§t7$power.corr,l,mean)

plot (b, a, type="1",main
—"Galle",mai=c (0.001,0.001,0.001,0.001))

b=wt.t8S$period
a=apply (wt.t8Spower.corr, 1, mean)

plot (b, a, type="1",main
="Hambantota",mai=c(0.001,0.001,0.001,0.001))

b=wt.t9Speriod
a=apply (wt.t9Spower.corr, 1, mean)

plot (b, a, type="1",main
="Matara",mai=c(0.001,0.001,0.001,0.001))

b=wt.t10$period

a=apply(wt.t1l0Spower.corr,1l,mean)
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plot (b, a, type="1",main
="Jaffna",mai=c(0.001,0.001,0.001,0.001))

b=wt.tll$period
a=apply(wt.tllSpower.corr,1l,mean)

plot (b, a, type="1",main
="Killinochchie",mai=c(0.001,0.001,0.001,0.001))

b=wt.tl2$period
a=apply(wt.tl2Spower.corr,1l,mean)

plot (b,a,type="1",main
="Mannar",mai=c(0.001,0.001,0.001,0.001))

b=wt.t13$period
a=apply (wt.tl3Spower.corr,1l,mean)

plot (b, a, type="1",main
="Vavuniya",mai=c (0.001,0.001,0.001,0.001))

b=wt.t14$period
a=apply(£Z§t14$power.corr,l,mean)

plot (b, a, type="1",main
—"Mulative",mai=c (0.001,0.001,0.001,0.001))

b=wt.t1l5$period
a=apply(wt.tl5Spower.corr, 1, mean)

plot (b, a, type="1",main
="Batticalo",mai=c(0.001,0.001,0.001,0.001))

b=wt.tl6Speriod
a=apply(wt.tl6Spower.corr,1l,mean)

plot (b, a, type="1",main
="Ampara",mai=c(0.001,0.001,0.001,0.001))

b=wt.tl7$period

a=apply(wt.tl7Spower.corr,1l,mean)
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plot (b, a, type="1",main
="Trincomalee",mai=c(0.001,0.001,0.001,0.001))

b=wt.t18Speriod
a=apply (wt.tl8Spower.corr,1l,mean)

plot (b, a, type="1",main
="Kurunagala",mai=c(0.001,0.001,0.001,0.001))

b=wt.tl19Speriod
a=apply(wt.t1l9Spower.corr,1l,mean)

plot (b,a,type="1",main
="Puttalam",mai=c(0.001,0.001,0.001,0.001))

b=wt.t20$period
a=apply(wt.t20Spower.corr,1l,mean)

plot(b,a, type="1",main
="Anuradhapura",mai:c(0.00l,0.00l,0.00l,0.00l))

p=wt . t21"§;§riod
a=apply (wt.t21Spower.corr, 1, mean)

plot(b,a,type="1",main
="Polonnaruwa",mai=c (0.001,0.001,0.001,0.001))

b=wt.t22$period
a=apply(wt.t22Spower.corr,1l,mean)

plot (b, a, type="1",main
="Badulla",mai=c(0.001,0.001,0.001,0.001))

b=wt.t23Speriod
a=apply (wt.t23Spower.corr,1l,mean)

plot (b, a,type="1",main
="Monaragala",mai=c(0.001,0.001,0.001,0.001))

b=wt.t24$period

a=apply (wt.t24Spower.corr, 1, mean)
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plot (b, a, type="1",main
="Rathnapura",mai=c(0.001,0.001,0.001,0.001))

b=wt.t25Speriod
a=apply (wt.t258power.corr, 1, mean)

plot (b, a, type="1",main
="Kegalle",mai=c(0.001,0.001,0.001,0.001))

# Wavelet Cluster Analysis

C District=read.csv(file.choose (), header=T)
attach (C District)

C District=read.csv(file.choose (), header=T)
C District[2]

names (C District)

attach (C_District)
apply(C;ﬁigfrict,2,length)

apply(Cib§Strict,Z,mean,na.rm:T)

library (biwavelet)

Colombo=sqgrt (Colombo)
Gampaha=sqgrt (Gampaha)
Kalutara=sqgrt (Kalutara)
Kandy=sqgrt (Kandy)

Matale=sqgrt (Matale)
Nuwara.Eliya=sqgrt (Nuwara.Eliya)
Galle=sqgrt(Galle)
Hambantota=sqgrt (Hambantota)

Matara=sqrt (Matara)
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Jaffna=sqgrt (Jaffna)
Kilinochchi=sqgrt (Kilinochchi)
Mannar=sqgrt (Mannar)
Vavuniya=sqgrt (Vavunivya)
Mulative=sqgrt (Mulative)
Batticalo=sqgrt (Batticalo)
Ampara=sqgrt (Ampara)
Trincomalee=sqgrt (Trincomalee)
Kurunagala=sqgrt (Kurunagala)
Puttalam=sqgrt (Puttalam)
Anuradhapura=sqgrt (Anuradhapura)
Polonnaruwa=sqgrt (Polonnaruwa)
Badulla=sgrt (Radulla)
Monaraga%%?sqrt(Monaragala)
Ratnapuré%éqrt(Ratnapura)

Kegalle=sgrt (Kegalle)

tl=cbind (1:294, (Colombo-mean (Colombo))/sd(Colombo))
t2=cbind (1:294, (Gampaha-mean (Gampaha) ) /sd (Gampaha) )
t3=cbind (1:294, (Kalutara-mean (Kalutara))/sd(Kalutara))
td=cbind(1:294, (Kandy-mean (Kandy))/sd(Kandy))

t5=cbind (1:294, (Matale-mean (Matale)) /sd (Matale))

t6=cbind(1:294, (Nuwara.Eliya-
mean (Nuwara.Eliya)) /sd (Nuwara.Eliya))

t7=cbind (1:294, (Galle-mean (Galle))/sd(Galle))

t8=cbind (1:294, (Hambantota-
mean (Hambantota) ) /sd (Hambantota))
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t9=cbind (1:294, (Matara-mean (Matara))/sd (Matara))
t10=cbind(1:294, (Jaffna-mean (Jaffna))/sd(Jaffna))

tll=cbind(1:294, (Kilinochchi-
mean (Kilinochchi) ) /sd (Kilinochchi))

tl1l2=cbind(1:294, (Mannar-mean (Mannar))/sd(Mannar))
t13=cbind(1:294, (Vavuniya-mean (Vavuniya)) /sd (Vavuniya))
tl4=cbind(1:294, (Mulative-mean (Mulative))/sd (Mulative))

t15=cbind (1:294, (Batticalo-
mean (Batticalo)) /sd(Batticalo))

tl6=cbind (1:294, (Ampara-mean (Ampara) ) /sd (Ampara))

tl7=cbind(1:294, (Trincomalee-
mean (Trincomalee) ) /sd (Trincomalee))

£t18=cbind(1:294, (Kurunagala-
mean (Kurunagala) ) /sd (Kurunagala))

tl9=cbindﬁl:294,(Puttalam—mean(Puttalam))/sd(Puttalam))

t20=cbin§:§k294, (A nhilra dh dpieat=
mean (AnuEddhapWha . /Idliilniadhapura) )

t21=cbind(1:294, (Polonnaruwa-
mean (Polonnaruwa) ) /sd (Polonnaruwa) )

t22=cbind(1:294, (Badulla-mean (Badulla)) /sd (Badulla))

£t23=cbind(1:294, (Monaragala-
mean (Monaragala) ) /sd (Monaragala))

t24=cbind(1:294, (Ratnapura-
mean (Ratnapura) ) /sd (Ratnapura))

t25=cbind(1:294, (Kegalle-mean (Kegalle)) /sd(Kegalle))
wt.tl=wt (tl)
wt.t2=wt (t2)
wt.t3=wt (t3)

wt.td=wt (t4)
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wt.t5=wt (t5)
wt.to=wt (t6)
wt.t7=wt (t7)
wt.t8=wt (t8)
wt.t9=wt (t9)
wt.tl0=wt (t10)
wt.tll=wt (tll)
wt.tl2=wt (tl2)
wt.tl13=wt (tl3)
wt.tld=wt (tl4)
wt.tl5=wt (tl5)
wt.tle=wt (tl6)

wt.tl7=wt (£17)

wt. t18=yfierh 8)

WE L t10=ER 0)
wt.t20=wt (t20)
wt.t21l=wt (t21)
wt.t22=wt (t22)
wt.t23=wt (£t23)
wt.t24=wt (t24)
wt.t25=wt (t25)

## Store all wavelet spectra into array

w.arr=array (NA, dim=c (25, NROW (wt.tlS$Swave),
NCOL (wt.tlSwave)))

w.arr[1l, , ]l=wt.tlSwave

w.arr([2, , ]=wt.t2Swave
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w.arr[3, , ]=wt.t3Swave

w.arr[4, , ]=wt.tdSwave
w.arr[5, , ]=wt.t5Swave
w.arr[6, , ]=wt.t6Swave
w.arr[7, , ]=wt.t7Swave
w.arr[8, , ]=wt.t8Swave
w.arr[9, , ]=wt.t9Swave
w.arr[10, , ]=wt.tlOSwave
w.arr[1l1l, , ]=wt.tllSwave
w.arr[1l2, , ]=wt.tl2Swave
w.arr[1l3, , ]l=wt.tl3Swave
w.arr[1l4, , ]=wt.tldSwave
w.arr[1l5, , J=wt.tl5Swave

w.arr[l@@%@{J:wt.t16$wave

w.arr[17l_; ] =Wt Tiswaue
w.arr[1l8, , ]J=wt.tl8Swave
w.arr[1l9, , ]=wt.tl9Swave
w.arr[20, , ]=wt.t20Swave
w.arr([21, , ]=wt.t21lSwave
w.arr([22, , ]=wt.t22S8wave
w.arr[23, , ]=wt.t23S%Swave
w.arr[24, , ]=wt.t24S$wave
w.arr[25, , ]=wt.t25Swave

## Compute dissimilarity and distance matrices

w.arr.dis=wclust (w.arr)
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plot (hclust (w.arr.dis$dist.mat, method="ward"),
main="", ylab="Dissimilarity", hang=-1)

#Figure 5.8
par (mfrow=c(4,2) ,mai=c(0.3,0.7,0.2,0.2))

plot (wt.TEM, plot.cb=F,

sub="" ,

plot.phase=F, xaxt="n",main="a",ylab="Period (weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.TMAX, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="b", ylab="Period

(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.Tm, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="c", ylab="Period

(weeks) ™)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt {1 oFlcbiHi
plot.phage=rALgRywa K] Apalin="d", ylab="Period

(weeks) ")

axis(l,at=c(2,54,100,156,210,259),labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.PP, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="e", ylab="Period

(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.VV, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="f", ylab="Period

(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011

,2012,2013,2014))

plot (wt.V, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="g", ylab="Period

(weeks) ")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011

,2012,2013,2014))
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plot (wt.VM, plot.cb=F,
plot.phase=FALSE, xaxt="n",main="h", ylab="Period (weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#Figure 5.9

par (mfrow=c(2,4) ,mai=c(0.3,0.3,0.2,0.2))
b=wt.TEMSperiod

a=apply (wt.TEMSpower.corr, 1, mean)

plot (b,a,type="1",main
="a",mai=c(0.001,0.001,0.001,0.001))

b=wt .TMAXSperiod
a=apply (wt.TMAXSpower.corr, 1, mean)

plot (b, a, type="1",main
="b",mai=c(0.001,0.001,0.001,0.001))

b=wt.TmSperiod
a=apply(&Z@Tm$power.corr,1,mean)

plot (b, a, type="1",main
—"e" mai=c(0.001,0.001,0.001,0.001))

b=wt.HS$period
a=apply (wt.HSpower.corr,1,mean)

plot (b, a, type="1",main
="d",mai=c(0.001,0.001,0.001,0.001))

b=wt.PPSperiod
a=apply (wt.PPSpower.corr,1l,mean)

plot (b, a, type="1",main
="e",mai=c(0.001,0.001,0.001,0.001))

b=wt.VVS$period

a=apply (wt.VVSpower.corr, 1l,mean)
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plot (b, a, type="1",main
="f" mai=c(0.001,0.001,0.001,0.001))

b=wt .Vperiod
a=apply (wt.VSpower.corr,1l,mean)

plot (b, a, type="1",main
="g",mai=c(0.001,0.001,0.001,0.001))

b=wt .VMS$period
a=apply (wt.VMSpower.corr, 1, mean)

plot (b,a,type="1",main
="h",mai=c(0.001,0.001,0.001,0.001))

#Figure 5.10

rm(list=1s{())

library(biwavelet)
Colombo:?; d.csv(file.choose(),header:T)
attach (céjlgmbo)

head (Colombo)

names (Colombo)

attach (Colombo)

apply (Colombol, 2, length)

par (mfrow=c(4,2) ,mai=c(0.6,0.7,0.4,0.2))
#ccf (mdeaths, fdeaths, ylab = "cross-correlation")

ccf (TEM, Cases, main = "a", ylab = "cross-correlation",
xlab="1lag")

ccf (TMAX, Cases, main = "b", ylab = "cross-correlation",
xlab="1lag")

ccf (Tm, Cases, main = "c¢", ylab = "cross-correlation",
xlab="1lag")
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ccf (H, Cases, main = "d", ylab = "cross-correlation",

xlab="1lag")
ccf (PP, Cases, main = "e", ylab = "cross-correlation",
xlab="1lag")
ccf (VV, Cases, main = "f", ylab = "cross-correlation",
xlab="1lag")
ccf (V, Cases, main = "g", ylab = "cross-correlation",
xlab="1lag")
ccf (VM, Cases, main = "h", ylab = "cross-correlation",
xlab="1lag")

#Figure 5.12 - Figure 5.26 and Appendix B
rm(list=1s{())

library (biwavelet)
Colombo:rgad.csv(file.choose(),header:T)
attach (c%‘g’mbo)

head(ColéﬁEo)

names (Colombo)

attach (Colombo)

apply (Colombol, 2, length)

TEMl=sqgrt (TEM)

TMAX1=sqgrt (TMAX)

Tml=sqgrt (Tm)

Hl=sqgrt (H)

PPl=sqrt (PP)

VV1=sqgrt (VV)

Vl=sqgrt (V)

VMl=sqgrt (VM)
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Casesl=sqgrt (Cases)

TEM2=cbind (1:294, (TEMl-mean (TEM1))/sd(TEM1))
TMAX2=cbind (1:294, (TMAX1-mean (TMAX1)) /sd (TMAX1))
Tm2=cbind (1:294, (Tml-mean(Tml))/sd(Tml))
H2=cbind (1:294, (Hl-mean (H1)) /sd (H1))
PP2=cbind(1:294, (PPl-mean (PP1l))/sd(PP1l))
VV2=cbind (1:294, (VV1l-mean (VV1l))/sd(VVl))
V2=cbind (1:294, (Vl-mean (V1)) /sd (V1))

VM2=cbind (1:294, (VMl-mean (VM1)) /sd (VML1))
Cases2=cbind (1:294, (Casesl-mean (Casesl))/sd(Casesl))
wt.TEM=wt (TEMZ2)

wt.TMAX=wt (TMAX2)

wt.Tm=wt (Tm2)

wt.H=wt(%@%

wt.PP:wtxééz)

wt.VV=wt (VV2)

wt.V=wt (V2)

wt.VM=wt (VM2)

wt.Cases=wt (Cases?2)

## Store all wavelet spectra into array

w.arr=array (NA, dim=c (9, NROW (wt.TEMSwave),
NCOL (wt . TEMSwave) ) )

w.arr[1l, , ]=wt.TEMSwave
w.arr([2, , ]=wt.TMAXS$Swave
w.arr[3, , ]=wt.TmSwave
w.arr[4, , ]=wt.HSwave
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w.arr[5, , ]=wt.PPSwave

w.arr[6, , ]=wt.VVSwave
w.arr([7, , ]=wt.VSwave
w.arr[8, , ]=wt.VMSwave
w.arr[9, , ]=wt.CasesS$Swave

# time series

plot (TEM, type="0",bg=66,col="blue",xlab="Year", ylab="
Mean Temperature",main = " ",xaxt="n")

points( TEM, col="red", pch=19 )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (TMAX, type="0",bg=66,col="blue", xlab="Year", ylab="Max

imum Temperature",main = ", xaxt="n")
points ( %M%X, col=rad) M pch=1r9")
A

axis(1,at%¢(2,54,106,158,210,259),labels:c(2009,2010,2011
,2012,2013,2014))

plot (Tm, type="0o",bg=66,col="blue",xlab="Year",ylab="Minim
um Temperature",main = " ",xaxt="n")

points( Tm, col="red", pch=19 )

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (H, type="0",bg=66,col="blue", xlab="Year", ylab="Humidi
ty",main = " ",xaxt="n")

points( H, col="red", pch=19 )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (PP, type="0",bg=66,col="blue",xlab="Year", ylab="Preci
pitation",main = " ", xaxt="n")
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points( PP, col="red", pch=19 )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (VV, type="0o",bg=66,col="blue",xlab="Year", ylab="Mean
Visibility",main = " ",xaxt="n")

points( VV, col="red", pch=19 )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (V, type="0",bg=66,col="blue", xlab="Year", ylab="Mean
Wind Speed",main = " ",xaxt="n")

points( V, col="red", pch=19 )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (VM, type="0o",bg=66,col="blue",xlab="Year", ylab="Maxim
um sustained wind speed",main = " ",xaxt="n")

points ( VM, colHV®easiiydhiora)

1
axis (1, ag=ed2,54,106,158,270,259), labels=c(2009,2010,2011
,2012,20T352014))

LR R RS AR R R
#mean temperature
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (wt.TEM, plot.cb=TRUE,
plot.phase=FALSE, xaxt="n", ylab="Period (Weeks)")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

# maximum temperature
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (wt.TMAX, plot.cb=TRUE,
plot.phase=FALSE, xaxt="n",ylab="Period (Weeks)")
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axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

# minimum temperature
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (wt.Tm, plot.cb=TRUE,
plot.phase=FALSE, xaxt="n",ylab="Period (Weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#Humidity
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (wt.H, plot.cb=TRUE,
plot.phase=FALSE, xaxt="n", ylab="Period (Weeks)")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))
# minimum precipitation

par(oma;g&?b 04-10,,1), mar=c (54 4, 4,.5) + 0.1)

plot (wt .BEe pletvehHirum]
plot.phase=FALSE, xaxt="n",ylab="Period (Weeks)")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#VV
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)
plot (wt.VV, plot.cb=TRUE, plot.phase=FALSE, xaxt="n")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

¥V
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (wt.V, plot.cb=TRUE, plot.phase=FALSE,xaxt="n")
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axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#VM
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)
plot (wt.VM, plot.cb=TRUE, plot.phase=FALSE, xaxt="n")

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

# Cases
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)
plot (wt.Cases, plot.cb=TRUE, plot.phase=FALSE,xaxt="n")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

sttt R R AR EE
FH#H#### Cross—-wavelet transform #HF#444#HEEEEHHHFFFFFHS
X <- 1:2§;¢

Cases <—5Q§ses

par (mar = c(5, 4, 4, 4) + 0.3) it Leave space for z axis

plot (x,Cases, type="0",xaxt="n",col="red", xlab="Year", pch=
20)

par (new = TRUE)

plot (x, TEM, type = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range (TEM)))
mtext ("Mean temperature", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

xwt.tl=xwt (Cases2, TEM2)
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par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#********************************************************
X <- 1:294

Cases <- Cases

## second data set on a very different scale

par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis

plot (x,
Cases, type="0", xaxt="n",col="red", xlab="Year", pch=20) #
first plot

par (new = TRUE)

plot (x, T, tYPE i "ol axes. =+ EALSE; oty EL, """, xlab =
"Year",\%&éb =", xaxt="n", colg"blue",pch=20)

axis(sidé%ﬁ, atWEWrktiii{4dnge (Tm) ) )
mtext ("Minimum temperature", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

xwt.tl=xwt (Cases2, Tm2)
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#********************************************************

x <—- 1:294
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Cases <- Cases
## second data set on a very different scale
par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis

plot (x,
Cases, type="0o", xaxt="n", col="red", xlab="Year",pch=20) #
first plot

par (new = TRUE)

plot (x, TMAX, type = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range (TMAX)))
mtext ("Maximum temperature", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

xwt.tlzxwﬁ(CasesZ,TMAX2)
par(omaiézg; 0 PIQGUONIC IR bX. WISRCTIGWNOHNS0 | 1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

#********************************************************
X <= 1:294

Cases <- Cases

## second data set on a very different scale

par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis

plot (x,
Cases, type="0o", xaxt="n", col="red", xlab="Year",pch=20) #
first plot

par (new = TRUE)
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plot (x,H, type = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range(H)))
mtext ("Humidity", side=4, line=3)

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

xwt.tl=xwt (Cases2, H2)
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#********‘kr************k****‘k******************************
X <- 1:2§Z}7

Cases <—uééses

## second data set on a very different scale

par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis

plot (x,
Cases, type="0o", xaxt="n", col="red", xlab="Year",pch=20) #
first plot

par (new = TRUE)

plot (x, PP, type = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range (PP)))
mtext ("Precipitation", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))
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xwt.tl=xwt (Cases?2, PP2)
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#********************************************************
X <= 1:294

Cases <- Cases

## second data set on a very different scale

par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis

plot (x,
Cases, type="0o",xaxt="n",col="red", xlab="Year",pch=20) #
first plags

.

par (new =<

plot(x,vvfxtype = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range(VV)))
mtext ("Visibility", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

xwt.tl=xwt (Cases2,VV2)
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))
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#********************************************************

x <- 1:294

Cases <- Cases

## second data set on a very different scale

par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis

plot (x,
Cases, type="0", xaxt="n",col="red", xlab="Year", pch=20) #
first plot

par (new = TRUE)

plot (x,V, type = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range(V)))
mtext ("Wind Speed", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259), 1labels=c(2009,2010,2011
,2012,201372014))

th.tlszE(CaseSZ,VZ)

par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

#********************************************************
X <= 1:294

Cases <- Cases

## second data set on a very different scale

par (mar = c(5, 4, 4, 4) + 0.3) # Leave space for z axis
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plot (x,
Cases, type="0", xaxt="n",col="red", xlab="Year", pch=20) #
first plot

par (new = TRUE)

plot(x,VM, type = "o", axes = FALSE, bty = "n", xlab =
"Year", ylab = "",xaxt="n",col="blue",pch=20)

axis(side=4, at = pretty(range (VM)))
mtext ("Maximum Sustained Wind Speed", side=4, line=3)

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

xwt.tl=xwt (Cases2,VM2)
par (oma=c (0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1)

plot (xwt.tl, plot.cb=TRUE,
plot.phase=TRUE, ylab="Period (Weeks)", xaxt="n")

axis (1, at (2, bnivessits o 2viozaawa, e llsankao09, 2010, 2011
,2012, 2(ESIP)0 1 Bl

BT PR P P b b RS R R 44
##

# Change point analysis
rm(list=1s{())

1s ()

library (changepoint)

library (zoo)
cpdata=read.csv(file.choose (), header=T)

attach (cpdata)

head (cpdata)
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##### change point detection using PELT method

Cases.pelt <- cpt.var(diff (Cases,difference=1),method =
"PELT" )

TEM.pelt <- cpt.var(diff (TEM,difference=1),method =
"PELT" )

TMAX.pelt <- cpt.var(diff (TMAX,difference=1),method =
"PELT" )

Tm.pelt <- cpt.var(diff (Tm,difference=1),method = "PELT")
H.pelt <- cpt.var(diff (H,difference=1),method = "PELT")
PP.pelt <- cpt.var(diff (PP,difference=1),method = "PELT")
VV.pelt <- cpt.var(diff (VV,difference=1),method = "PELT")
V.pelt <- cpt.var(diff(V,difference=1),method = "PELT")
VM.pelt <- cpt.var(diff(VM,difference=1),method = "PELT")

logLik(Ca’és.pelt)
T
logLik (TEMZpelL)

par (mfrow=c (2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main = "
l|lxaxt:l|nl| )

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

plot (TEM.pelt,ylab="Mean Temperature" ,xlab="Time",main =
" l|lxaxt:l|nl| )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))
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par (mfrow=c(2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main = "
l|lxaxt="n" )

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (TMAX.pelt, ylab="Maximum Temperature"
,xlab="Time",main = " ", xaxt="n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

par (mfrow=c(2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main = "
",XaXt="D" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2018, 2018)n

A 111G . .
plot(Tm.pglt,ylab:”Mlnlmum Temperature" ,xlab="Time",main
—n ",xaﬁifi"n" )

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))

par (mfrow=c (2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main = "
" , xaxt="n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (H.pelt, ylab="Humidity" ,xlab="Time",main = "
" , XaXt:"n" )

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))
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par (mfrow=c(2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main =
l|lxaxt="n" )

axis(l,at=c(2,54,1006,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (PP.pelt,ylab="Precipitation" ,xlab="Time",main =
l|lxaxt="n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

par (mfrow=c(2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main = "
",XaXt:”n” )

axis(1,a§é§w2,54,106,158,210,259),1abels:c(2oo9,201o,2011
,2012,208%57014) )

plot (VV.pelt,ylab="Visibility" ,xlab="Time",main = "
1] , xaxt="n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

par (mfrow=c(2,1))

"

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main =
l|lxaxt:l|nl| )

axis(l,at=c(2,54,106,158,210,259),1labels=c(2009,2010,2011
,2012,2013,2014))
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plot (V.pelt,ylab="Wind Speed" ,xlab="Time",main = "
" , xaxt="n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

par (mfrow=c(2,1))

plot (Cases.pelt, ylab="Dengue Cases" ,xlab="Time",main = "
",XaXt:"n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

plot (VM.pelt,ylab="Maximum Sustained Wind Speed"
,xlab="Time",main = " ",xaxt="n" )

axis(l,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011
,2012,2013,2014))

###########ﬁ#############################################

# DLNM '
########i;ét model#####H##H##H#H#HHHHAHFHHHH
rm(list=1s{())
Colombo=read.csv(file.choose (), header=T)
attach (Colombo)

names (Colombo)

head (Colombo)

library (dlnm)

library(splines)

lagknotsl <- logknots (30, 4)

lagknots <- logknots (30, 3)
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cb.PP <- crossbasis (PP, lag=25,
argvar=list ("bs",df=5,degree=4, cen=median (PP)),arglag=1lis
t (fun="poly",degree=3))

cb.TEM <- crossbasis (TEM, lag=30,
argvar=list (df=1, cen=median (TEM) ),
arglag=list (knots=lagknots))

cb.TMAX <- crossbasis (TMAX, lag=30,
argvar=1list (df=1, cen=median (TMAX) ),

arglag=list (knots=lagknots))

cb.H4<- crossbasis (H, lag=20,
argvar=list (df=2, cen=median (H)),

arglag=list (knots=lagknotsl))

cb.V<- crossbasis(V, lag=20,
argvar=list (df=2, cen=median (V)),

arglag=list (knots=lagknotsl))

cb.VV<- crossbasis (VV, lag=20,
argvar:lﬁfijdeZ,cen:median(VV)),
EAE

arglag:liét(knots:lagknotsl))

cb.VM<- crossbasis(VM, lag=20,
argvar=1list (df=2, cen=median (VM) ),

arglag=list (knots=lagknotsl))

model5 <- glm(Cases ~
cb.TEM+cb.TMAX+cb.PP+cb.H4d+cb.VM+tcbh.VV+tas. factor (Year) +as
.factor (Week), family=quasipoisson())

ATIC.cc<- -2*sum( dpois( model5Sy, modelb$fitted.values,
log=TRUE) ) +

2*summary (model5) $df [3] *summary (modelb) $dispersion
AIC.cc
n=294

QIC.cc<- -2*sum( dpois( model5Sy, model5S$fitted.values,
log=TRUE) ) +
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log(n) *summary (model5) Sdf [3] *summary (model5) Sdispersion
QIC.cc

pred.TEM <- crosspred(cb.TEM, modelb)

plot (pred.TEM, xlab="Mean Temperature", zlab="RR")

plot (pred.TEM, "contour", xlab="Mean Temperature",
key.title=title("RR"),

plot.title=title ("Contour plot",xlab="Mean
Temperature",ylab="Lag"))

#pred.TEM2 <- crosspred(cb.TEM, model5,by=1)

#plot (pred.TEM2, "slices", var=27, ci="bars", type="p",
pch=19, ci.level=0.95,

#main="Association with a 1 - unit increase above
threshold (95%CI)",ylab="RR")

- Jer MAXimum Tempenat e (- o T anla ——
pred.TMAéng ckdS8ed VY o lahdxX mdgeldliy
plot(pred?TMAX, xlab="Maximum Temperature", zlab="RR")

plot (pred.TMAX, "contour", xlab="Maximum Temperature",
key.title=title ("RR"),

plot.title=title("Contour plot",xlab="Maximum
Temperature",ylab="Lag"))

#plot (pred.TMAX, "slices", var=c(30,32,34),
#lag=c(15,20,25),ylab="RR")
#pred.TMAX2 <- crosspred(cb.TMAX, model5,by=1)

#plot (pred.TMAX2, "slices", var=30, ci="bars", type="p",
pch=19, ci.level=0.95,

#main="Association with a 1 - unit increase above
threshold (95%CI)",ylab="RR")
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pred.PP <- crosspred(cb.PP, modelb)
plot (pred.PP, xlab="Precipitation"™, zlab="RR")

plot (pred.PP, "contour", xlab="Precipitation",
key.title=title("RR"),

plot.title=title("Contour
plot",xlab="Precipitation”, ylab="Lag"))

#pred.PP2 <- crosspred(cb.PP, model5,by=1)

#plot (pred.PP2, "slices", var=10, ci="bars", type="p"
pch=19, ci.level=0.95,

#main="Association with a 1 - unit increase above
threshold (95%CI)",ylab="RR")

pred.H4 G2 crogabraddicl AHn 1RAE L2
plot(préé:%4, K166 Ol 11 J1GES, Oz 1A pSQTRAM §

plot(predjﬁ4, "contour", xlab="Humidity",
key.title=title ("RR"),

plot.title=title("Contour
plot",xlab="Humidity",ylab="Lag"))

#pred.H42 <- crosspred(cb.H4, model5,by=1)

#plot (pred.H42, "slices", var=65, ci="bars", type="p",
pch=19, ci.level=0.95,

#main="Association with a 1 - unit increase above
threshold (95%CI)",ylab="RR")

e VYo mmmmmmm oo

pred.VV <- crosspred(cb.VV, modelb)

plot (pred.VV, xlab="Visibility", zlab="RR")
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plot (pred.VvV, "contour", xlab="Visibility",
key.title=title ("RR"),

plot.title=title ("Contour
plot",xlab="Visibility",ylab="Lag"))

pred.H42 <- crosspred(cb.H4, model5,by=1)

plot (pred.H42, "slices", var=65, ci="bars", type="p"
pch=19, ci.level=0.95,

main="Association with a 1 - unit increase above
threshold (95%CI)",ylab="RR")

SRR RS AR R AR R EEE R R il VM-—————— ===
pred.VM <- crosspred(cb.VM, modelb)

plot (pred.VM, xlab="Maximum sustained wind speed",
zlab="RR")

plot (pred.VM, "contour", xlab="Maximum sustained wind
speed", key.title=title("RR"),

plot.titléfﬁitle("Contour wlotdlxaliabs"Maglingm sustained
wind speéﬁ};ylabz"Lag"))

pred.H42L£4 crosspred(cb.H4d, model5,by=1)

plot (pred.H42, "slices", var=65, ci="bars", type="p",
pch=19, ci.level=0.95,

main="Association with a 1 - unit increase above
threshold (95%CI)",ylab="RR")

acf (model5Sresid)
library (car)

qqPlot ( (model5Sresid-
mean (model5$resid)) /sd (model5Sresid))

ks.test (rnorm(294), (model5Sresid-
mean (model5$resid)) /sd (model5Sresid))
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