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Abstract 

Dengue fever (DF) is a life threatening infectious mosquito borne disease that places a heavy 

burden on public health system in Sri Lanka as well as on most of the tropical countries 

around the world. Currently, there is no antiviral drug for treatment of DF. The objective of 

this study is twofold, first is to analyze the epidemic outbreak patterns of dengue cases in 25 

districts in Sri Lanka, second is to identify the association between climatic variables and 

dengue counts in Colombo district where dengue is predominant. Weekly data on dengue 

cases were obtained between January, 2009 – September, 2014. Temperature (maximum, 

minimum, mean), precipitation, visibility, humidity, and wind speed were also recorded as 

weekly averages. Wavelet analyses were used to explore the periodicity of dengue cases. 

Wavelet coherence was performed to identify the association between dengue and climatic 

factors. Further, a Poisson regression combined with distributed lag nonlinear model (dlnm) 

was used to quantify the impact of climatic factors on dengue counts while taking the lag time 

into account. Change point analysis was performed as a complementary analytic method to 

identify changes in variance of dengue and climate time series.  Dengue dynamics showed 

multiple periodic patterns (1-8 weeks, 26 weeks and 52 weeks) across twenty five districts 

which can be divided into two groups based on wavelet cluster analysis. Wavelet coherency 

revealed a significant non-stationary association between climatic variables and dengue 

incidence in annual and semi-annual scale.  Results of dlnm revealed mean temperature 

around 250C – 260C prior to 5 weeks, high precipitation (>30mm), humidity 65% - 75% prior 

to lag of 10-15 weeks, and high visibility have an harmful impact on increasing relative risk 

of dengue incidence. These findings can aid the targeting of vector control interventions and 

planning for dengue vaccine implementation. 

 

Keywords:  Dengue, Wavelet Analysis, Climate, Distributed lag nonlinear model, Change 

point analysis 
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CHAPTER 1 

INTRODUCTION 

1.1 Overview 

In this chapter, we provided a brief background of the crucial aspects of climate 

change and its adverse impact on the dengue dynamic and transmission. This chapter 

describes the background, objectives and the significance of the study in sections 1.2, 

1.3 and 1.4, respectively. Organization of the thesis is summarized in section 1.5. 

1.2 Background of the Study 

 

“Small bite – big threat”. The theme of World Health Day, 2014 is a timely reminder 

of the huge harm caused by small creature, called “vectors”, such as mosquitoes, 

ticks, fleas, mites, sand files and freshwater snails. These animals help spread a range 

of parasitic, viral and bacterial diseases that affect people of all ages across all socio-

economic backgrounds. Out of these diseases dengue is the world’s most dangerous 

viral vector-borne disease transmitted via infective female mosquitoes, namely Aedes 

aegypti and Aedes albopictus (Alshehri, 2013). The geographic distribution of 

dengue, both the classical dengue fever (DF) and its more severe form dengue 

hemorrhagic fever (DHF), has been expanded dramatically in recent decades 

(Cazelles, Chavez, McMichael, & Hales, 2005). According to current estimates, this 

disease is now endemic in more than 100 countries in Africa, the Americas, the 

Eastern Mediterranean, South-east Asia and Western Pacific (Hii, 2013). South-east 

Asia and the Western Pacific are the most seriously affected (Hii, 2013). Estimates of 

the World Health Organization (WHO) indicated that up to 100 million people get 

infected with dengue every year and another 2.5 billion are at risk of getting infected.  

 

First known reported case of dengue virus in Sri Lanka goes back to the middle of the 

last century. The presence of virus was serologically confirmed in 1962 (Tissera et al., 

2011). Currently both dengue fever and dengue hemorrhagic fever are endemic in Sri 

Lanka. There is a sharp increase in dengue cases since 2009. Transmission takes place 

all year round with two seasonal peaks extending from December to April and May to 

October. There are two important trends related to dengue outbreaks in Sri Lanka; the 
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total number of reported dengue cases is significantly increasing, and dengue started 

to appear in the districts outside the western province. The infection remains a major 

threat to the community well being because it incurs significant health cost to the 

society. However, we have a limited understanding of the disease transmission 

dynamics in Sri Lanka.  

 

Dengue epidemiology, incorporating both DF and DHF, is determined by a complex 

interaction of climate, physical environment and social factors (Morin, Comrie, & 

Ernst, 2013). While many factors play a role in the dynamics of dengue transmission 

and infection, climate variability has been shown to be important in explaining its 

occurrence, and is considered as a major determinant (Serfling, 1963). Temperature, 

humidity, and rainfall have been reported to affect the incidence of dengue either 

through changes in the duration of mosquitoes and parasite life cycles or through 

influences on human (Hii, 2013). The life cycle takes approximately 1-2 weeks or 

longer depending on temperature, and availability of water, and other climatic factors. 

The average life span of an adult mosquito ranges from 2 to 4 weeks (Banu, 2013). A 

study conducted by Hii et al. (2013) suggested that it is possible for Aedes to live up 

to approximately 100 days given the optimal environmental condition. Further Aedes 

can lay eggs on a dry surface and their eggs can withstand complete dryness for 

several months depending on humidity (Banu, 2013; Hii, 2013). Because of this 

ability, the eggs can be transported great distances by humans in a wide variety of 

containers or objects or by wind. These eggs can then be hatch within a short period 

after being exposed to rain and optimal temperature (Hii, 2013). Although heavy 

rainfall can potentially flush away immature stage of mosquito, the rainy seasons 

creates ample number of artificial and natural habitats for Aedes mosquitoes. Heavy 

rainfall can also increase the mortality rate of adult mosquitoes (An & Rocklov, 2014; 

Banu, 2013; Hii, 2013). 

 

Even though climate change has a significant impact on the transmission and 

incidence of dengue fever there is no clear evidence to show that such impact has 

already occurred in the context of Sri Lanka. To date, there is still no effective 

vaccine available to control the occurrence and periodic recurrent outbreaks of DF 
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and DHF. In the absence of a vaccine for the prevention and control of dengue fever, 

eliminating the breeding places of Aedes mosquitoes is still the only effective strategy 

to interrupt the transmission of the disease. To improve prevention and surveillance, 

public health officials need to know much more about the patterns of dengue virus 

transmission and about the climatic factors that underlie these patterns. Dengue 

prevention and control activities in diseases-endemic setting in Sri Lanka currently 

rely on targeted spraying of aduticides to reduce vector populations in and around the 

homes of reported patients. However, this does not provide a quantitative measure or 

much predictive lead. Therefore, a good understanding of the relationships between 

climate and dengue cases is needed to facilitate the analyses in the effort to prevent 

their occurrences.  

In light of the biological relationship between climate and transmission potential, in 

this study, we aimed at estimating the effects of diverse climatic variables, such as 

temperatures (maximum, minimum, mean), absolute humidity, rainfall, visibility, and 

wind speed on the transmission of dengue and  identifying the lag periods that have 

significant effect on the dengue incidence.  An understanding of seasonal patterns of 

dengue, and their weather drivers can provide vital information for controlling and 

eliminating the activities. 

In some studies, Generalized Linear Models (GLM) or Generalized Additive Models 

(GAM) with Poisson distribution was widely used to estimate association between 

meteorological factors and mortality or disease incidence (Kim, Park, & Cheong, 

2012). But GAM/ GLM requires the data to be independent among each individual. 

Time series data are always autocorrelated, so that it is not proper to fit time series 

data with GAM or GLM. Moreover, climatic effect on the dengue incidence may be 

distributed in the days of different time lags and this feature has never been addressed 

in previous researches (Ma et al., 2013). Therefore, our study has been designed to 

estimate the effect of diverse climatic variables on the transmission of dengue fever 

while taking the lag time into account. Furthermore, dengue incidence data show 

complex nonlinear dynamics with strong seasonality, multiyear oscillations, and 

nonstationarity (changes in dominant periodic components over time). These features 

of the data mean that conventional statistical methods may be inadequate (Cazelles et 
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al. 2005). To overcome the above mentioned problems in this thesis, we introduce 

wavelet analysis, change point analysis and distributed lag nonlinear models.  

 

1.3 Objectives of the Study 

The overall aim of this research is to identify epidemiological outbreak pattern of DF/ 

DHF in each district in Sri Lanka. Furthermore, this study aims to identify and 

quantify the nonlinear, nonstationary association between climatic factors and dengue 

counts in Colombo district, the most urbanized and density populated region in Sri 

Lanka, where dengue is predominant. The specific objectives are to: 

1. To identify periodic pattern  in dengue counts and how it progress through time 

and space. 

2. To identify districts with similar dengue dynamic pattern. 

3. To identify nonstationary association between dengue counts and climate 

variables 

4. To identify the delayed effect of the climate variables on dengue counts. 

5. To identify the non-linear association between climates variables and dengue 

counts. 

6. To determine whether there are change-points, where dynamics shifted 

transmission pattern in dengue and climate variables. 

 

1.4 Significance of the Study 

Sri Lanka is primarily a tropical country with high humidity and warm temperature 

throughout the year forming ideal conditions for multiplication of the Aedes mosquito 

and the transmission of dengue fever. Even though this has been a great health hazard 

in Sri Lanka, there are only a handful of studies conducted to identify the association 

between dengue and climate variability. The published studies were mainly limited to 

examining the clinical and epidemiological characteristics of dengue (Pathirana, 

Kawabata, & Goonatilake, 2009).  

Furthermore, there were no known studies that have used the lag effect of several 

climatic variables on dengue transmission incidence in Sri Lanka. To improve dengue 
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prevention and surveillance, public health officials need to know much more about 

the patterns of dengue virus transmission and about the factors that underlie these 

patterns. This would allow the implementation of timely preventative measures. 

Dengue is widely distributed throughout tropical and subtropical regions of the world 

and approximalt 50% of world population live in dengue endemic areas. At the same 

time many hotspots of dengue fever are also tourists’ hotspots, for example Phuket, 

Rio de Janeiro, Sri Lanka etc. As foreign travel to tropical locations becomes more 

accessible and popular, dengue fever is becoming a big threat to the tourism industry. 

This has a serious impact for a country in which the tourism sector contributes greater 

portion to national GDP. Recently, countries such as the UK have issued dengue fever 

warning for travellers to areas where the disease in endemic. Moreover, according to 

current estimates, the annual social cost incurred due to dengue is Rs. 7 billion and, 

the cost to the government for treating a dengue patient in the Intensive Care Unit is 

about Rs. 50,000-60,000 a day (“Dengue battle”, 2014).  

The model developed in this study quantitatively assesses the relationship between 

climatic factors and dengue outbreaks. This provides time for the allocation of 

resources to interventions such as preparing health care services for increased number 

of dengue patients and educating populations to eliminate mosquito breeding sites. 

Further, because of time lags involved in the climate-disease transmission system 

lagged observed climate variables could provide some predictive lead for forecasting 

disease epidemics. 

The CEO of Appllo Munich Healthcare claimed dengue care is a good entry point to 

insurance as dengue is understood by all. He argued selling health insurance can be 

difficult because general public is mostly reluctant to pay a monthly insurance fee for 

a benefit they would claim only in the case of illness or accident but dengue fever 

insurance product would help people to taste insurance. Indonesia has already 

introduced dengue fever insurance to the public. So the results of this study would 

benefit for both actuaries and policy makers in the field of finance.  

Studies on prevalence of dengue are important not only to assess the problem of 

dengue in a given region, but also to analyses the effectiveness of strategies for 
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primary and secondary prevention as well as its quality and impact. Economic burden 

of dengue due to hospitalization, mortality and morbidity costs along with opportunity 

costs of time and productivity losses due to illness far exceed the cost of vector 

control. Public health systems are already overburdened in many countries. Thus, the 

results of this study would benefit for optimizing current dengue surveillance and 

control programmes. 

 

1.5 Outline of the Thesis 

 

This report consists of eight chapters. Chapter 2 presents a systematic review of 

literature illustrating the nature of the impact of climate change on health, related 

factors and research studies with statistical modeling approaches related to climate 

change and health. It also discusses the methodology used by the previous 

researchers, identifies research gaps and gives recommendations for the future studies. 

Chapter 3 gives a brief overview of the two data sets used in the research: 

epidemiology data and climate data. We also describe the study population and 

coverage area and data management. This chapter further describes statistical 

approaches especially the wavelet analysis, change point detection and distributed lag 

nonlinear modeling approach used in the study. We illustrate a brief overview of the 

theoretical descriptions of the above methods.  In chapter 4, we give a brief overview 

of the two data sets used in the research: Epidemiological data and climate data. 

Chapter 5 presents the results of wavelet analysis of each district. Results of wavelet 

cluster analysis and wavelet coherency analysis also present under this chapter. 

Chapter 6 presents the results of change point analysis. In chapter 7, we present the 

results of Poisson regression model combined with distributed lag nonlinear model. 

Chapter 8 concludes the thesis and describes some of the limitations of the research.   
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CHAPTER 02 

LITERATURE REVIEW 

2.1 Overview 

The first part of this chapter focuses on dengue fever, its epidemiology, the role of 

climate in the dengue transmission cycle and previous studies linking climate to 

dengue worldwide. Section 2.3 is a systematic review of the relationship between 

climatic factors and dengue incidence around the world and some of the modeling 

techniques that have been used to find the association between climatic variables and 

dengue incidence. This review will help to identify and highlight the knowledge 

needed to develop a successful model for dengue risk based on climate information. 

2.2 Dengue 

Dengue Fever (DF) is a mosquito-borne disease endemic to tropical and subtropical 

areas, which is transmitted by mosquitoes Aedes aegypti and Aedes albopictus. Aedes 

aegypti is the principal vector for DF transmission and is a highly domesticated 

mosquito. The Aedes albopictus is the secondary vector of DF. The hot and humidity 

with moderate rainfall climate in tropical areas forms an ideal condition for them to be 

active all year around. Dengue exists in 4 distinct serotypes – DENV 1- 4, within 

which there is considerable genetic variation (Fansiri et al., 2013).    

Dengue fever (DF) is characterized by high fever, severe headache, and vomiting and 

low blood cell count. Dengue fever has the potential of escalating to DHF and dengue 

Dengue Shock Syndrome (DSS), which are potentially deadly complications (Lam et 

al., 2013). These are characterized by high fevers, enlargement of the liver and in 

worse case situations, circulatory failure (Harris et al., 2000). DF transmission is most 

common in urban areas due to overcrowding, unplanned urbanization and 

environment pollution. Transmission occurs when a female mosquito bites and sucks 

blood containing the dengue virus from infected person which then goes through 

incubation period of approximately 10 days. At this stage the virus is capable of being 

transferred to a human host when the mosquito probes the skin. After that, the 

mosquito remains infective for the rest of its life. As there are no specific antiviral 
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medicines treating or vaccines preventing dengue, the only way to control or prevent 

the disease is through the management of mosquito populations (Lowe et al., 2011).  

2.3 Mosquito Lifecycle  

Changes in temperature and precipitation have well-defined roles in the transmission 

cycle and may thus play a role in changing incidence levels (Johansson, Cummings, 

& Glass, 2009). The life cycle of a mosquito consists of four stages; egg, larva, pupa 

and adult. Each of these stages can be easily recognized by their special appearance. 

Figure 2.1 displays the life cycle of the Aedes mosquito. The lifecycle starts by laying 

eggs on the surface of the water. The pupa and larval states of the mosquito will take 

place in the water reservoir where a female adult mosquito lays her eggs. On average, 

a female Aedes mosquito can lay about 300 eggs during her life span (Banu, 2013). A 

period of about 48 hours is required for the eggs to hatch into larva but under optimal 

condition the eggs of an Aedes mosquito can hatch into a larva in less than a 

day(Banu, 2013). The larva then takes about four days to develop into pupa 

depending on nutrient levels, temperature and water condition. Then after two days 

adult mosquito will emerge from pupa. Three days after the mosquito has bitten a 

person takes in blood, it will lay eggs, and cycle begins again. So it is clear Aedes 

mosquito as a biological creature needs few climatic factors to complete their life 

cycle. Therefore, a good understanding of the relationships between climate and 

dengue cases is needed to facilitate the analyses in the effort to prevent their 

occurrences. 

 
Figure 2.1: Aedes mosquito lifecycle 

Source: http://www.nature.com/scitable/topicpage/dengue-transmission-22399758 
(assessed on: 1 - 12 - 2014) 

 

http://www.nature.com/scitable/topicpage/dengue-transmission-22399758
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2.4 Geographical Distribution of Dengue 

Dengue is the most rapidly spreading mosquito-borne viral disease in the world 

(Alshehri, 2013). The World Health Organization (WHO) ranks dengue among the 

most important infectious disease with major impact on international public health 

(Descloux, 2012; Wu et al., 2009). The geographical distribution expanding and the 

transmission rates are increasing. Today it is estimated that over two fifth (2.5 billion) 

of the world population live in dengue endemic areas, of whom fifty million are 

infected annually. Dengue incidence has dramatically increased globally over the last 

two decades due to population growth, unplanned urbanization, increased travel and 

transportation of goods, lack of political will and limited resources for implementing 

effective control measures (Hu, Clements, Williams, & Tong, 2010). The disease is 

now endemic in more than 100 countries in Africa, the Americas, the Eastern 

Mediterranean, South-east Asia and Western Pacific (Xiao et al., 2013). South-east 

Asia and the Western Pacific are the most seriously affected. 

 
Figure 2.2: Dengue, countries or areas at risk, 2011 

Source: http://www.humanosphere.org/2013/08/dengue-fever-spreading-brazil/ 

(assessed on: 1 – 12- 2014) 

 

 

http://www.humanosphere.org/2013/08/dengue-fever-spreading-brazil/
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2.5 Dengue Epidemiology in Sri Lanka 

Sri Lanka has geographic and climatic features that are conducive for the propagation 

of vectors of dengue fever and its epidemics. All four serotypes of dengue virus have 

already been identified in Sri Lanka (Messer et al., 2002). Geographical distribution is 

spreading and transmission rates have increased over the last decades.  

 

 

Figure 2.3: Reported dengue cases in January 2014 

Source: http://www.sundaytimes.lk/140209/news/dengue-battle-costs-billions-so-

why-the-soaring-deaths-85137.html (assessed on: 1 - 12- 2014) 

Dengue cases were serologically confirmed in Sri Lanka since 1962. Initially, the 

disease was mainly spread in the western costal belt and later found in other suburbs 

as well. In 1965, there was a dengue outbreak throughout the country with 51 cases 

and 15 deaths. The first epidemic of DHF/DSS occurred during 1989-90 and the 

etiological agent was DENV-3, which was reported to have a genetic change resulting 

in increased epidemic potential/ virulence. Since then outbreaks with successive ones 

http://www.sundaytimes.lk/140209/news/dengue-battle-costs-billions-so-why-the-soaring-deaths-85137.html
http://www.sundaytimes.lk/140209/news/dengue-battle-costs-billions-so-why-the-soaring-deaths-85137.html
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being larger in dimension than previous ones have occurred, and currently DF and 

DHF are endemic to Sri Lanka.  

 

 

Figure 2.4: Annual number of DF/ DHF cases in Sri Lanka 

2.6 Determinants of Dengue Transmission and Modeling Approaches 

There are many factors such virus, vector, host, and environment that are involved in 

the transmission cycle of DF. Numerous human activities such as population growth, 

unplanned urbanization commonly associated with insufficient waste collection, 

increased transportation of goods facilitates breeding sites for the mosquito and 

movement of infected mosquitoes across regions (Cheong, Burkart, Leitao, & Lakes, 

2013). Climate is an important determinant of temporal and spatial distribution of DF 

vector. Rainfall, temperature and relative humidity are thought as important factors 

attributing towards the growth and dispersion of mosquito vector and potential of DF 

outbreaks (Banu, 2013).  

In light of these biological relationships between climate and transmission potential, 

several studies have suggested an association between dengue epidemics and climatic 

factors. Different methods were used to evaluate the association between climatic 

variables, non-climatic variables and DF incidence or mosquito density. The methods 
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used range in complexity, from simple descriptive analysis to the applications of more 

sophisticated methods. These modeling techniques can be divided into six categories 

as; 1) linear regression models, 2) lagged time Poisson regression models, 3) time 

series models, 4) Bayesian models, 5) Wavelet analysis and 6) Spatial Analysis. 

Weather and climate variables generally included temperature, rainfall, humidity, and 

an El Ni˜no index ( Hu et al., 2010; Cheong et al., 2013;  Tissera., 2011). Most of the 

studies used reported cases and some used laboratory confirmed data as response 

variable. 

2.6.1 Linear regression models 

Colon – Gonzalez, Lake, and Bentham (2011) used multiple linear regressions to 

explore the relationship between climate variability and dengue incidence in Mexico 

from 1985 to 2007. They found that the incidence was higher during El-Nino events 

and in the warm and wet season, especially during the cool and dry. Similarly, 

Nakhapakorn and Tripathi (2005) explored the empirical relationship between 

climatic factors and dengue incidence in Thailand using multiple linear regression 

approach. Authors found that dengue incidence generally occurred when average 

temperature increased above normal and rainfall was comparatively lower and 

humidity was higher.  But in this model the response variable is counts. Further these 

models were not able to capture the nonlinear effect of response variables.  

2.6.2 Lagged time Poisson regression models 

Lagged time Poisson regression has been widely used technique to identify the 

association between dengue incidence and weather variables ( Chen et al., 2010; 

Fairos, Azaki, Alias, & Wah, 2010; Pham et al., 2011). Hii (2013) examined the 

relationship between climate and dengue incidence in Singapore with the aim of 

developing early warning system to forecast dengue outbreaks.  To analyze the 

relationship between dengue incidence and temperature and rainfall, a Poisson 

regression model was developed using weekly data from 2000 – 2010. Quasi Poisson 

was applied to allow for over – dispersion of the data. This study suggested that the 

optimal time for dengue incidence forecast was at least three months. Further results 

showed that the higher risk occurred at a lag of 3 and 4 months subsequent to mean 
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temperature and cumulative rainfall. Author mentioned risk factors such as 

population, climate and human behavior can be unique to different study areas hence 

dengue forecasting models needs to study area specific. Dengue fever has become a 

major health concern in the tropical countries. Similarly, Fairos et al. (2010) 

conducted a study in Malaysia using weekly climate data. The dependent variable 

used is the number of dengue cases while the explanatory variables were daily 

cloudiness, daily relative humidity, daily rainfall, maximum daily temperature, 

minimum daily temperature and daily wind speed. In addition to Poisson regression 

model, they used Negative binomial regression model since the variation of data is 

higher than the mean. They conclude lagged operator of 14 and 21 days climate 

significantly influenced the climate break.  

Chen et al. (2010) conducted a study in Taiwan using weekly confirmed cases from 

January 1998 to October 2008 and weekly meteorological data to identify link 

between meteorological data and mosquito abundance to dengue fever dynamics. A 

Poisson regression analysis was performed by using a generalized estimating 

equations (GEE) approach. Their study was done in two areas Taipei and Kaohsing, 

where major dengue outbreaks occurred in southern Taiwan. Based on the cross – 

correlation analysis, 1 – month lag of rainfall, 1 – month lag of minimum temperature 

and 4 – month lag of relative humidity selected as independent variables for Taipei 

while for Kaohsing, 3 – month lag of rainfall, 3 – month lag of minimum 

temperatures, 3 – month lag of relative humidity and 1 – month lag of Breteau index 

level was chosen. Authors suggested that warmer temperature with a 3 – month lag 

and elevated humidity increased transmission rate of dengue fever. 

However in all the above models the response variable may be correlated with the 

adjacent point in time so it is necessary to embody autocorrelation of the response 

variable when modeling. But all the above models described how the response 

variable is related to explanatory variables without considering how response can be 

correlated with its past values. In addition, when estimating parameters 

autocorrelation causes trouble because GLM and GAM essentially requires each 

observation to be independently distributed. Violation of this assumption can lead to 

problematic estimates. In order to avoid above problems Yang et al. (2012) introduced 
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GAM with Autoregressive terms (GAMAR) which is derived from Generalized 

Autoregressive Moving Average models to study the effect of daily temperature on 

mortality.   Authors stated GAMAR has two advantages over GAM: 1) It is a model 

for generalized time series analysis rather than a probabilistic model like GAM; 2) the 

AR part of the GAMAR can explain the autocorrelation structure of observations. 

Briet, Amerasinghe, and Vounatsou (2013)  extended GARMA to generalized 

seasonal autoregressive integrated moving average (GSARIMA) to model monthly 

malaria cases in Sri Lanka. Model fit was carried out using full Bayesian Inference. 

This approach is effective in modeling non Gaussian, non stationary and/ or seasonal 

time series of count data.  

2.6.3 Time series models 

Time series modeling approaches have been extensively used to identify the impact of 

climatic variables on dengue incidence (Cazelles et al., 2005; Gharbi et al., 2011; Hu 

et al., 2010; Pinto, Coelho, Oliver, & Massad, 2011; Thai et al., 2010). Out of 

different Box – Jenkins models SARIMA models are potentially useful when 

forecasting dengue incidence (Chaves & Koenraadt, 2010; Martinez & Silva, 2011). 

Gharbi et al. (2009) used seasonal autoregressive integrated moving average 

(SARIMA) model to predict the occurrence of dengue epidemics in French West 

Indies. Weekly laboratory confirmed cases from 2000 – 2007 were used for the study. 

They found temperature improves dengue outbreaks forecasts better than humidity 

and rainfall. Their results are results consistent with those of other studies dealing 

with the effect of climate on dengue incidence (Focks et al., 2006; Luz et al.,2011; 

Serfling, 1963; Wu et al., 2007). Similarly, Hu et al. (2010)  fitted a SARIMA model 

to examine the impact of El – Nino on the occurrence of dengue in Queensland, 

Australia for the period 1993 – 2005.  

SARIMA models have been successively used in epidemiology studies to predict 

other infectious diseases such as Malaria, Cryptosporidiosis, etc. (Hu, Tong, 

Mengersen & Connell, 2007; Yang et al., 2012]. For example, with the aim of 

developing a forecasting system in Sri Lanka, Briet et al. (2013) used SARIMA 

model to forecast malaria incidence in Sri Lanka. The addition of covariates such as 
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the number of malaria cases in neighbouring districts, rainfall improves the prediction 

of models. One main advantage in this method is it allows the integration of external 

factors that may lead to increase the predictive power.  

But there are some several drawbacks in these models. Mainly, these models were not 

sufficient to capture the non – linear relationship between dengue incidence and 

climatic variables.  

 

2.6.4 Bayesian models 

Bayesian modeling approach has been often used in epidemiological studies to 

understand the spatial and temporal pattern of infectious diseases (Castillo, Korbl, 

Stewart, Gonzalez and Ponce, 2011). Zacarias et al. (2010) used Bayesian modeling 

approach to analyze the spatial and temporal pattern of malaria and which climatic 

variables influence the distribution of malaria incidence in Mozambique, for the 

period 1999 – 2008. Prates, Dey, and Lachos (2012)  developed novel approach to 

capture effects of skewness and heavy tail behavior of data while maintaining the 

conditional autoregressive structure. Bayesian hierarchical method was used to fit the 

model. Appropriateness of the model was tested by using dengue fever infection in 

the state of Rio de Janeiro.  

2.6.5 Wavelet analysis 

Among the various approaches developed to study nonstationary data, wavelet 

analysis is probably the most efficient (Fairos et al., 2010; Pham et al., 2011). 

Wavelet analysis is now frequently used to extract information from ecological and 

epidemic time series (Cazelles and Chavez, 2014). Wavelet analysis provides the 

possibility of investigating the quantifying the temporal evolution of time series with 

different rhythmic components. In addition, wavelet analysis allows detection of 

changes in periodicity in time. Wavelet time series models have been applied in 

determining the relationship between climate variables and dengue incidence in 

Puerto Rico, Mexico, and Thailand particularly, with the aim of identifying time and 

frequency specific association (Johansson et al., 2009). Cazelles and Chavez (2014) 

used wavelet time series analysis to demonstrate association between dengue 
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incidence and El-Nino in Thailand from 1986 to 1992. Different transformation 

techniques on dengue incidence time series were used before analysis to reduce 

skewing and standardized the amplitude. ( Descloux et al., 2012; Pham et al., 2011). 

Study conducted by Thai et al, (2010) trend was suppressed before analysis by 

removing the periodic components with period components greater than 8 years by 

using a classical low pass filter.  

Unlike conventional statistical methods (i.e. spectral density analysis), wavelet 

coherence measures the cross correlation between two time series as a function of 

their frequencies, providing information about those periods where two nonstationary 

signals are linearly correlated with each other (Cazelles et al., 2014). More 

specifically, wavelet coherence analysis determines if the presence of a particular 

frequency in a disease series at a specific time is related to the same frequency and at 

the same time in a given covariate.  

Thai et al. (2010) investigated dengue transmission dynamics in nine districts in Binh 

Thuan province, southern Vietnam over the period 1994 – 2009. Wavelet analyses 

were performed on time series of monthly notified dengue cases to detect and 

quantify dengue periodicity, to describe synchrony patterns in both time and space 

and to investigate the spatio-temporal waves. Wavelet coherency analysis was used to 

estimate the relationship between dengue incidence and El Nino-Southern Oscillation 

(ENSO) indices. Wavelet analyses of time series data from nine districts of Binh 

Thuan province displayed periodicity for all districts. More specifically, periodicities 

were detected in the 1-year and the 2-3 year bands. Further dengue dynamics showed 

different evolutions across the nine time series which can be divided into three groups 

based on wavelet cluster analysis. The first group consists of three districts in which a 

multi-annual cycle was predominant and the annual cycle was week. Second group 

consist three districts in which the annual cycle was predominant and the last group 

consists of districts in which both annual and muti-annual cycle were present. 

Wavelet coherence revealed a strong non-stationary association between ENSO 

indices and climate variables. This study revealed interesting information on dengue 

transmission dynamics in Binh Thuan province. However, there was a limitation; 

dengue data used in this study were based on notified clinically-suspected dengue 
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cases from hospitals or clinics without laboratory confirmation. These numbers may 

be an underestimation of the true incidence.  

Cazelles et al. (2005) estimated associations between severe dengue (henceforth 

dengue) incidence in Bangkok and the averaged incidence for the rest of Thailand, 

and the Ni˜no-3 index, the Southern Oscillation Index, and average monthly 

temperature and precipitation over the period 1983–1997. Wavelet analysis was 

selected because, as previously explained, it allows the quantification of the temporal 

evolution of a time series with different cyclic components (Cazelles et al., 2007). 

Statistical relationships between the dengue and climatic time series were estimated 

using wavelet coherence analysis. The dengue series showed strong seasonal 

oscillations, indicating a strong influence of the annual cycle on dengue dynamics. 

The El Ni˜no series on the other hand, was dominated by cycles of about 4–6 years. 

Both dengue series have in-phase cycles of about 2–3 years (with a mean delay of 

three months in the rest of Thailand with respect to Bangkok) only over the period 

1984–1992 where there is high coherence with El Nino cycles. Over the periods 

1983–1986 and 1991–1997 the annual oscillations are dominant, showing a mean 

delay of one month in Bangkok with respect to the rest of Thailand. Dengue and 

precipitation were significantly associated with each other at the annual scale. Both 

series are in-phase in most of the country; however, dengue incidence in Bangkok 

follows the seasonal peak of precipitation after a short lag time (length not specified 

by the authors). Over the period 1986–1991, dengue and precipitation were 

significantly associated for cycles of about 2–3 years. Similar but weaker patterns of 

oscillation were observed for temperature in both series. 

 

2.6.6 Spatial analysis 

Seng, Chong, and Moore (2005) conducted a research to analyse the spatial pattern 

and diffusion of dengue fever in Malaysia by incorporating epidemiological and 

statistical techniques into a Geographical Information System (GIS). It has been 

widely used in disease monitoring and surveillance and identification of high – risk 

areas and population at risk (Seng et al., 2005). All suspected and indeterminate cases 
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of dengue fever reported in the Johar State for 2004 were used in the study. With the 

aim of implementing effective vector control programs space – time cluster analysis 

was used and it identified a total of 31 clusters in the Johor State. Geographical 

weighted regression (GWR) analysis has been utilized in this study to identify 

association between dengue fever prevalence, population distribution and 

meteorological factors and characteristics of space time clusters in the Johor State. 

GWR analysis illustrates that 10 to 14 days of accumulative rainfall is sufficient to 

support mosquito breeding cycle and the dengue virus incubation period in the Johor 

Bahru district is 15 days. Jeefoo (2012) used GIS to analyze the spatial factors related 

to dengue fever, dengue hemorrhagic fever and dengue shock syndrome epidemics in 

Thailand. Spatial autocorrelation statistics and kernel-density estimation was 

employed by the author. Spatial autocorrelation is a valuable technique to study how 

spatial patterns change over time. Finally they developed a risk zone map for the 

incidence. Similarly, Wu et al. (2009) used GIS to illustrate the spatial patterns of 

dengue fever incidence, climate and non-climatic factors of the 358 townships in 

Taiwan. They obtained daily data from 80 monitoring stations with complete 

temperature records and 300 monitoring stations with complete rainfall records from 

1998 to 2002. Further daily notification of dengue fever cases for the period of 1998 – 

2006, including age, gender, township of residence, and the time of disease on set for 

each case were used for the study. In addition in this research they used several non-

climatic factors such as population density, income, percentage of service and 

agriculture occupancy, home ownership and number of clinics. Number of months 

with average temperature higher than 180C per year and degree of urbanization were 

found to be associated with increasing risk of dengue fever at township level.  

2.6.7 Distributed log nonlinear modeling approach 

 

Horta et al. (2003) applied distributed lag nonlinear modeling framework to determine 

the time-lag effect of meteorological factors on the relative risk of dengue incidence 

in Coronel Fabriciano city, Brazil. The weekly number of notified dengue cases 

during the period 2004-2010 was used for analysis. They found when considering the 

rainfall, the highest RR (1.2) was observed for lag 10. Further authors have shown 
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that DF incidence was associated with weekly cumulative precipitation at lag 5-8 and 

9-12. Weekly precipitation was associated with dengue incidence at lag of 7-12 

weeks. Increasing weekly cumulative precipitation posed increasing risk on dengue 

outbreaks until time lag of 14 weeks, whereas highest RR for weeks after rainfall 

peaked at time lag 10. In addition to above discussed methods Yusof and Mustaffa 

(2011) used least square support vector machine approach to predict dengue outbreaks 

in Malaysia. Support vector machine is efficient approach for solving problems in 

nonlinear classification and regression.  

 

In summary, this review indicates that climate change likely to affect the pattern of 

dengue incidence. The quantitative models employed for evaluating the relationship 

between climate variables and dengue incidence have been typically different with 

respect to nature of the relationship (linear or nonlinear), distributional assumptions 

(normal or poisson), spatial dynamics. These studies have highlighted that many 

climatic variables play a key role in dengue transmission and its distribution. The 

most important predictor variables in the model were temperature, humidity, rainfall 

and urbanization. Many of the studies highlighted the importance of delayed effect of 

climatic variables on dengue incidence.  
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CHAPTER 03 

METHODOLOGY 

 

3.1 Overview 

This chapter describes in detail the procedures employed in achieving the aims and 

objectives of this research. The chapter is organized as follows:  Sections 3.2, 3.3 

discuss the study area and description of data used in the study.  Section 3.4 is 

devoted to the establishing of theoretical background of wavelet analysis. In section 

3.5 we give an overview of change point analysis of variation by using PELT 

segmentation. Detail explanation distributed non linear lag models is given in sections 

3.6.   

3.2 Study Area 

Sri Lanka is an island located in southeastern tip of India (70N, 810E) with a total area 

of 65610km2 with 64740km2 of land and 870km2 of water. It is primarily a tropical 

country with high humidity and warm temperature throughout the year. This climate 

condition plays an important role in conducive for transmission of dengue fever. The 

topography of the country is divided into three distinct areas namely; plains, the 

coastal belt and the central highlands. The average yearly temperature for the whole 

country ranges from 28 to 300C. The mean temperature in central highland is 15.90C. 

The coldest month with respect to mean temperature is January while the warmest 

months are April and August. The rainfall pattern in Sri Lanka is influenced by the 

monsoon winds. According to the to the climate characteristics of 12 month the island 

can be divided into 4 climate seasons as; first monsoon (March - April), southwest 

monsoon (May – September), second inter monsoon (October - November), Northeast 

monsoon (December - February). Relative humidity ranges from 60% to 90% during 

different seasons and areas of the country.  

The association between dengue incidence and climatic factors were studied in the 

Colombo District, where there is a marked increase of dengue cases evidenced during 

the last few years. It is located in the southwest of Sri Lanka and has an area of 
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699km2. Colombo district is the most urbanized and density populated region of Sri 

Lanka and has a number of urban centres including Colombo, the capital (Figure 3.1). 

The main features of the climate are the relatively stable temperature and relative 

humidity year-round, forming an ideal condition for the growth of the vector of 

dengue fever mosquito. 

 

 

Figure 3.1 Study Area 

Source: 

https://www.google.lk/maps/place/Sri+Lanka/data=!4m2!3m1!1s0x3ae2593cf65a1e9

d:0xe13da4b400e2d38c?sa=X&ei=eLoOVeWqM5CiugT4uYHYAg&sqi=2&ved=0C

BsQ8gEwAA (assessed on: 2 – 2 - 2015) 

 

 

https://www.google.lk/maps/place/Sri+Lanka/data=!4m2!3m1!1s0x3ae2593cf65a1e9d:0xe13da4b400e2d38c?sa=X&ei=eLoOVeWqM5CiugT4uYHYAg&sqi=2&ved=0CBsQ8gEwAA
https://www.google.lk/maps/place/Sri+Lanka/data=!4m2!3m1!1s0x3ae2593cf65a1e9d:0xe13da4b400e2d38c?sa=X&ei=eLoOVeWqM5CiugT4uYHYAg&sqi=2&ved=0CBsQ8gEwAA
https://www.google.lk/maps/place/Sri+Lanka/data=!4m2!3m1!1s0x3ae2593cf65a1e9d:0xe13da4b400e2d38c?sa=X&ei=eLoOVeWqM5CiugT4uYHYAg&sqi=2&ved=0CBsQ8gEwAA
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Figure 3.2: Climatic zones of Sri Lanka 

(Source: http://jayaneththi.blogspot.com/2011/03/trunk-of-rubber-tree.html, assessed 

on: 2 - 2 - 2015) 

http://jayaneththi.blogspot.com/2011/03/trunk-of-rubber-tree.html
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3.3 Data Description 

The data used in this study can be divided into two parts; (i) epidemiological data and 

(ii) climatic factors. Section 3.3.1 gives the brief description of the epidemiological 

data used in the study while section 3.3.2 illustrates the meteorological factors. 

 

3.3.1 Epidemiological data 

 

Dengue incidence is reported in Sri Lanka through a national network that covers the 

whole country. These dengue data includes records from health posts and centres, and 

hospitals complied at district level. It includes both microscopically and clinically 

confirmed cases. These counts are registered daily and used to generate Weekly 

Epidemiology Bulletin. They are collected and summarized by each district health 

department and reported to provincial health Officers’ monthly. These values are 

published as weekly epidemiological reports (WERs) by the Epidemiology Unit, 

Ministry of Health, Sri Lanka. 

Weekly notified dengue cases in 25 districts in Sri Lanka were obtained from weekly 

epidemiological reports published by the Epidemiology Unit, Ministry of Health, Sri 

Lanka. Data include cases from 52nd week of (December) 2008 through 36th week 

(September) of 2014.  

3.3.2 Climatic data 

Daily climate data were obtained from an online source (www.tutiempo.net/en/). The 

data from this source was obtained directly from the local weather station in 

Colombo. Daily mean, minimum and maximum temperatures, mean visibility, mean 

wind speed, maximum sustained wind speed, relative humidity and precipitation for 

the years 52nd week of 2008 to 36th week of 2014 were obtained. The daily values 

were used to obtain weekly averages. 

 

 

 



24 
 

Table 3.1: Climate Variables, Variable Label and Unit of Measurement 

Climate Variable Variable Label Unit of Measurements 

Mean Temperature  TEM 0C 

Maximum temperature TM 0C 

Minimum temperature Tm 0C 

Mean humidity H % 

Precipitation amount PP mm 

Mean visibility VV km 

Mean wind speed V km/h 

Maximum sustained wind speed VM km/h 

 

3.4 Data Analysis 

3.4.1 Exploratory data analysis 

In the initial stage of the quantitative data analysis descriptive statistics were 

performed. Descriptive analysis and graphical analysis were useful to gain insights 

into data. They also highlighted errors in the data entry. Since there were no missing 

in dengue cases, no substitution were made. But in climate data there were some 

missing values. Those missing values were imputed from nearest neighboring station 

data values. 

 

3.4.2 Determining dengue periodicity: Wavelet analysis 

According to the exploratory data analysis it reveals time series of dengue incidence 

are characterized by non stationary, non linear dynamics with strong seasonality and 

various oscillations. Therefore, conventional methods such as Fourier analysis, 

generalized linear models (GLM), Box Jenkins time series are inadequate to capture 

those effects. According to Cazelles et al. (2005) among the different approaches of 

studying non stationary data wavelet analysis is probably the most efficient. In this 

research we applied wavelet analysis on time series of dengue cases in each district to 

explore the periodicity in the dengue incidence and how periodicity change with time. 

In contrast to Fourier analysis, wavelet analysis is well suited for the study of signals 

whose spectra change with time. This time-frequency analysis of the signal provides 

information on the different frequencies as time progresses.   
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To explore the periodicity in the dengue incidence time series continuous wavelet 

transform was performed which decomposes the time series into time and frequency 

components. Wavelet power spectrum quantifies the distribution of the variance of the 

time series in the time – frequency domain. Wavelet coherency analysis was 

performed to identify association between dengue cases and climate conditions. 

Coherence is similar to some classical correlation, but it pertains to the oscillating in a 

given frequency mode. Wavelet coherence generalizes the possibilities of wavelets for 

quantifying the dependencies between two signals. 

 

3.4.2.1 Computing environment 

All analyses were performed using the statistical package R (verion 3.1.2 and version 

3.1.3). Much of the code was adapted from MATLAB code by Torrence and Compo 

(1998) and Grinsted, Moore and Jevrejeva (2004). The wavelet analysis was based on 

the results of the R package “biwavelet”. 

 

3.4.2.2 Concept of wavelet analysis 

 

The wavelet transform is a relatively new integral transform, having been developed 

by Morlet and Grossman in the early 1980s. The concept of integral transformation 

goes back to the 18th century, in work by Fourier and others. In general, an integral 

transformation can be expressed as follows: 

𝑇𝑓(𝜔) =∫ 𝐾(𝑡, 𝜔)𝑓(𝑡)𝑑𝑡
𝑡2

𝑡1
 

By multiplying the original function, f, by a kernal function, K, and integrating, a new 

function, 𝑇𝑓, is produced. Depending on the properties of the kernal function chosen, 

the output function may be a unique representation of the data within a new domain 

on the variable ω. The wavelet transformation constitutes a set of criteria which the 

kernal function must satisfy. The intention of the wavelet transformation is to 

represent the function in both frequency and spatial domains, such as position or time, 

simultaneously. By using wavelet analysis we can identify which frequencies 

dominate, and where in space or time they occur.  
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3.4.2.3 The wavelet transform 

 

wavelet is a wave-like oscillation with an amplitude that begins at zero, increases, and 

then decreases back to zero (An and Rocklov, 2014). Wavelets are quite literally 

‘mini waves’. Rather than being a wave that goes on forever, like sin() or cos(), 

wavelets are a short ‘burst’ of waves that quickly die away, like the figure below: 

 

Figure 3.3: Comparison of sine wave and wavelets 

(Source:http://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-

processing-fourier-transforms-and-heisenberg/) 

3.4.2.4 Continuous Wavelet Transformation (CWT) 

Wavelets are defined as 𝜑𝑎,𝜏 (t) = 
1

√𝑎
𝜑 (

𝑡−𝜏

𝑎
) . 

where   a – scale of the wavelets 

 τ – time position  

  

The wavelet transform of a continuous signal of infinite duration with mother function 

φ (t) is: 

𝑊𝑥 (𝑎, 𝜏) =
1

√𝑎
∫ 𝑥(𝑡)𝜑∗∞

−∞
(

𝑡−𝜏

𝑎
) 𝑑𝑡 =  ∫ 𝑥(𝑡)𝜑𝑎,𝜏

∗∞

−∞
(𝑡)𝑑𝑡  ………………….(1) 

http://en.wikipedia.org/wiki/Wave
http://en.wikipedia.org/wiki/Oscillation
http://en.wikipedia.org/wiki/Amplitude
http://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/
http://georgemdallas.wordpress.com/2014/05/14/wavelets-4-dummies-signal-processing-fourier-transforms-and-heisenberg/
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Where * denotes the complex conjugate form. The wavelet coefficients, 𝑊𝑥(a,τ), 

represent the contribution of the scales (the a values) to the signal at different time 

positions (the τ vallues). The wavelet transformation can be thought as a cross 

correlation of signal 𝑥(𝑡) with a set of wavelets of various “widths” or “scales” a, at 

different time positions τ.  

3.4.2.5 Selection of a basis function for the wavelet transformation: The Morlet 

Wavelet 

The Morlet wavelet was used, in all analysis. It is a complex sine wave localized by a 

Gaussian distribution, 

𝛹0(𝜂) = 𝜋−1/4𝑒𝑖𝜔0𝜂𝑒−𝜂2/2………………..(2) 

where η is a scaled time unit and 𝜔0 describes the relative frequency of the sine wave 

(𝜔0 = 6 here to satisfy admission criteria). Because it is a localized periodic function, 

it is ideal for analyzing periodic behavior such as multiyear climatic variables or 

seasonal dengue variation.  

 

 

Figure 3.4: (a) Morlet wavelet of arbitrary width and amplitude, with time along the 

x- axis. (b) Construction of Morlet wavelet (blue dashed) as a Sine curve (green) 

modulated by a Gaussian (red). 

3.4.2.6 The continuous wavelet transform of a discrete sequence 

 

As seen in the definition of the CWT, the transformation of the analysisng signal with 

a dilated and translated wavelet function and assumes a continuous signal as input. 

However, in empirical applications, data are recorded discretely with time steps 
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denoted by 𝛿𝑡. Therefore, a discrete computation of the CWT need to be performed. 

The continuous wavelet transform of a discrete sequence is the convolution of the 

series 𝑥𝑛 and the wavelet 𝛹0 at time t and scale s, where 𝑥𝑛 is a series of 

observations 𝑥0, 𝑥1,…,𝑥𝑁−1 equally spaced in time by 𝛿𝑡 . This is defined as 

𝑊𝑛,𝑠 = ∑ 𝑥𝑛′
𝑁−1
𝑛′=0 𝛹∗ (

𝛿𝑡(𝑛′−𝑛)

𝑠
) ……………….. (3) 

where 𝛹∗ is the complex conjugate. By varying the wavelet scale s and translating 

along the localized time index n, one can construct a picture showing both the 

amplitude of any features versus the scale and how this amplitude varies with time. 

To ensure that the wavelet transforms at each scale 𝑠 are directly comparable to each 

other and to the transforms of other time series, the wavelet function at each scale 𝑠 is 

normalized to have unit energy. In convolution formula (2), the normalization is 

Ψ[
(𝑛′−𝑛)𝛿𝑡

𝑠
] = (

𝛿𝑡

𝑠
)

1/2

𝛹0 [
(𝑛′−𝑛)𝛿𝑡

𝑠
] 

where 𝛹𝑜(𝜂) is normalized to have unit energy. 

The power, |𝑊𝑛,𝑠|
2
, indicates the strength of the wavelet – like behavior at every point 

and is presented in the power spectrum of each transformation. 

 

3.4.2.7 Wavelet coherence analyses 

To identify the dependencies between dengue incidence in Colombo district and 

climatic factors wavelet coherence analyses was performed. In addition, it allows 

checking whether various periodic modes of various climatic factors and dengue 

incidence tend to oscillate simultaneously, falling and rising together and quantifying 

the synchrony of these two time series. In addition phase analysis was calculated 

between climatic factors and dengue incidence. It provides an information on the sign 

of the relationship such as in phase, out of phase, lead by  𝜋 2⁄ . The details of the 

method can be found in ‘a practical guide to wavelet analysis’ (Torrence & Compo, 

1998). 
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3.4.2.8 Significance of the wavelet power spectrum 

Significance of the wavelet power spectrum is assessed by comparison with simulated 

or theoretical spectra representing a null hypothesis: the variability of the observed 

time-series is equivalent to the expected variability of a random process with similar 

first-order autocorrelation. “biwavelet” package in R estimate the first-order 

autocorrelation of the time series to be analyzed and create a theoretical Fourier 

power spectrum of a Gaussian process with equivalent first-order autocorrelation and  

𝜒2 estimator was used to establish 95% confidence bounds for the null hypothesis. In 

order to test the significance of coherence Monte Carlo simulations was used. The 

details of the method can be found elsewhere (Castillo et al., 2011; Cazelles et al. 

2005; Cazelles et al., 2014; Torrence & Compo, 1998). 

 

3.4.3.Change point detection in variance: the PELT – TREE method 

Change point analysis was performed with statistical software R (version 3.1.2) 

package “changepoint”. This package includes three multiple change point algorithms 

1) binary segmentation, 2) sequent neighbourhoods and 3) proposed pruned exact 

linear time (PELT). In our analysis we used PELT algorithm, it is recently proposed 

by Killick and Eckley (2011). PELT algorithm is similar to segment neighbourhood 

algorithm but it is more computationally efficient, due to its use of dynamic 

programming. The mean assumption is that the number of changepoints increased 

linearly as the data set grows, controls the computational time. Graphical inspection 

of the dengue time series indicates that there is a change in the mean constantly 

throughout the study period. Hence our study focused on changes in variance.  

Suppose we have an ordered sequence of data, 𝑦1:𝑛 = (𝑦1, … , 𝑦𝑛). Changepoint, is 

said to occur within this set when there exists a time, 𝜏∊ {1,…,n-1}, such that the 

statistical properties of {𝑦1 … 𝑦𝜏} and {𝑦𝜏+1 … 𝑦𝑛} are different in some way. 

The most common approach to identify multiple changepoints in the literature is to 

minimize 

∑ [𝐶(𝑦(𝜏𝑖−1+1):𝜏𝑖
)]𝑚+1

𝑖=1  + β𝑓(𝑚) 
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where C is a cost function for a segment e.g., negative log-likelihood and β𝑓(𝑚) is a 

penalty to guard against over fitting ( a multiple changepoint version of the threshold 

c).  In PELT algorithm cost function is minimized by dynamic programming 

technique.  

 

3.4.4.Distributed Lag Non-linear Models 

 

A Poisson regression model combined with distributed lag non-linear model (DLNM) 

was used to examine the effects of climate variables on dengue incidence. The 

objective of developing the DLNM model are to justify the impact of lag effect of 

climate on dengue incidence and to identify the structure of the lag-period for 

different climate variables and to capture the nonlinear nature of the data by 

introducing appropriate smoothing techniques. 

 

DLNM, was proposed recently by Gasparrini et al. (2010) is a flexible model to 

describe simultaneously a non-linear and delayed effect of climate change on dengue 

incidence. This model used a “cross-basis” function that examine a two dimensional 

relationship along the dimensions of climate change and lag weeks. The cross-basis is 

specified by the choice of two basis, one for each dimension, among a set of possible 

options such as splines, polynomials, or step functions. In our study, the choice of lag 

period is varies for various meteorological factors. We decided the lag period based 

on the literature review and provided the maximum plausible weeks as the lag for all 

the variables to improve the precision of the DLNM model. Table 3.2 summarizes the 

choice of lag period, variable basis and basis for lag for each climatic variable. Except 

for precipitation, in this study, we used natural spline (ns) basis for all the variables 

used in the model. B-spline function was used as the basis function for precipitation 

while polynomial function was used as the basis for lag. The degree of freedom for all 

variable basis and lag basis are based on the results of exploratory data analysis, 

previous studies from literature and also judging by the AIC/ BIC results tested under 

various values of degree of freedom. In this analysis we placed the knots of variables 

at equally spaced values on the log scale of lags. 
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Table 3.2 Choice of lag period, variable basis and lag basis 

Variable Lag Period 

(weeks) 

Basis for Variable Basis for Lag 

Mean Temperature 30 ns with degree 1  ns with lagnots 

Maximum 

Temperature 

30 ns with degree 1 ns with lagnots 

Precipitation 25 B-spline with 

degree 4 and  5 df 

Polynomial with 

degree 3 

Humidity 20 ns with degree 2 ns with lagnots 

Maximum 

sustained wind 

speed 

20 ns with degree 2 ns with lagnots 

Visibility 20 ns with degree 2 ns with lagnots 

 

The applied poisson model can be written as follows. 

kkjjltltltltltt yearweekVMHPPTMAXTEMYELn   ,5,4,3,2,1))((

 

Where t refers to the week of the observation; (Yt) denotes the observed weekly 

dengue counts on week t; α is the model intercept. ltTEM , , ltTMAX , , ltPP , , ltH , , and

ltVM , are the cross basis matrix obtained to mean temperature, maximum temperature, 

precipitation, humidity and maximum sustained wind speed respectively. 𝛽𝑖′s 

represent the vector of coefficients for corresponding cross basis and l  is the lag 

weeks. Weekj  (j= 1, 2, 3, ….52) denotes week effects that were controlled by a 

categorical variable yeark denotes the year (k=2009, 2010, 2011, 2012, 2013, 2014).  

 

Since the study population was relatively stationary during the time period from 2009 

– 2014 with annual growth rate below 1% the trend of incidence during the study 

period could be similarly prescribed by the trend of disease counts. (According to 

2001 census Colombo district population 2251300, 2012 census population in 

Colombo district equals 2310100, population growth from 2001 to 2012 is 2.61%) 

Hence we used the dengue counts as the response variable in our model. Finally the 

residuals were checked to evaluate the adequacy of the model. Sensitivity analyses 

were performed by varying the degrees of freedom (df). All statistical analyses related 

to DLNM were performed with R software version 3.1.3 using the package dlnm. 
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CHAPTER 04 

EXPLORATORY DATA ANALYYSIS 

 

4.1 Overview 

 In recent years dengue has become the number one killer mosquito borne infection in 

Sri Lanka. The number of cases of dengue appears to be rising each year. Earlier the 

disease was mainly restricted to urban and semi urban areas of the country. However, 

over the years DF and DHF has been found in all provinces in Sri Lanka due to 

population movement through transport development, economic activities and change 

in climatic factors. This chapter includes the presentation of dengue incidence in Sri 

Lanka from 2009 to 36th week of 2014. Initial examination of the data is presented in 

descriptive manner. 

 

4.2 Descriptive Statistics of Dengue Cases  

4.2.1 Western province 

“Over 260,000 suspected dengue cases have been reported to the Epidemiology Unit 

from all over the island during the last 8 months of this year. Approximately 57.85 

percent of dengue cases were reported from the Western province, Ministry of Health 

revealed.” 

http://www.news.lk/news/sri-lanka/item/2350-57-85-dengue-cases-reported-from-

western-province 

       (Accessed on 14 – 9 - 2014) 

 

Dengue infection is predominant in Western province where majority of the country’s 

population live. The disease keeps on increasing year by year. The Western Province, 

consisting of Colombo, Gampaha and Kalutara Districts, is the most socio-

economically developed part in Sri Lanka. It contributes more than fifty percent to the 

Gross Domestic Product (GDP). Population of Western province in Sri Lanka is 5.72 

million and the total extent of area is 3,709 km2. 

http://www.news.lk/news/sri-lanka/item/2350-57-85-dengue-cases-reported-from-western-province
http://www.news.lk/news/sri-lanka/item/2350-57-85-dengue-cases-reported-from-western-province
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4.2.1.1 Colombo district 

Colombo District, Sri Lanka where there is a marked increase of dengue cases 

evidenced during the last few years. Colombo district is the most urbanized and 

density populated region of Sri Lanka and has a number of urban centers including 

Colombo, the capital. The main features of the climate are the relatively stable 

temperature and relative humidity year-round, forming an ideal condition for the 

growth of the vector of dengue fever mosquito. In the total 298 weeks of the study 

period, there were 36949 dengue cases (including Dengue and dengue hemorrhagic 

fever) reported in Colombo District. Table 4.1 shows the summary statistics of weekly 

dengue cases from 2009 to 2014. The highest mean weekly cases occurred in 2014 

followed by 2011. During the study period, the weekly mean dengue cases were 125. 

There was a small decline in mean number of dengue incidence in 2012.  Even though 

the year 2014 consists data from 36 weeks total number of cases in that year was 

highest than other years.  

 

Table 4.1: Descriptive Statistics of Dengue Cases – Colombo District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 20 62.5 80.06 56.31 288 4163 

2010 8 63 95.6 81.5 334 4971 

2011 25 114 145.3 98.6 475 7557 

2012 0 99 108.25 70.36 297 5629 

2013 41 127 138.71 64.74 329 6797 

2014* 42 143 217.1 133 491 7817 

Overall 42 171 125.68 93.88 491 36949 
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Figure 4.1 : Distribution of weekly mean number of dengue cases – Colombo District 

 

Figure 4.2: Weekly distribution of confirmed dengue cases in Colombo district 

 

Figure 4.1 shows that a high number of dengue cases generally occurred from week 

18 to week 36 that is from May to October. The highest number of dengue cases were 

reported during the twenty sixth week. Interestingly, disease pattern indicate that the 

critical months of incidence were during the May to September, which is the rainy 

season. Again there Figure 4.2 tend to exhibit repetitive behavior, with regular 

seasonal that are easily visible. According to figure 4.2 drastic downward trend in the 
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end of 2010 was partially due to the effectiveness of strengthened vector control 

programs. But a drastic upward trend can be observed in the middle of 2011. The 

worst incidence noted was in July 2011 with more than 300 cases. 

 

4.2.1.2 Gampaha district 

 

Gampaha District is located in the west of Sri Lanka and has an area of 1,387 square 

kilometres (536 sq mi). It is bounded by Kurunegala and Puttalam districts from 

north, Kegalle District from east, Colombo District from south and by the Indian 

Ocean from west. The descriptive statistics of dengue cases for the study period (2009 

to 36th week of 2014) in Gampaha district is given in table 4.4. 

 

Table 4.2: Descriptive Statistics of Dengue Cases – Gampaha District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 4 46 61.5 50.53 194 3198 

2010 5 33.5 48.87 42.08 181 2541 

2011 8 44.5 56.46 38.55 201 2936 

2012 0 57.5 66.87 49.14 256 3477 

2013 9 44 49.37 21.74 110 2419 

2014* 8 67.5 80.69 59.74 296 2905 

Overall 0 49.5 59.47 45.27 296 17483 

 

The distribution of DF/ DHF incidence in years 2009 - 2014; Week 36 is shown in 

figure 4.3. Interestingly, disease patterns indicate that the critical months of incidence 

were during May to September, which is in the Southwest monsoon season. 

According to figure 4.4 the worst incidence noted was in 3rd week of 2012 with more 

than 250 cases. But a drastic downward trend can be seen within the same year from 

May to June.  

http://en.wikipedia.org/wiki/Kurunegala_District
http://en.wikipedia.org/wiki/Puttalam_District
http://en.wikipedia.org/wiki/Kegalle_District
http://en.wikipedia.org/wiki/Colombo_District
http://en.wikipedia.org/wiki/Indian_Ocean
http://en.wikipedia.org/wiki/Indian_Ocean
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Figure 4.3: Distribution of weekly mean number of dengue cases – Gampaha  District 

 

Figure 4.4: Weekly distribution of confirmed dengue cases in Gampaha district 

 

4.2.1.3 Kalutara district 

Kalutara District is located in the south west of Sri Lanka and has an area of 1,598 

square kilometres (617 sq m). Kalutara District is bordered by the sea to the west, 

Ratnapura District to the East, Galle District to the South and Colombo District to the 

North. Kalutara District is in the wet zone and the main characteristics of the climate 

are low rainfall, high temperature and high humidity throughout the year. The 
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monsoon seasons extending from May to August and October to January include 

heavy rains, slightly lower temperatures periods of lower humidity.  

Table 4.3: Descriptive Statistics of Dengue Cases – Kalutara District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 3 11.5 16.4 13.32 75 853 

2010 2 20 22.96 18.23 66 1194 

2011 1 19 20.15 12.54 60 1048 

2012 0 23.5 23.5 18.42 67 1222 

2013 6 26 27.51 10.05 49 1348 

2014* 9 37.5 44.42 26.11 101 1599 

Overall 0 22 24.71 18.46 101 7265 

 

 

Figure 4.5: Distribution of weekly mean number of dengue cases – Kalutara  District 

 

According to figure 4.5 the highest number of dengue cases were reported between 

week 21 to week 31. As shown in figure 4.6, weekly dengue cases peaked in the June, 

2009 and plunged to a low in August, 2009. Again a dramatic upward trend can be 

seen during the period of May to September in 2010 and 2011. At that time, the 
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epidemic took approximately 20 weeks starting on May. The largest outbreak of 

dengue cases was observed in the year of 2014. 

 

Figure 4.6: Weekly distribution of confirmed dengue cases in Kalutara district 

 

Further, according to 4.6 the disease has a seasonal trend, where two peaks of dengue 

occur following monsoon rains in June-July and October – December. The DF/ DHF 

distribution in Gampaha District and Kalutara District had a similar pattern over the 

study period. Further, DF and DHF distribution in the whole province having its 

highest incidence in rainy season and had a similar trend for every year. 

4.2.2 Central province 

The central province consists of three administrative districts, namely, Kandy, Matale 

and Nuwara Eliya. The climate is cool, and many areas about 1500 meters. The 

western slopes are very wet, some places having almost 7000 mm of rain per year. 

The eastern slopes are parts of the mid-dry zone as it is receiving rain only from 

North-Eastern monsoon. The Temperatures range from 24°C at Kandy to just 16°C in 

Nuwara Eliya, which is located 1,889 m above sea level. The highest mountains in Sri 

Lanka are located in the Central Province. 
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4.2.2.1 Kandy district 

It has an area of 1906.3 km². Kandy city is the second largest city in the country after 

Colombo. With Kandy located in the centre of the island and in a high elevation, the 

city has relatively wetter and cooler temperatures than that of the tropical climate of 

the rest of the country, especially the coastal regions. Nuwara Eliya is south to it and 

has a cooler climate due to its higher elevation. The city has its dry season from 

December through to April. From May through to July and December to January the 

region experiences its monsoon season, during this time the weather is rough and 

unstable. The island being in the northern hemisphere gives Kandy it coldest month in 

January and its hottest in July. From March through the middle of May is the inter 

monsoonal period, during this time there is light rain and strong humidity. 

Over the study period, a total of 9287 cases of dengue were reported to the 

epidemiology unit of Sri Lanka. The worst incidence noted was in June – July, 2009 

with more than 200 cases. According to the figure 4.8 it is clear that the dengue has a 

decreasing trend in first 21 weeks of 2014 which is due to the certain administrative 

plans by the local administration. 

Table 4.4: Descriptive statistics of Dengue Cases – Kandy  District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 5 38 59.06 50.82 217 3071 

2010 1 20 23.69 19.21 69 1232 

2011 0 23 29.10 23.12 94 1513 

2012 0 28 25.56 18.29 66 1329 

2013 0 25 24.22 13.42 60 1187 

2014* 3 16 26.22 20.31 75 944 

Overall 0 26.50 31.59 30.17 217 9287 

 

 

http://en.wikipedia.org/wiki/Climate_of_Sri_Lanka
http://en.wikipedia.org/wiki/Nuwara_Eliya#Climate
http://en.wikipedia.org/wiki/Northern_hemisphere
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Figure 4.7: Distribution of weekly mean number of dengue cases – Kandy District 

 

 

Figure 4.8: Weekly distribution of confirmed dengue cases in Kandy district 

 

4.2.2.2 Matale district 

Matale District is located in Central, with a population of 445866 habitants. The 

estimate terrain elevation above sea level is 213 meters. The descriptive statistics of 

reported number of dengue cases for the study period is given in table 4.5. During the 

year 2009 one of the highest outbreak year, 1852 patients were suspected with DF/ 
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DHF. According to figure 4.9 significant numbers of cases were reported in the month 

of July are reaching a peak in August and gradually decrease.  

Table 4.5: Descriptive Statistics of Dengue Cases – Matale District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 3 20.5 35.62 31.43 130 1852 

2010 0 7 9.40 8.03 44 469 

2011 0 5 6.481 4.52 19 337 

2012 0 6 6.538 5.66 21 340 

2013 0 6 6.341 4.18 20 311 

2014* 1 5 7.06 6.67 34 254 

Overall 0 7 12.20 17.89 130 3587 

 

 

Figure 4.9: Distribution of weekly mean number of dengue cases – Matale District 

 

According to figure 4.10 the number of reported dengue cases varied by year. Over 

the study period, highest cases of dengue were reported in 2009 and lowest in the 

following three years. The worst incidence noted was in June – July , 2009 with more 

than 100 cases.  
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Figure 4.10: Weekly distribution of confirmed dengue cases – Matale District 

 

4.2.2.3 Nuwara Eliya district 

Due to its high altitude, it has a sub tropical highland climate. The average annual 

temperature varies between 11-20 C° and the recorded lowest temperature is 0.4 C° 

and the recorded highest temperature is 27.7 C°. Monthly rainfall varies between 70-

225 mm and has an average annual rainfall figure or precipitation of 1900 mm. The 

maximum rainfall is generally in October and the minimum rainfall is in March. 

During the year it has a relative humidity between 65%-87%. 

Table 4.6: Descriptive Statistics of Dengue Cases – Nuwara Eliya District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 4 5.346 5.753 24 278 

2010 0 3 3.865 4 15 201 

2011 0 3 4.135 4.005 20 215 

2012 0 4 3.923 3.486 14 204 

2013 0 4 3.959 2.661 12 194 

2014* 1 3.5 4.917 3.872 14 177 

Overall 1 3 4.316 4.098 24 1269 
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Figure 4.11: Distribution of weekly mean number of dengue cases – Nuwara Eliya 

District 

 

Figure 4.12: Weekly distribution of confirmed dengue cases in Nuwara Eliya District 

 

Similar to Kandy District and Matale District the highest number of dengue cases was 

reported in the year of 2009. It has reached to peak during the twenty sixth week of 

2009 and gradually decreased. Again in the middle of 2010 it has reached to a peak of 

15 cases. Figure 4.12 tend to exhibits multiple repetitive behaviors. Seasonal pattern 

is similar to the pattern of Colombo District. 
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4.2.3 Southern province 

Southern Province is the 7th largest province by area and is home to 2.5 million 

people, the 3rd most populated province. The Southern Province is a small geographic 

area consisting of the districts of Galle, Matara and Hambantota 

4.2.3.1 Galle district 

Galle features a tropical rainforest climate. The city has no true dry season, though it 

is noticeably drier in the months of January and February. As is commonplace with 

many cities with this type of climate, temperatures show little variation throughout the 

course of the year, with average temperatures hovering at around 26 degrees Celsius 

throughout. During 2009 to 36th  week of 2014 a total of 4132 cases were reported. 

Table 4.7: Descriptive statistics of dengue cases – Galle District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 8 11.81 12.7 63 614 

2010 0 15 18.37 14.92 70 955 

2011 0 10 12.52 10.57 51 651 

2012 0 12 13.79 10.68 39 717 

2013 1 13 13.76 6.97 30 674 

2014* 0 11 14.47 13.02 46 521 

Overall 0 11 14.10 11.81 70 4132 

 

According to the table 4.7 highest number of cases were reported in the year of 2010. 

According to figure 4.14 the highest number of dengue cases were reported from June 

to September.  

http://en.wikipedia.org/wiki/Galle_District
http://en.wikipedia.org/wiki/Matara_District
http://en.wikipedia.org/wiki/Hambantota_District
http://en.wikipedia.org/wiki/Tropical_rainforest_climate
http://en.wikipedia.org/wiki/Dry_season
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Figure 4.13: Distribution of weekly mean number of dengue cases – Galle District 

 

Figure 4.14: Weekly incidence rate of confirmed dengue cases in Galle District 

 

Figure 4.14 tend to exhibit repetitive behavior, with regular cycles that are easily 

visible. Except the year 2012 the number of dengue cases reached to a peak during the 

month of July. Significant peak can be observed in 2009, 2010 and 2012. The data 

show that the dengue fever case has a decreasing trend since end of 2012 due to 

vector control programs implemented by the administration.   
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4.2.3.2 Hambantota district 

The highest number of dengue cases were reported in the year of 2009. The worst 

incidence was also in 2009 with more than 85 cases. The year 2013 had 

comparatively lower number of dengue cases. In Hambantota District also peak 

dengue incidence was between July and September, corresponding with peak rainfall. 

According to Figure 4.16 since mid 2012 number of dengue cases gradually decrease. 

But there has been a drastic upward trend in the year of 2014.  

Table 4.8: Descriptive statistics of Dengue Cases – Hambantota District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 10.5 16.96 18.07 87 882 

2010 0 8.5 12.65 10.96 40 658 

2011 0 5 6.40 6.24 35 333 

2012 0 7 7.44 5.65 20 387 

2013 0 5 5.27 2.64 14 258 

2014* 0 5 10.33 12.28 64 372 

Overall 0 6 9.86 11.26 87 2890 

 

 

Figure 4.15: Distribution of weekly mean number of dengue cases – Hambantota 

District 

0

5

10

15

20

25

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53

M
ea

n
 N

u
m

b
er

 o
f 

D
en

g
u

e 
C

a
se

s

Week



47 
 

 
Figure 4.16: Weekly distribution of confirmed dengue cases in Hambantota District 

 

4.2.3.3 Matara district 

Significant number of cases was reported in the year of 2012. But the highest peak 

was recorded in the year of 2009 which is more than 75. Number of dengue counts 

reported in 2009 and 2012 are twice as much as the number of dengue counts in other 

districts. Similar to other two districts in Southern Province most of the cases were 

reported during monsoon in each year except in the year 2012. Since the beginning of 

2013 number of dengue cases were gradually decrease. Seasonal pattern is evident 

from the figure 4.18. This seasonal pattern is similar to pattern that was appeared in 

Galle District. 

 

Table 4.9: Descriptive Statistics of Dengue Cases – Matara District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 1 14 20.23 19.38 76 1052 

2010 0 8 10.69 9.84 45 556 

2011 1 11.5 13.31 11.02 51 692 

2012 0 28 24.90 18.21 58 1295 

2013 2 8 8.31 4.50 27 407 

2014* 0 8.5 11.25 8.43 32 405 

Overall 0 10 15.04 14.46 76 4407 
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Figure 4.17: Distribution of weekly mean number of dengue cases – Matara District 

 

Figure 4.18: Weekly distribution of confirmed dengue cases in Matara District 
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Province is covered in tropical forests, with numerous rivers flowing through them 

and this province has a number of lagoons. 

4.2.4.1 Jaffna district 

Jaffna District is the capital of Nothern Province. The number of dengue cases 

reached to a peak in the year of 2010. The reason might be 30 year war was ended in 

year 2009 and due to the re-habitat programs and infrastructure development projects. 

Table 4.10: Descriptive statistics of Dengue Cases – Jaffna District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 0 3.65 15.88 112 190 

2010 0 18 35.19 54.68 329 1830 

2011 0 5 6.29 4.80 26 327 

2012 0 7 14.60 18.48 94 759 

2013 4 11 13.88 8.55 37 680 

2014* 4 19 20.33 10.42 52 732 

Overall 0 9 15.42 27.7 329 4518 

 

 

Figure 4.19: Distribution of weekly mean number of dengue cases – Jaffna District 
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According to figure 4.20 it is clear that the worst outbreak was happened in the year 

of 2010 due to the unplanned urbanization, infrastructure development and migration.  

 

 
Figure 4.20: Weekly distribution of confirmed dengue cases in Jaffna District 

 

4.2.4.2 Killinochchi district 

The climatically condition of Killinochchi district is dry, humid and tropical. Rainfall 

receives during the period from September to December by North – East monsoon 

periodical wind. The remaining period other than afore said of the year is dry and 

warm. According to the figure 4.22 there was a sharp rise in dengue cases from mid 

2010. The larges outbreak was recorded in the year of 2010. 

Table 4.11: Descriptive statistics of Dengue Cases – Killinochchie District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 0 0 0 0 0 

2010 0 0 0.88 1.72 9 46 

2011 0 0 0.60 1.17 6 31 

2012 0 0 0.46 1.01 6 24 

2013 0 0 0.63 1.17 6 31 

2014* 0 0 0.61 0.96 4 22 

Overall 0 0 0.52 1.16 9 154 
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Figure 4.21: Distribution of weekly mean number of dengue cases – Killinochchie 

District 

 

Figure 4.22: Weekly distribution of confirmed dengue cases in Killinochchie District 
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4.2.4.3 Mannar district 

Mannar district is located in northwestern Sri Lanka. Low rainfall and high 

temperatures characterize the climate. According to figure 4.24 we have seen a 

dramatic rise in the number of dengue cases in the year of 2010. The next highest 

outbreak was recorded in the year of 2011. According to figure 4.23 there were two 

peaks per year.  First peak occurred during weeks 31 -33 while the next peak occurred 

in week 49 – week 3 of the next year. 

Table 4.12: Descriptive statistics of Dengue Cases – Mannar District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 0 0.288 0.92 5 15 

2010 0 5 9.06 13.66 84 471 

2011 0 1 1.81 3.93 19 94 

2012 0 1 2.42 3.39 15 126 

2013 0 1 1.25 1.84 10 61 

2014* 0 0 1.17 1.91 8 42 

Overall 0 1 2.76 6.89 84 809 

 

 

Figure 4.23: Distribution of weekly mean number of dengue cases – Mannar District 
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Figure 4.24: Weekly distribution of confirmed dengue cases in Mannar District 

 

4.2.4.4 Vavuniya district 

Vavuniya district is located in the North of Sri Lanka. The district is categorized 

under the area's dry zone of Sri Lanka. According to figure 4.26 there was a sharp rise 

in the dengue incidence at the end of the each year. Similar to other districts in North 

of Sri Lanka Vavuniya district shows a sharp rise in the year of 2009, from week 50 -

53.  

Table 4.13: Descriptive statistics of Dengue Cases – Vavuniya District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 0 20.81 48.17 209 1082 

2010 0 2 10.35 27.13 174 538 

2011 0 1 1.35 1.67 10 70 

2012 0 1 1.81 2.61 10 94 

2013 0 1 1.10 1.14 5 54 

2014* 0 1 1.94 3.07 12 70 

Overall 0 1 6.51 24.33 209 1908 

 

0
2
0

4
0

6
0

8
0

Year

D
e
n
g
u
e
 C

a
s
e
s

2009 2010 2011 2012 2013 2014



54 
 

 

Figure 4.25: Distribution of weekly mean number of dengue cases – Vavuniya 

District 

 

 

 
Figure 4.26: Weekly distribution of confirmed dengue cases in Vavuniya District 

 

 

 

 

 

 

0

50

100

150

200

250

1 3 5 7 9 11131517192123252729313335373941434547495153

M
ea

n
 N

u
m

b
er

 o
f 

D
en

g
u

e 
C

a
se

s

Week

0
5
0

1
0
0

1
5
0

2
0
0

Year

D
e
n
g
u
e
 C

a
s
e
s

2009 2010 2011 2012 2013 2014



55 
 

4.2.4.5 Mulative district 

Mulative District is located on the eastern coast of Sri Lanka. Dengue incidence 

pattern in Mulative district is similar to dengue incidence pattern in Killinochchie 

district. The number of cases are too low before mid of 2010 for any clear pattern to 

be visible. We have seen a dramatic rise in the number of dengue cases after 2010. 

There was a significant increase in the total number of dengue cases in year 2013.  

Table 4.14: Descriptive statistics of Dengue Cases – Mulative District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 0 0 0 0 0 

2010 0 0 0.21 0.70 4 11 

2011 0 0 0.27 0.69 3 14 

2012 0 0 0.40 0.10 4 21 

2013 0 1 1.61 1.90 8 79 

2014* 0 0.5 1.22 1.59 6 44 

Overall 0 0 0.58 1.25 8 169 

 

 

Figure 4.27: Distribution of weekly mean number of dengue cases – Mulative District 
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Figure 4.28: Weekly distribution of confirmed dengue cases in Mulative District 

 

4.2.5 Eastern province 

4.2.5.1 Batticalo district 

Batticalo district is located in the Eastern province of Sri Lanka. Batticaloa has a 

tropical wet and dry climate. During the monsoon season from November to February 

heavy rains are recorded, with average temperature of 250C. According to figure 4.29 

there are two peaks per year, at the beginning of the year and at the end of the year. 

According to figure 4.30 in the year of 2010 there was a sharp rise in dengue 

incidence. The highest peak of 134 cases was recorded in January 2012. The period 

which shows large increase in dengue incidence coincide with the monsoon season 

from November to February. 

Table 4.15: Descriptive statistics of Dengue Cases – Batticalo  District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 9 11.13 10.12 49 579 

2010 0 9.5 17.88 21.16 78 930 

2011 0 15.5 26.85 31.40 134 1396 

2012 0 5.5 10.83 13.76 62 563 

2013 0 7 8.02 6.14 28 393 

2014* 1 14 15.42 10.18 47 555 

Overall 0 9 15.07 18.98 134 4416 
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Figure 4.29: Distribution of weekly mean number of dengue cases – Batticalo District 

 

Figure 4.30: Weekly distribution of confirmed dengue cases in Batticalo District 

 

4.2.5.2 Ampara district 

Ampara district is located in Eastern Province, Sri Lanka. Dengue incidence in 

Ampara district possesses annual seasonality with peak during the beginning of the 

year and end of the year. Relatively higher number of dengue cases reported in both 

2009 and 2010. Similar to other districts in eastern province and North province 

highest peak was recorded in 2010. 
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Table 4.16: Descriptive statistics of Dengue Cases – Ampara District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 7 8.10 7.36 37 421 

2010 0 5 9.61 11.76 61 484 

2011 0 2 3.83 4.48 24 199 

2012 0 2 3.39 4.03 17 176 

2013 0 5 7.82 9.17 47 383 

2014* 0 4 4.56 3.17 12 164 

Overall 0 4 6.24 7.78 61 1827 

 

 

Figure 4.31: Distribution of weekly mean number of dengue cases – Ampara District 
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Figure 4.32: Weekly distribution of confirmed dengue cases in Ampara District 

 

4.2.5.3 Trincomalee district 

Trincomalee district possess a tropical wet and dry climate. The time series of weekly 

dengue cases in Trincomalee generated a peak in 2010 and the next peak was reported 

in the year of 2014. Visual inspection shows from 2011 to 2013 the number of cases 

are too low for any clear pattern to be visible. 

Table 4.17: Descriptive statistics of Dengue Cases – Trincomalee District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 2 3.8 4.78 19 200 

2010 0 5.5 11.48 16.34 81 597 

2011 0 2.5 2.73 2.49 9 142 

2012 0 1 2.31 2.74 11 120 

2013 0 1 2.76 2.84 13 135 

2014* 0 8 10.50 9.32 40 378 

Overall 0 3 5.37 8.89 81 1572 
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Figure 4.33: Distribution of weekly mean number of dengue cases – Trincomalee 

District 

 

 

Figure 4.34: Weekly distribution of confirmed dengue cases in Trincomalee District 
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4.2.6 North Western province 

4.2.6.1 Kurunagala districts 

Climate in Kurunagala district is topical throughout the year. During the monsoons 

from May to August and October to January, heavy rains can be expected. According 

to figure 4.36 dengue cases revealed a strong seasonal pattern. There are two peaks 

per year. The peak occurred during week 25 – 31 is more significant than the peak 

occurred in December – January.  

Table 4.18: Descriptive statistics of Dengue Cases – Kurunagala District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 4 25 45.69 46.82 228 2376 

2010 1 19.5 23.23 19.89 91 1208 

2011 1 17 16.67 8.33 38 867 

2012 1 36 39.58 35.39 219 2058 

2013 7 27 33.29 24.63 130 1631 

2014* 1 24.5 32.50 24.14 86 1170 

Overall 1 23 31.77 30.85 228 9310 

 

 

Figure 4.35: Distribution of weekly mean number of dengue cases – Kurunagala 

District 
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Figure 4.36: Weekly distribution of confirmed dengue cases in Kurunagala District 

 

4.2.6.2 Puttalam district 

Puttalam district is in North Western province of Sri Lanka. Puttalam district 

experienced an unexpected outbreak in 2010 that was out of the sequence with the 

typical epidemic cycle. Another unexpected outbreak was observed in 2013, the 

second outbreak is substantially higher than the first one in 2010. In contrast there 

was a drastic downward trend in 2012 was partially due to the effectiveness of 

strengthened vector control programmes implemented in year 2012. 

Table 4.19: Descriptive statistics of Dengue Cases – Puttalam District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 6.5 12.94 16.9 85 673 

2010 1 8 12.94 14.58 84 673 

2011 0 6 7.25 6.07 31 377 

2012 0 10 19.77 25.49 123 1028 

2013 0 10 12.94 9.91 45 634 

2014* 0 8.5 9.69 8.24 38 349 

Overall 0 8 12.74 15.54 123 3734 
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Figure 4.37: Distribution of weekly mean number of dengue cases – Puttalam District 

 

 

Figure 4.38: Weekly distribution of confirmed dengue cases in Puttalam District 
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4.2.7 North Central province 

4.2.7.1 Anuradhapura district 

Anaradhapura district is in the dry zone of Sri Lanka. Dengue cases were recorded 

once or several times a year without a clear seasonal pattern. Incidence rates of DF 

have increased significantly during 2009 – 2010. Number of dengue cases recorded in 

the year 2010 is thrice as much as the number of cases in year 2012. After 2010 there 

was a downward trend in the incidence of dengue cases. Variation of dengue cases in 

2011 is relatively low compared to other years.  

Table 4.20: Descriptive statistics of Dengue Cases – Anuradhapura District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 5.5 10.75 10.37 40 559 

2010 0 9 15.94 19.94 112 829 

2011 0 4 4.40 2.99 15 229 

2012 0 4 5.50 6.25 31 286 

2013 0 6 7.71 5.80 24 378 

2014* 0 5.5 6.39 4.62 20 230 

Overall 0 5 8.57 10.99 112 2511 

 

 

Figure 4.39: Distribution of weekly mean number of dengue cases – Anuradhapura 

District 
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Figure 4.40: Weekly distribution of confirmed dengue cases in Anuradhapura District 

 

4.2.7.2 Polonnaruwa district 

Polonnaruwa district has a tropical climate most of the year. The incidence of dengue 

strongly fluctuated from year to year and between months within a year. According to 

figure 4.41 and figure 4.42 higher numbers of cases generally occurred from June to 

September. The drastic downward trend in 2014 was partially due to the effectiveness 

of strengthened vector control programs implemented at the end of 2013. 

Table 4.21: Descriptive statistics of Dengue Cases – Polonnaruwa District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 2 3.173 3.568 21 165 

2010 0 4 6.538 6.254 23 340 

2011 0 3 3.712 3.114 13 193 

2012 0 2 2.827 3.154 14 147 

2013 0 6 6.735 5.028 21 330 

2014* 0 0 3.111 4.868 17 112 

Overall 0 3 4.392 4.713 23 1287 
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Figure 4.41: Distribution of weekly mean number of dengue cases – Polonnaruwa 

District 

 

Figure 4.42: Weekly distribution of confirmed dengue cases in Polonnaruwa District 
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4.2.8 Uva province 

4.2.8.1 Badulla district 

Badulla district is situated hilly parts of the island. The time series of monthly dengue 

cases in Badulla district shows a drastic upward trend in 2010 and 2011. Even though 

Badulla possess cold climate, fair number of dengue cases has been recorded 

throughout the study period.  According to figure 4.43 and 4.44 higher number of 

dengue cases generally occurred during the mid of the year. This peak was less 

distinct after 2012. 

Table 4.22: Descriptive statistics of Dengue Cases – Badulla District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 4 5.654 6.15 36 294 

2010 0 9 16.19 19.68 112 842 

2011 0 7 10.17 11.85 73 529 

2012 0 3 4.50 4.57 16 234 

2013 0 6 6.86 4.21 22 336 

2014* 0 9 9.69 6.97 31 349 

Overall 0 6 8.819 11.27 112 2584 

 

 

Figure 4.43: Distribution of weekly mean number of dengue cases – Badulla District 
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Figure 4.44: Weekly distribution of confirmed dengue cases in Badulla District 

 

4.2.8.2 Monaragala district 

Monaragala District is situated in Uva Province. According to figure 4.45 there has 

been a drastic upward trend in the year of 2010. As shown in figure 4.45 and figure 

4.46 higher number of dengue cases generally occurred from June to September. This 

peak was less distinct after 2010. 

Table 4.23: Descriptive statistics of Dengue Cases – Monaragala District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 2 3.29 3.61 14 171 

2010 1 9 15.08 17.52 95 784 

2011 0 5 4.87 3.50 18 253 

2012 0 3 2.86 2.19 9 147 

2013 0 3 3.35 2.38 10 164 

2014* 0 4 4.56 3.20 12 164 

Overall 0 4 5.744 8.966 95 1683 
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Figure 4.45: Distribution of weekly mean number of dengue cases – Monaragala 

District 

 

 

Figure 4.46: Weekly distribution of confirmed dengue cases in Monaragala District 
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4.2.9 Sabaragamuwa province 

4.2.9 Ratnapura district 

Ratnapura district features a tropical rainforest climate. In contrast to other districts a 

large peak of dengue cases occurred in 2014. Sudden upward outbreaks can be seen in 

2009, 2010 and 2012. These peaks are of roughly equal magnitudes. As shown in 

figure 4.47 higher number of cases generally occurred from May to September. Even 

though the year 2014 consists 36 weeks, throughout the study period highest number 

of dengue cases recorded in 2014. 

Table 4.24: Descriptive statistics of Dengue Cases – Ratnapura District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 0 9.5 27.33 32.79 112 1421 

2010 1 24 34.08 29.47 121 1772 

2011 1 15.5 14.56 8.25 33 757 

2012 5 27 32.56 23.86 128 1693 

2013 4 20 21.51 13.49 57 1054 

2014* 0 15 43.78 58.45 234 1576 

Overall 0 18 28.24 31.15 234 8273 

 

 

Figure 4.47: Distribution of weekly mean number of dengue cases – Ratnapura 

District 
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Figure 4.48: Weekly distribution of confirmed dengue cases in Ratnapura District 

 

4.2.9.2 Kegalle district 

There is no clear seasonal pattern in the occurrence of dengue incidence in Kegalle 

district. Higher number of cases generally occurred from June to October. Similar to 

other districts drastic upward trend can be seen in the year of 2009. 

Table 4.25: Descriptive statistics of Dengue Cases – Kegalle District 

Year Dengue Cases  

Minimum Median Mean SD Maximum Total 

2009 1 24 43.83 47.56 250 2279 

2010 0 10.5 13.35 11.00 39 694 

2011 0 14 17.06 13.47 63 887 

2012 0 28 22.90 17.92 80 1451 

2013 1 19 19.78 8.78 49 969 

2014* 3 19.5 27.47 21.11 86 989 

Overall 0 19 24.81 25.99 250 7269 
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Figure 4.49: Distribution of weekly mean number of dengue cases – Kegalle District 

 

 

Figure 4.50: Weekly distribution of confirmed dengue cases in Kegalle District 
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4.3 Descriptive Statistics of Climatic Variables 

To understand how climate in Colombo district might affect dengue incidence it is 

important to first be aware of patterns in climatic factors; mean temperature, 

maximum temperature, minimum temperature, precipitation, wind speed, visibility, 

humidity and wind speed.  

Temperature 

Temperature, precipitation, and humidity are critical to mosquito survival, 

reproduction, and development and can influence mosquito presence and abundance. 

Temperature affects the dengue system through numerous biological mechanisms. 

Vast majority of studies examining the effects of temperature on dengue virus 

transmission most often used mean temperature as the temperature representative. In 

nature, however, mosquitoes and their pathogens do not simply experience mean 

conditions, but instead subjected to temperatures that fluctuate throughout the day. 

Hence we consider three states of temperature; mean temperature, minimum 

temperature and maximum temperature. During 2009 – September, 2014, the weekly 

mean temperature ranged from 240C to 300C with an overall mean of 27.70C. Mean 

air temperature remains relatively constant. The highest mean value was recorded in 

2009. According to Nakhapakorn and Tripathi, (2005) temperature higher than  200C 

is the favorable for Aedes aegypti mosquitoes.  

 

Table 4.26: Descriptive Statistics of weekly mean temperature 

Year Weekly mean temperature 

Minimum Median Mean SD Maximum 

2009 26.175 27.657 27.659 0.781 29.657 

2010 25.229 27.793 27.656 0.965 29.477 

2011 24.186 27.750 27.599 1.014 29.357 

2012 25.757 26.657 27.640 0.883 29.557 

2013 26.029 27.550 27.641 0.818 29.657 

2014* 26.243 28.379 28.180 0.824 29.500 

Overall 24.186 27.723 27.705 0.899 29.657 
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Descriptive statistics of weekly maximum temperature by year is presented in table 

4.27. For the study period (52nd week, 2008 – 36th week, 2014), the maximum 

temperature ranged from 270C to 330C, where the highest occurred in 2013. Mean 

temperature of 2014 is slightly higher than other years. Mean value of minimum 

temperature for the period  2011 – 2013 was below the overall mean value of 250C; 

while it was above the overall mean for years 2009, 2010 and 2014. 

Table 4.27: Descriptive Statistics of weekly maximum temperature 

Year Maximum temperature 

Minimum Median Mean SD Maximum 

2009 29.700 30.712 30.789 0.754 32.700 

2010 28.186 30.457 30.768 1.143 32.786 

2011 27.314 30.720 30.653 0.887 32.986 

2012 29.014 30.993 30.996 0.662 32.229 

2013 29.343 30.793 30.936 0.930 33.714 

2014* 30.257 31.514 31.510 0.774 33.229 

Overall 27.314 30.871 30.911 0.905 33.714 

 

Table 4.28: Descriptive Statistics of weekly minimum temperature 

Year Minimum temperature 

Minimum Median Mean SD Maximum 

2009 22.180 24.986 25.203 1.442 27.700 

2010 22.629 25.221 25.103 1.099 27.071 

2011 21.400 24.707 24.954 1.363 27.843 

2012 20.829 24.486 24.664 1.421 27.414 

2013 20.071 25.114 24.945 1.182 27.114 

2014* 22.200 25.400 25.357 1.470 28.043 

Overall 20.829 24.979 25.021 1.336 28.043 
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Precipitation 

Precipitation is one of the most important environmental factors affecting biological 

process of mosquitoes, including their interaction with virus. During the study period, 

the weekly mean precipitation ranged from 0mm to 71mm. In contrast to temperature 

variation the variation of precipitation is higher than the temperature components. The 

reason for that might be Sri Lanka gets rainfall mainly from two rainy seasons: 

southwest monsoon (May to August) and northeast monsoon (November to 

February).  As shown in table 4.29, Colombo experienced highest mean weekly 

precipitation in year 2013 followed by 2010.  

Table 4.29: Descriptive Statistics of weekly precipitation 

Year Precipitation 

Minimum Median Mean SD Maximum 

2009 0.000 3.380 5.620 8.420 55.240 

2010 0.000 2.430 9.070 14.710 65.860 

2011 0.000 2.050 5.015 6.540 33.273 

2012 0.000 4.209 6.300 6.968 29.646 

2013 0.000 4.190 6.790 11.000 71.340 

2014* 0.000 2.279 3.597 4.298 19.849 

Overall 0.000 2.994 6.193 9.539 71.340 

 

Humidity 

Sri Lanka is primarily a tropical country with high humidity and warm temperature 

throughout the year. More specifically Colombo district is a coastal district, it would 

be expected that relative humidity will be high for most days of the year, thus an 

important factor on mosquito density and dengue transmission. Throughout the study 

period mean humidity was approximately 80%.  
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Table 4.30: Descriptive Statistics of humidity 

Year Humidity 

Minimum Median Mean SD Maximum 

2009 65.200 79.857 79.049 4.629 87.000 

2010 69.286 81.500 80.790 5.042 90.286 

2011 71.571 79.929 79.786 3.641 89.857 

2012 69.286 79.857 79.615 4.208 88.286 

2013 62.000 80.143 79.720 4.444 86.857 

2014* 68.429 79.607 78.414 4.205 86.857 

Overall 62.000 80.000 79.624 4.410 90.286 

 

Mean Visibility 

 

Mean visibility remains constant throughout the study period at a mean of 20km. 

Except 2009 visibility  ranged from approximatelt 15km – 20km. But in 2009 

minimum visibility droped to approximately 11km. Further variation of mean 

visibility in 2009 is approximately twice as much as higher than the other years. 

 

Table 4.31: Descriptive Statistics of visibility 

Year Visibility 

Minimum Median Mean SD Maximum 

2009 10.943 19.486 19.081 1.617 20.000 

2010 17.014 19.464 19.264 0.724 20.000 

2011 15.229 19.743 19.552 0.725 20.043 

2012 16.914 19.864 19.666 0.528 20.114 

2013 18.357 19.893 19.751 0.330 20.286 

2014* 17.757 19.871 19.603 0.594 20.200 

Overall 10.943 19.736 19.478 0.897 20.286 
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Wind Speed 

Descriptive statistics of mean wind speed and maximum sustained wind speed is 

shown in table 4.32 and table 4.33 respectively. Colombo district experienced highest 

weekly mean wind speed in 2009 while the lowest mean wind speed also recorded in 

the same year. Both the descriptive statistics of mean wind speed and maximum 

sustained wind speed revealed that year 2009 experienced lower wind speed.  

 

Table 4.32: Descriptive Statistics of mean wind speed 

Year Mean Wind Speed 

Minimum Median Mean SD Maximum 

2009 0.850 4.781 5.248 2.401 14.386 

2010 1.786 5.017 4.868 1.627 8.157 

2011 2.271 5.493 5.338 1.738 8.829 

2012 1.957 4.664 4.742 1.351 7.800 

2013 2.671 5.357 5.521 1.827 10.029 

2014* 3.500 6.157 5.748 1.535 8.443 

Overall 0.850 5.157 5.215 1.806 14.386 

 

Table 4.33: Descriptive Statistics of maximum sustained wind speed 

Year Mean Sustained Wind Speed 

Minimum Median Mean SD Maximum 

2009 4.600 9.064 9.546 3.291 23.271 

2010 5.214 10.093 10.166 2.542 20.943 

2011 6.586 10.514 10.744 2.522 19.314 

2012 6.014 10.057 10.610 2.766 22.029 

2013 6.914 10.636 11.584 4.375 29.686 

2014* 7.971 10.961 10.827 1.700 17.014 

Overall 4.600 10.143 10.559 3.066 29.686 
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Pearson’s correlation analyses between all weather parameters were assessed. 

According to the table 4.34 there is a strong linear relationship between minimum 

temperature and mean temperature. Further there is a strong linear relationship 

between wind speed and maximum sustained wind speed. Most of the relations are 

statistically significant at 0.05 level of significant. The relationship between 

maximum sustained wind speed and minimum temperature is significant at 0.1 level 

of significant.  

 

Table 4.34: Pearson’s correlation coefficients matrix of meteorological variables in 

Colombo District, Sri Lanka, January 2009 – September 2014 

 T Tmax Tmin H PP VV V VM 

Tmax 0.531 

0.000 

       

Tmin 0.814 

0.000 

0.040 

0.496 

      

H -0.127 

0.017 

-0.584 

0.000 

0.221 

0.000 

     

PP -0.198 

0.002 

-0.199 

0.001 

-0.141 

0.034 

0.483 

0.000 

    

VV 0.335 

0.000 

0.169 

0.005 

0.250 

0.000 

-0.214 

0.000 

-0.307 

0.000 

   

V 0.220 

0.004 

-0.068 

0.196 

0.355 

0.000 

-0.240 

0.000 

-0.253 

0.000 

-0.059 

0.156 

  

VM 0.096 

0.168 

-0.024 

0.654 

0.122 

0.066 

-0.139 

0.017 

-0.091 

0.145 

-0.113 

0.046 

0.750 

0.000 

 

 

Cell Contents: Pearson correlation 

                        P-Value 
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4.4. Association Between Climate Variables and Dengue Incidence, Colombo 

District 

It is evident from the figures 4.51 – 4.57 that there is a lag relationship between 

climatic variables and dengue incidence. The variation of mean temperature and 

minimum temperature is approximately same. There is a slight increase in those 

temperature scales from April to June. Maximum temperature is significantly higher 

during the period of March - August compared to remaining months of the year. 

Maximum temperature is low during from 25th week to 31st week, at the same time 

higher number of dengue cases recorded. During the first half of the year maximum 

temperature is significantly higher than the 2nd half of the year. When the maximum 

temperature is higher number of dengue cases is significantly lower. A rise in 

temperature may evaporate small ponds and other places for mosquito breeding, thus 

reducing the growth of mosquitoes. According to figure 4.54 there is an inverse 

relationship between number of dengue cases and precipitation. Precipitation is 

significantly higher during the period of week 10 -25 and weeks of 41 – 50. In 

contrast, number of dengue outbreaks within that period is significantly lower 

compared to other weeks. Strong rainfall causing floods may results in the 

disappearance of small ponds and thereby the feasible places for mosquito breeding. 

But at the following the heavy rain dengue cases significantly increases, because from 

10 – 25 weeks heavy rainfall was recorded, following that 25 – 35 higher number of 

dengue cases recorded. According to figure 4.55 visibility remains approximately 

constant throughout the study period. According to figures 5.56 and figure 4.57 

graphical examinations showed that the overall distribution of dengue cases was 

similar to the distribution of mean wind speed and maximum sustained wind speed. 

According to figure 4.58 relative humidity remains constant throughout the study 

period. Humidity contributes to the transmission of dengue fever by influencing the 

activities and survival of the mosquito vector. Low humidity causes mosquitoes to 

feed more frequently to compensate for dehydration, while high relative humidity 

increases the metabolic process in adult mosquitoes 
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Figure 4.51: Relationship between weekly mean reported dengue cases and weekly 

mean temperature 

 

Figure 4.52: Relationship between weekly mean reported dengue cases and weekly 

mean maximum temperature 

 

Figure 4.53: Relationship between weekly mean reported dengue cases and weekly 

mean minimum temperature 
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Figure 4.54: Relationship between weekly mean reported dengue cases and weekly 

mean precipitation 

 

 

Figure 4.55: Relationship between weekly mean reported dengue cases and mean 

visibility 
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Figure 4.56: Relationship between weekly mean reported dengue cases and mean 

wind speed 

 

Figure 4.57: Relationship between weekly mean reported dengue cases and maximum 

sustained wind speed 

 

 

Figure 4.58: Relationship between weekly mean reported dengue cases and relative 

humidity 
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CHAPTER 05 

WAVELET ANALYSES 

5.1 Overview 

 

The aim of this chapter is to present the results of wavelet analysis of dengue 

incidence and its association with climatic variables. This chapter consists of 5 

sections. Section 5.2 illustrates the results of wavelet analysis of aggregated dengue 

incidence in 25 districts in Sri Lanka form 2009 to 2014. Note that the time series for 

year 2014 exists only up to September. To investigate the spatial differences in 

dengue periodicity, we performed wavelet analysis for individual time series of each 

province. Wavelet analysis of time series data of dengue incidence from 25 districts of 

Sri Lanka are displayed in section 5.3. Further dengue dynamics showed different 

evolutions across the 25 time series which can be divided into two groups based on 

wavelet cluster analysis. The results of wavelet cluster analysis are shown in section 

5.4. In section 5.5, we examine the relationships between climatic factors and dengue 

incidence and especially explore the phase relationships between the climatic 

variables and dengue incidence by using wavelet coherency analysis.  

 

5.2 Wavelet Analysis of the Aggregated Dengue Cases in 25 districts in Sri Lanka 

 

Wavelet analysis was performed to explore the periodicity in dengue incidence time 

series. Wavelet analysis provides the possibility of investigating and quantifying the 

temporal evolution of time series with different rhythmic components. In addition, 

wavelet analysis allows detection of changes in periodicity in time. The Morlet 

wavelet was used and all analyses were performed with R 3.1.2 software. Prior to 

wavelet analyses, the data for all series were square root transformed and normalized 

in order to dampen extreme variability.  

Figure 5.1 shows the time series of aggregated dengue incidence in 25 districts in Sri 

Lanka. Dengue cases occur year round but there is a strong seasonality with most 

cases occurring from September to March and reaching a peak from November to 
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January. The largest inter-annual variability in dengue cases occurs from October to 

December. The country experienced an unexpected dengue outbreak in 2009 and   

2010. Drastic downward trends at the end of 2010 and mid of 2012 were partially due 

to the effectiveness of strengthened vector control programs implemented by the 

government. Large peaks of dengue incidence occurred in 2009 and 2014. Wavelet 

power spectrum of aggregated dengue incidence is shown in figure 5.2 and its 

corresponding averaged power spectrum is shown in figure 5.3. The plot of wavelet 

power spectra show that dengue outbreaks varied at different periods and the 

periodicity of the signal varies through time. Colour code for increasing spectrum 

intensity varies from blue to red; black solid lines show statistically significant areas. 

Significant was set at p < 0.05. ; Parabolic lines demarcate the cone of influence (the 

region of the spectrum in which edge effects are significant). Figure 5.2 shows high 

power oscillation bands between 26 and 52 week. This oscillation bands are less 

distinct during the year of 2013. Moreover, Wavelet analysis reveals a significant 26-

week periodicity during 2009 – 2011, 2012 and in 2014.  However, the oscillation 

bands are partly outside of the COI due to the limited length of the time series. The 

average wavelet power in figure 5.3 had a much stronger peak in power at period of 

26.237673 weeks because variability at that particular persisted over the entire study 

period. Secondary periodicity was observed in the 30 – 52 week band. The tip of the 

secondary peak is located at a periodicity of 41.649710 weeks.  The 8-16 week 

periodic band cycle presents weak non significant power throughout the study period, 

which is consistent with the corresponding averaged power spectrum which shows no 

peak for the periodicity of 8-16 weeks. Several very high frequency periodicities with 

peaks at 2-8 week periods are also seen in figure 5.6. These periodicities appear in an 

intermittent pattern.  
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Figure 5.1: Time series plot of square root transformed and normalized aggregated 

dengue cases in Sri Lanka, 2009 – September, 2014. 

 

 

Figure 5.2: Wavelet power spectrum of the aggregated weekly dengue cases time 

series for Sri Lanka, from 2009 – September, 2014.  
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Figure 5.3: Average wavelet power spectrum 

5.3 Periodicity of Dengue Incidence by Districts 

Figure 5.4 and figure 5.5 show the wavelet power spectra of each district and their 

corresponding mean wavelet power spectra respectively. For each district, 

measurements were obtained from 294 weeks starting from 52nd week (December) of 

2008 to 36th week (September) of 2014. Because the number of cases varies among 

populations, that is, the epidemiology patterns may be similar although the magnitude 

of the expression may vary, all time series were square root transformed and 

normalized before the analysis. This time – frequency analysis of the signal provides 

information on the different frequencies as time progresses.  

In general for all districts, the wavelet power spectra show periodicities, with 

substantial heterogeneity in the relative strength. More specifically, periodicities were 

detected in the 2 – 8 week and 26 – 60 week bands. There is no consistent significant 

band in any of these 25 districts. Overall, high power bands are mostly distributed in 
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26-52 week period. In addition, several very high significant frequency cycles are 

seen in the 2 – 6 week band. These periodicities appear in an intermittent fashion. The 

8-16 week periodic band cycle presents very weak non-significant power throughout 

the study periods. 

Throughout the entire time series for districts, with relatively high population density, 

Colombo, Gampaha, Kalutara, Kandy, Nuwara Eliya, Galle, Hambantota, Matara and 

Batticalo, relatively high and significant power was observed at the 26 – 52 week 

period with some intermittently significant fluctuations occurring at the lower periods 

(< 8 weeks). Other districts with high population density such as Kurunagala, 

Puttalam, Anuradhapura, Monaragala, Ratnapura and kegalle also exhibit a similar 

behavior but 26-52 week significant oscillation bands are partly outside of the COI. In 

Killinochchie and Mulative, the dark blue portion of the figure corresponds to the 

dengue epidemics during the year 2009. Both districts recorded zero number of 

dengue cases throughout the whole year. The large significant red portion in 

Vavuniya district corresponds to sudden increase in the number of dengue incidence 

in the year of 2010.  

Largest number of dengue cases has been reported from Colombo and Gampaha 

districts during the study period. Wavelet power spectrum of Gampaha and Colombo 

exhibits a similar behavior. Both spectra show continuous oscillating modes at both 

26 week and 40-52 week during the whole time period indicating both annual and sub 

annual periodicity. This annual periodicity is reflected in the DF incidence time series, 

by a slow increase of incidence from the beginning of the year to the weeks 50–52 

(December), followed by a faster increase of incidence until weeks 26–27 (June). 

Nevertheless, these modes of oscillation vary in strength. The dominant mode is 26 

week periodicity. This is further confirmed by the average wavelet power spectra. 

Moreover, in Colombo district 26 week periodicity is significant in 2010, 2011 – 2012 

and in 2014. Gampaha district shows a significant 26 week periodicity in 2009 -2010 

and in 2012. In both districts annual periodicity did not reach statistical significant 

compared to null hypothesis: the variability of the observed time-series is equivalent 

to the expected variability of a random process with similar first-order 

autocorrelation. Furthermore, considerable numbers of patients have been reported 
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from Kalutara district, which shows significant power around 32 - week and 64 – 

week in 2011 – 2013. High power periodicities of 32 week and 64 week were 

observed in Hambantota, Matara and Kandy districts. But these periodicities were not 

statistically significant.  

 

 The wavelet power spectrum of Rathnapura district generated a peak in power around 

52 week. Wavelet time series analysis in Nuwara Eliya district identified multiple 

significant bands within 26 – 52 week during the period 2009 – 2012. No significant 

periodicity was detected after 2013. For Galle district an approximate 52 week cycle 

was detected from 2009 to 2012, and then a decreasing period from approximately 52 

week to 26 week was clearly seen from the 2nd half of 2011 to 2013. After this no 

clear significant periodicity was detected but large portion appeared as high power.   

Higher concentration of the power was observed, districts in Northern Province, 

Eastern Province, North Western Province, North Central province and Uva province 

at various periodicities over different periods of time. But the oscillation bands are 

less distinct in Killinochchi, Vavuniya, Mulative and Trincomalee.  

The average wavelet power spectrum for Kandy, Matale, Jaffna, Vavuniya, Badulla, 

Monaragala and Kegalle are much greater than at all periods indicating much stronger 

variation.  
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Figure 5.4: Wavelet power spectra of dengue incidence in Sri Lanka. For each signal, this mathematical decomposition yielded a wavelet power 

spectrum, which was plotted using heat maps with time on the x-axis, period (which is inversely related to frequency or scales) on the y-axis, and 

variance on the z-axis
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Figure 5.5: Average wavelet power spectrums by districts (time on the x-axis, average power on the y-axis) 
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5.4 Wavelet Cluster Analysis 

Dengue dynamics showed different evolutions across the 25 districts which can be 

devided into two groups based on wavelet cluster analysis. The first group consists of 

18 districts. Colombo, Gampaha, Kandy, Matale, Nuwara Eliya, Galle, Hambantota, 

Matara, Jaffna, Killinochchie, Mannar, Vavuniya, Trincomalee, kurunagala, Puttalam, 

Monaragala, Ratnapura and Kegalle are the members of cluster 01 while, Mulative, 

Ampara, Batticalo, Anuradhapura, Polonnaruwa and Badulla belong to 2nd cluster. 

The timing of statistically significant periodicities differs among districts even within 

a cluster. Except Kalutara district all other districts in cluster 2 were located on the 

east side of the country. 

 

Figure 5.6: Dendogram of wavelet cluster analysis of weekly dengue incidence for 

each district of Sri Lanka, from 58th week of 2008 to 36th week of 2014 

 [11-Killinochchi, 23 – Monaragala, 10-Jaffna, 12-Mannar, 17-Trincomalee, 25-

Kegalle, 1-Colombo, 9-Matara, 18-Kurunegala, 24-Ratnapura, 4-kandy, 13-Vavuniya, 

5-Matale, 8-Hambantota, 2-Gampaha, 19-Puttalam, 6-Nuwara Eliya, 7-Galle, 16-

Ampara, 3-Kalutara, 21-Polonnaruwa, 14-Mullative, 20-Anuradhapura, 15-Batticaloa, 

22-Badulla]
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Figure 5.7: Results of wavelet cluster analysis (red-cluster 01, blue – cluster 02) 
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5.5 Association Between Dengue Counts and Climate Variability 

Section 5.5 presents estimated wavelet coherence and phase differences for all 

examined pairs of climatic factors with dengue incidence. Prior to wavelet coherence 

analysis, the data for all series were square root transformed in order to dampen 

extremes in variability. Section 5.5.1 presents the wavelet structure of climate 

variables. Results of wavelet coherency between dengue incidence and climate 

variables are listed in section 5.5.2. 

5.5.1 Wavelet transformation of climatic variables 

The wavelet power spectra of climatic variables; mean, minimum, maximum 

temperature, humidity, precipitation, visibility, wind speed and maximum sustained 

wind speed in Colombo and their corresponding average power spectra are shown in 

figure 5.8 and figure 5.9 respectively.  

 

Throughout the entire time series, all climate variables exhibited intermittent 

significant and high wavelet power at lower periods (< 8 weeks). In general for all 

climate variables high power bands can be seen at 26 week periodicity and/ or 52 

week periodicity, confirming annual and sub-annual periodicities, as observed on the 

dengue incidence time series.   

 

Wavelet analysis reveals significant 52-week periodicity in all temperature measures; 

mean temperature, maximum temperature and minimum temperature (figure 5.8 

(a,b,c)) that are constant through time. This is further illustrated by average wavelet 

power spectra, which has pronounced peak at a 52 week periodicity. The tip of the 

peak is located at a periodicity of  52.475346. High power was also present in the 26 -

28 week period range, but did not reach significance compared to autocorrelated null 

hypothesis: the variability of the observed time series is equivalent to the expected 

variability of a random process with similar first-order autocorrelation. Relative 

humidity shows both annual (52 week) and sub-annual (26 week) significant 

periodicities as shown in figure 5.8 (d). For humidity, wavelet power at the 26 week 

period was consistently high, but significant during the year of 2010.The precipitation 
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time series displays discrete character. Precipitation episodes interrupted by periods of 

dryness.  Wavelet power spectrum of precipitation show a significant continuous band 

at 25 – 32 week period for the time period mid of 2009 – mid of 2011. After this no 

clear periodicity was detected. Time series plot of mean visibility is not dominated by 

any periodic pattern. Except some few irregular variations can be seen in 2009, 2010 

and 2011. According to the wavelet power spectrum of mean visibility (figure 5.8 (f)) 

there is a strong periodic band around 32 week and 64 week persisting continuously 

over the interval from 2009 to mid of 2011. For  mean wind speed , wavelet power 

was consistently high at a period of ~ 26 week with occational significant fluctuatios 

(figure 5.8 (g)). A non-significant, less pronounced 52 – week periodicity was also 

observed in mean wind speed. In contrast to the other climate variables, statistically 

significant continuous oscillation bands are not distinguishable in maximum sustained 

wind speed but significant spots can be seen within 2 – 26 week period.  

 

The average wavelet power spectra (figure 5.9) of all climate variables except 

precipiation show peak in power at period of ~ 52 weeks. Mean temperature, 

maximum temperature, minimum temperature and humidity had a much stronger peak 

in power at periods of ~52 weeks because variability at that particular period persisted 

over the entire time series. This peak exceeds the 95% confidence level, confirming 

that the annual cycle, indeed, highly significant. The mean wavelet power for 

humidity is much greater than at all periods, indicating much stronger variation. 
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Figure 5.8: Wavelet power spectra of climatic variables in Colombo districts, (a) 

mean temperature, (b) maximum temperature, (c) minimum temperature, (d) 

humidity, (e) precipitation, (f) mean visibility, (g) mean wind speed, (f) maximum 

sustained wind speed. (The black contour lines show the 5% significance level. The 

dashed white line denotes the COI where edge effects become important.) 
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Figure 5.9: Average wavelet power spectrums (time on the x-axis): (a) mean 

temperature, (b) maximum temperature, (c) minimum temperature, (d) humidity, (e) 

precipitation, (f) mean visibility, (g) mean wind speed, (f) maximum sustained wind 

speed . 
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5.5.2 Coherences between meteorological variables and DF/ DHF cases in 

Colombo 

 

The main purpose of wavelet coherence analysis is to identify the co-movement of 

dengue incidence with climatic variables in the time frequency space. Further we can 

determine whether the presence of a particular frequency at a given time in the disease 

corresponds to the presence of that same frequency at the same time in a climate 

covariate and with the cross wavelet phase analysis we determine the time lag 

separating these two series as well. The time series plots and cross wavelet power 

spectra between dengue incidence and climate variables are shown in figure 5.11 - 

figure 5.26.  

 

Cross wavelet coherency analysis revealed that dengue incidence showed significant 

coherence with all climatic factors but with different periodicities and phase 

relationships. In general, wavelet coherence reveals two main regions of high and 

significant coherence. The first one is for the 26 – 30 week (sub annual) periodic 

band; the second is for 52 – 60 week (annual) band. Most of the statistically 

significant wavelet coherence are neither in phase (arrows pointing right) nor anti-

phase (arrows pointing to the left). Most of the arrows are vertical at all significant 

coherence, indicating a lag difference between the climatic variables and dengue 

incidence. Except humidity, coherency between the dengue incidence and all the other 

climate variables lies in the 26-32 weeks of period band keep a consistent phase 

where climatic factors leading dengue cases by 90 degrees. 

 

The strongest and continuous coherencies are found with precipitation and wind speed 

over the 26 – 32 weeks of period band during the entire study period. Precipitation 

coherency with dengue incidence show a consistent phase where precipitation leads 

by 90 degrees (i.e one quarter of a period). Exception is made for the period around 

the first half of 2012, where dengue cases leads by 90 degrees. However, dengue 

cases mostly lead mean wind speed by 90 degrees, except in 2010 and 2014 years 

where they experienced a shift of phase.   
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The cross wavelet power spectrums of mean temperature, maximum temperature, 

humidity and visibility reveals two significant (p < 0.05) periodic bands (26 – 30 

week and 50 – 52 week) from 2009 to 2012. The analysis of phase differences reveals 

mean temperature, maximum temperature and visibility lead dengue cases by 900  at 

period of around 26 – 30 week while arrows pointing up at annual period (50 – 52 

week) band indicate dengue cases lead climatic factors. In contrast, phase relation of 

DF/ DHF cases and humidity was opposite to the above, i.e dengue cases lead 

humidity by 900 at period of around 52 weeks while humidity lead dengue cases by 

900 at sub-annual periodicity. Minimum temperature shows its most persistent 

significant coherency with dengue at 50 – 52 week band from 2009 to 2012. During 

the period of 2011 – 2013 visibility shows the weakest coherency with dengue 

incidence. Maximum sustained wind speed indicates significant coherence over the 

26-30 week band of periodicity from 2011 to 2014. Oscillation between maximum 

sustained wind speed and dengue incidence were not phase locked (as the direction of 

the arrows varied); the lead was first in dengue cases and started shifting towards a 

lead for maximum sustained wind speed in 2012. 

 

These results highlighted that these selected lag of climate variables have a strong 

influence on dengue incidence in Colombo district. The results of cross-wavelet 

coherence and phase are consistent with those of the cross-correlation functions 

shown in figure 5.10. 
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Figure 5.10: Cross-correlation between climatic variables and dengue cases 

(a) mean temperature, (b) maximum temperature, (c) minimum temperature, (d) 

humidity, (e) precipitation, (f) mean visibility, (g) mean wind speed, (f) maximum 

sustained wind speed . Horizontal blue dotted lines materialize the significance 

thresholds at p = 0.05. 
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Figure 5.11: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and mean temperature (blue) 

 

Figure 5.12: Wavelet coherency and phase analyses between dengue notifications and 

mean temperature. 
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Figure 5.13: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and minimum temperature (blue) 

 

Figure 5.14: Wavelet coherency and phase analyses between dengue notifications and 

minimum temperature 
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Figure 5.15: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and maximum temperature (blue) 

 

Figure 5.16: Wavelet coherency and phase analyses between dengue notifications and 

Maximum sustained wind speed. 
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Figure 5.17: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and humidity (blue) 

 

Figure 5.18: Wavelet coherency and phase analyses between dengue notifications and 

humidity. 
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Figure 5.19: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and precipitation (blue) 

 

Figure 5.20: Wavelet coherency and phase analyses between dengue notifications and 

precipitation. 
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Figure 5.21: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and visibility (blue) 

 

Figure 5.22: Wavelet coherency and phase analyses between dengue notifications and 

visibility. 
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Figure 5.23: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and wind speed (blue) 

 

Figure 5.24: Wavelet coherency and phase analyses between dengue notifications and 

wind speed. 
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Figure 5.25: Time series plot of square root transformed and normalized aggregated 

dengue cases (red) and maximum sustained wind speed (blue) 

 

Figure 5.26: Wavelet coherency and phase analyses between dengue notifications and 

maximum sustained wind speed. 
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CHAPTER 06 

CHANGE POINT ANALYSIS 

6.1 Overview 

A change point analysis was performed on data used in the study to investigate the 

presence of any abrupt change in variance for the study period. The results of change 

point detection are presented in the following subsections.  

6.2 Results 

Mean temperature, maximum temperature, minimum temperature, humidity and wind 

speeds are by nature have a diurnal variability and thus have a periodic mean. This 

was confirmed by the figures in Appendix A.  In contrast, the variability of the data 

appears smaller in some sections and larger in others. This motivates a search for the 

association between changes in variability in climatic factors and dengue incidence. R 

version 3.1.2 software was used for the analysis. “cpt.var” function in changepoint 

package was used to identify the change points in variability. The changes in variance 

approaches within the cpt.var function require the data to have a fixed value mean 

over time, and thus this periodic must be removed prior to analysis. Whilst there are a 

range of options for removing this mean, we choose to take first differences as it does 

not require any modeling assumptions. Following this, we assume that the differences 

follow a Normal distribution with changing variance. Here we using PELT 

segmentation algorithm to detect change points. 

 

Table 6.1 presents the results of change point analysis for the time series of dengue 

cases and climatic factors. It shows how change points are distributed over time. Cells 

contain time point (week number) where the change point was detected. For example, 

first change point in variance for dengue cases were detected at 8th week of 2009. 

Within a year same colour points represent nearby change points. Figures 6.1 – 6.8 

provides more details on the specifications of abrupt changes in climate variables. 
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Table 6.1: Summary of the results of change point analysis 
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It can be seen that incidence of dengue, maximum temperature, humidity, wind speed 

and precipitation share similar variability in terms of distribution of change points 

overtime.  During the study period, first change point in variance of dengue cases was 

recorded in 8th week of 2009. During 4th week – 7th week of 2009, maximum 

temperature, humidity, precipitation, wind speed and maximum sustained wind speed 

showed a change points in the variation. Next change points of variation in dengue 

cases located in 14th week of 2009. Within the same week, mean wind speed and 

maximum sustained wind speed also show a change in variation. But other climate 

variables did not show any variation prior and closer to this change point. At 30th 

week of 2009, a variation has increased drastically; this increase might be due to 

changes in precipitation and wind speed which were located at 29 – 32 week period. 

Both the mean temperature and minimum temperature do not show any change in 

their variations in year 2009. 

In 2010, three change points were detected in the variation of dengue incidence. In 

this year both the precipitation and humidity show similar behavior to dengue 

incidence in terms of location (time point) of change points.  

From 2011 – 2012, 11 change points were detected in the variation of dengue 

incidence. These points were located nearby. During this period, maximum 

temperature, precipitation and humidity also showed very much similar pattern in 

terms of change point. More over visibility and maximum sustained wind also showed 

considerable number of change points during that period.   

In 2013, two change points were detected in the variation of dengue cases. Further 

there is no considerable number of change points in both precipitation and humidity. 

During this year maximum temperature shows two change points, while precipitation 

and humidity show only one change point in 5th week and 4th week, respectively. 

These change points were located two months prior to the change point in dengue 

incidence. One change point in visibility was also detected. Other climatic variables 

did not show any change points.  

Dengue cases from 1st week of 2014 to 36th week of 2014 does not show any change 

point with respect to their variation. But, during 26th week – 35th week, all climatic 
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variables showed at least two change points with respect to their variation.  Since 

dengue cases data were not considered after 36th week of 2014, we couldn’t see 

whether this variation has some impact on dengue incidence.  

According to figure 6.8, it is noted that after a sudden increase in maximum sustained 

wind speed there is a sudden drop in dengue incidence. Although it is not established 

whether this association is causal, high wind speed could conceivably interfere with 

normal mosquito movements and biting behaviors. 
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Figure 6.1: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of mean temperature with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.2: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of maximum temperature with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.3: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of minimum temperature with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.4: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of humidity with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.5: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of precipitation with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.6: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of visibility with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.7: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation  

, (b) First difference of wind speed with vertical lines depicting change points identified by PELT segmentation    
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Figure 6.8: (a) First difference of dengue cases with vertical lines depicting change points identified by PELT segmentation, (b) First 

difference of maximum sustained wind speed with vertical lines depicting change points identified by PELT segmentation    
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CHAPTER 07 

DISTRIBUTED LAG NONLINEAR MODELLING 

7.1 Overview 

In this chapter, we present the results of Distributed Lag Nonlinear Model (DLNM). 

Section 7.2 describes the adequacy of the DLNM model while section 7.3 interprets 

the results of proposed final model. 

7.2 Adequacy of the DLNM Model 

A Poisson regression combined with distributed lag nonlinear model was used to 

evaluate and compare the impact of climate variables on dengue incidence from 2009 

to 2014 in Colombo district. DLNM was used since it allows for a nonlinear 

exposure-response relationship and provides flexibility in modeling the time structure 

of the relationship. Parameter estimations of the model is given in table 7.1 (Appendix 

C). Model selection is still an issue within the DLNM framework, although simulation 

studies indicate a good performance of methods based on the Akaike information 

criterion. Hence the model with minimum QAIC (= 8159.779) and QBIC ( = 

15483.04) was selected. The residuals were checked to evaluate the adequacy of the 

model to ensure they were normally distributed and independent over time (Figure 7.1 

and figure 7.2).  

 

Figure 7.1: ACF plot of residual 
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 Figure 7.2: Normal probability plot of residuals; Two-sample Kolmogorov-Smirnov 

test (p = 0.206) 

 

7.3 Interpretation of DLNM Results 

Three-dimensional plots of figure 7.3 – figure 7.14 shows the relationship between 

meteorological variables and the incidence of dengue with various lag weeks. For 

better interpretative purpose, we plotted specific contour plots of the associations. All 

the relationship curves were nonlinear, whereas the different variables had different 

characteristics.  

An overall picture of the effect of mean temperature change on dengue incidence was 

depicted in figure 7.3, showing three-dimensional plot of the relative risk (RR) along 

temperature change and lags with 27.722650C as the reference. It is important to note 

that the relative risk here is the ratio of the probability of dengue incidence occurring 

at a certain value of a weather variable to the probability of the event occurring at a 

reference value of the same weather variable. The change of reference may affect the 

width of confidence interval but it will not affect the RR curve itself. Hence median of 

each climate variable was chosen as the reference value. Overall, the estimated effect 

of mean temperature change on dengue was nonlinear. A visual inspection of the 
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figure 7.4 suggests that there was an immediate harmful effect of low mean 

temperature (<270C) on dengue incidence at lag 4-9 weeks, and a protective effect 

(RR<1) of low temperature at lag 10-25 weeks. Figure 7.5, the three-dimensional plot 

shows that the impact of maximum temperature on dengue incidence, is completely 

reverse of the behavior of mean temperature.  

Figure 7.7 and figure 7.8 show the relationship between precipitation and dengue 

incidence. In general, it can be seen that a higher precipitation was associated with a 

higher dengue incidence, but this observed relationship does not hold true when 

precipitation is 25mm -65mm at lag 5- 25 weeks. According to figure 7.6 the 

strongest effect of rainfall occurred at lag 0-5 weeks with more than 60mm 

precipitation, and lag 15-20 weeks with 40-50 mm precipitation. Very high 

precipitation (>70mm) at lag 15-20 weeks reduce the relative risk of dengue 

incidence. Further the precipitation around 30-60mm at lag 0-3 weeks has a protective 

impact on the occurrence of dengue incidence.  

Figure 7.9 and figure 7.10 illustrate overall relationship of relative humidity on 

dengue incidence and its contour plot respectively. Humidity around 60-75 mm has a 

positive effect on dengue incidence around lag 10-18 weeks. High humidity (>85%) 

has a protective impact on dengue incidence.  

The estimated effect of wind visibility on dengue cases differed for low and high 

visibility (figure 7.11 and figure 7.12). The risk of dengue transmission increases with 

visibility. Low visibility (<14 km) has a negative impact on the occurrence of dengue 

incidence while the high visibility (> 15km) a positive impact on increase of dengue 

incidence. Figure 7.13 and 7.14 shows the overall depiction of maximum sustained 

wind speed on dengue incidence. Maximum sustained wind speed (> 25km) at lag 0-

10 weeks has a slight positive impact on dengue incidence.  
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Figure 7.3: 3D plot of RR of dengue cases by mean temperature 

 

Figure 7.4: Contour plot of RR of dengue cases by mean temperature 
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Figure 7.5: 3D plot of RR of dengue cases by maximum temperature 

 

Figure 7.6: Contour plot of RR of dengue cases by maximum temperature 
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Figure 7.7: 3D plot of RR of dengue cases by precipitation 

 

 

Figure 7.8: Contour plot of dengue cases by precipitation 



126 
 

 

Figure 7.9: 3D plot of RR of dengue cases by humidity 

 

Figure 7.10: Contour plot of RR of dengue cases by humidity 
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Figure 7.11: 3D plot of RR of dengue cases by visibility 

 

Figure 7.12: Contour plot of RR of dengue cases by visibility 
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Figure 7.13: 3D plot of RR of dengue cases by wind speed 

 

Figure 7.14: Contour plot of RR of dengue cases by wind speed 
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CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

8.1 Overview 

This chapter concludes the thesis and describes some of the limitations of the 

research.  In addition to limitations, we critically evaluate and discuss the finding of 

the thesis and we also describe recommendations for future studies. 

8.2 Conclusions and Recommendations 

The wavelet power spectrum analysis of dengue dynamics indicates periodicities 

around 2-8 weeks, 26-32 weeks and 52-64 weeks. 2-8 weeks periodicity appeared in 

an intermittent pattern. Though we found high power at annual and semi-annual 

scales in wavelet power spectra of all 25 districts, the significance of those bands are 

discontinuous. However, dengue dynamics showed different periodicities across 25 

districts which can be divided into two clusters based on wavelet cluster analysis. 

Except Trincomalee district all districts in cluster 01 were located in the left side of 

the coutry while in cluster 02, except Kalutara district all the other districts were 

located in the right side of the country.  These two clusters may have influenced from 

southwest monsoon and northeast monsoon. The unusual pattern of dengue incidence 

in Kalutara district could be due to rubber cultivation. Massive number of coconut 

shells used for collection of rubber milk in the rubber planatation and discarded 

coconut shells caused breeding of mosquitoes. Moreover, rubber tree rain gutter 

system forms an ideal condition for the proliferation of mosquitoes. Furthermore, 

massive pineapple cultivation in rubber states also fueling for dengue vector profusion 

in the district. The periodicities of dengue incidence in cluster 01 are accordance with 

dengue dynamics in Thailand (Alshehri, 2013; Jeefoo, 2012) and South Vietnam 

(Cuong et al., 2011). Annual periodic patterns are a common phenomenon in dengue 

transmission and have been reported in many tropical and subtropical countries (Thai 

et al., 2010). There was a large decrease in the variability of dengue incidence in 

2013. Possible explanations for the observed decrease could be a modification of the 

climate conditions, a reduction in transmission due to declining mosquito populations, 
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declining contact between human and mosquito populations, and/or modifications in 

diagnosis, classification and reporting dengue cases.   

Significant periodicity was present on annual scale for mean temperature, minimum 

temperature, maximum temperature and humidity. Precipitation showed a significant 

periodicity at 26 week. Wavelet coherency revealed a significant non-stationary 

association between all climatic variables and dengue incidence. The association 

between dengue and climate reported here is strong but transient. Wavelet coherency 

analyses revealed that dengue transmission co-varied with mean temperature, 

maximum temperature, humidity and visibility at both annual and biannual cycles. 

The cross wavelet power spectra for minimum temperature, precipitation, mean wind 

speed and maximum sustained wind speed show strong and significant signal for the 

26 week period band. This suggests that mean temperature, humidity and precipitation 

have well differentiated roles in dengue transmission. Except wind speed, the 

significance of the association between dengue incidence and other climatic variables 

are discontinuous. Wavelet phase analyses revealed most of the statistically 

significant wavelet coherence is neither in phase nor anti phase. Most of the arrows 

are vertical at all significant coherence, indicating a lag difference between climate 

variables and dengue incidence. 

In Hanoi dengue transmission demonstrates clear annual cycles that are associated 

with a lag of around two months with seasonal increases in mean temperature and 

rainfall (Cuong et al., 2011). We observed a significant association between dengue 

incidence and wind speed. Other authors (Cuong et al., 2011; Luz et al., 2011) also 

noted a pattern of high wind speed being associated with periods of low dengue 

notifications. Although it is not established whether this association is casual high 

wind speed could conceivable interfere with normal movement and biting behaviors. 

A previous study reported no apparent relationship between dengue and climate in 

Bangkok between 1966 and 1998 (An & Rocklov, 2014; Fairos et al., 2010). 

However, in this work the authors used spectral density analysis, which is not 

sensitive to nonstationary effects. Conventional statistical methods may fail to reveal 

a strong relationship between climate and a health outcome when discontinuous 

associations are present. 
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Considering the results of change point analysis, there were 22 change points in the 

variation of dengue dynamics in Colombo district. Most of the change points were 

detected in 2009, 2011 and 2012. Changes in the variation of dengue incidence in 

2009, 2011 and 2012 are very much similar to the changes in the precipitation and 

humidity.  

Results of distributed lag nonlinear model revealed mean temperature around 250C – 

260C prior to 5 weeks and 280C – 290C temperature prior to lag 10 – 25 weeks  , high 

precipitation (>30mm), humidity 65% - 75% prior to lag of 10-15 weeks and high 

visibility(> 16km) have an harmful impact on increasing relative risk of dengue 

incidence. Rainfall season is positively associated with high dengue incidence. This is 

line with the studies that reported the highest risk of dengue cases related to rainfall in 

Mexico, Brazil (Cheong et al., 2013). Rainfall influences the abundance of dengue 

vectors and aquatic populations (eggs, larvae, and pupa). Increased rainfall supports 

more suitable breeding sites for the immature development of the aquatic population. 

Further very high rainfall (> 70mm) at lag 15 – 20 weeks and rainfall between 30mm 

– 60mm have a protective impact on the occurrence of dengue incidence. Rainfall 

directly influences the density of the mosquitoes, however, strong rainfall causing 

floods may results in the disappearance of small ponds and thereby the feasible places 

for mosquito breeding (Gasparrini et al., 2010). Hence, the impact of rainfall on 

mosquito growth and distribution should be viewed within the geographical location 

of the study area. For example, if the region under consideration is a plain area with 

appropriate and fully covered sanitation systems, mosquito breeding may be less, 

while, if the region is an area where water remains stagnant for days, the area would 

be more vulnerable to a rapid increase in mosquito population due to rain. According 

to the results of distributed lag non linear model we observed high visibility being 

associated with high dengue notifications. Although it is not established whether this 

association is causal, high visibility could help the mosquito movements and biting 

behaviors. In our analyses, temperature, humidity and precipitation explained most 

the variance of the dengue cases.  

Wavelet analysis, change point detection approach and distributed lag nonlinear 

models have revealed several pieces of evidence for a complex, nonstationary, 
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nonlinear relationship between climatic variables and dengue incidence and 

periodicity of dengue incidence across the island.  However, there were some 

limitations in this study. We only examined the association between climate variables 

and dengue incidence, but non-climatic factors, such as human activities, 

socioeconomic status, vector control programs, and drug resistance may also affect 

the spread of this disease. However, these non-climatic factors are unlikely to vary 

significantly on a weekly scale and were unavailable for this research. Further studies 

on the impact of climate change on dengue need to take all the other contributing 

factors into consideration in order to make meaningful public policy 

recommendations. 

Our findings provide insights into the long-term persistence and spatial spread of 

dengue throughout Sri Lanka. Further studies on a more extensive time series dataset 

of a larger area could shed more light onto the spatio-temporal patterns in Sri Lanka. 

There is considerable interest in the role played by climate variability as a factor 

driving diseases (An & Rocklov, 2014). Further studies should use this approach to 

examine relationships between climate and dengue fever on regional and global 

scales. 

Dengue prevention and control activities in many disease endemic settings, including 

Vietnam (Cuong et al., 2011), currently rely on targeted spraying of adulticides to 

reduce vector populations in and around the homes of reported patients. These 

activities are usually complemented with public health outreach and some routine 

activities to reduce vector breeding sites, within the constraints of limited public 

health budgets. Understanding the spatial dynamics and timing of dengue epidemics 

might enhance the implementation of current and future interventions by improved 

targeting to avert high-incidence dengue seasons. Results of this study  provides a 

foundation for further investigation into the social and environmental factors 

responsible for changing disease patterns and provides data to inform program 

planning for dengue prevention control. 

 

 



133 
 

REFERENCE LIST 

 
Alshehri, M. S. A. (2013). Dengue Fever outburst and its relationship with 

climatic factors. World Applied Sciences Journal, 22(4), 506-515. 

 

An, D. T. M., & Rocklöv, J. (2014). Epidemiology of dengue fever in Hanoi from 

2002 to 2010 and its meteorological determinants. Global health action, 7 

 

Banu, S. (2013). Examining the impact of climate change on dengue transmission 

in the Asia-Pacific region. 

 

Briët, O. J., Amerasinghe, P. H., & Vounatsou, P. (2013). Generalized seasonal 

autoregressive integrated moving average models for count data with application 

to malaria time series with low case numbers. PloS one, 8(6), e65761. 

 

Castillo, K. C., Körbl, B., Stewart, A., Gonzalez, J. F., & Ponce, F. (2011). 

Application of spatial analysis to the examination of dengue fever in Guayaquil, 

Ecuador. Procedia Environmental Sciences, 7, 188-193. 

 

Cazelles, B., Cazelles, K., & Chavez, M. (2014). Wavelet analysis in ecology and 

epidemiology: impact of statistical tests. Journal of The Royal Society Interface, 

11(91), 20130585. 

 

Cazelles, B., Chavez, M., McMichael, A. J., & Hales, S. (2005). Nonstationary 

influence of El Nino on the synchronous dengue epidemics in Thailand. PLoS 

medicine, 2(4), e106. 

 

Chaves, L. F., & Koenraadt, C. J. (2010). Climate change and highland malaria: 

fresh air for a hot debate. The Quarterly Review of Biology, 85(1), 27-55. 

 

Chen, S. C., Liao, C. M., Chio, C. P., Chou, H. H., You, S. H., & Cheng, Y. H. 

(2010). Lagged temperature effect with mosquito transmission potential explains 

dengue variability in southern Taiwan: insights from a statistical analysis. Science 

of the total environment, 408(19), 4069-4075. 

 

 



134 
 

Cheong, Y. L., Burkart, K., Leitão, P. J., & Lakes, T. (2013). Assessing weather 

effects on dengue disease in Malaysia. International journal of environmental 

research and public health, 10(12), 6319-6334. 

 

Colón-González, F. J., Lake, I. R., & Bentham, G. (2011). Climate variability and 

dengue fever in warm and humid Mexico. The American journal of tropical 

medicine and hygiene, 84(5), 757-763. 

 

Cuong, H. Q., Hien, N. T., Duong, T. N., Phong, T. V., Cam, N. N., Farrar, J., ... 

& Horby, P. (2011). Quantifying the emergence of dengue in Hanoi, Vietnam: 

1998–2009. PLoS neglected tropical diseases, 5(9), e1322. 

 

Dengue battle costs billions- so why the soaring deaths?.(201, February 09). The 

Sunday Times, p. A4 

 

Descloux, E., Mangeas, M., Menkes, C. E., Lengaigne, M., Leroy, A., Tehei, T., 

... & De Lamballerie, X. (2012). Climate-based models for understanding and 

forecasting dengue epidemics. PLoS neglected tropical diseases, 6(2), e1470. 

 

Fairos, W. W., Azaki, W. W., Alias, L. M., & Wah, Y. B. (2010). Modelling 

Dengue Fever (DF) and Dengue Haemorrhagic Fever (DHF) Outbreak Using 

Poisson and Negative Binomial Model. Int J Math Comput Sci Eng, 4, 809-814. 

 

Fansiri, T., Fontaine, A., Diancourt, L., Caro, V., Thaisomboonsuk, B., 

Richardson, J. H., ... & Lambrechts, L. (2013). Genetic mapping of specific 

interactions between Aedes aegypti mosquitoes and dengue viruses. PLoS 

genetics, 9(8), e1003621. 

 

Focks, D. A., Alexander, N., Villegas, E., & World Health Organization. (2006). 

Multicountry study of Aedes aegypti pupal productivity survey methodology: 

findings and recommendations. 

 

Gasparrini, A., Armstrong, B., & Kenward, M. G. (2010). Distributed lag 

non‐linear models. Statistics in medicine, 29(21), 2224-2234. 

 

Gharbi, M., Quenel, P., Gustave, J., Cassadou, S., Ruche, G. L., Girdary, L., & 

Marrama, L. (2011). Time series analysis of dengue incidence in Guadeloupe, 



135 
 

French West Indies: forecasting models using climate variables as predictors. 

BMC infectious diseases, 11(1), 166. 

 

Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross 

wavelet transform and wavelet coherence to geophysical time series. Nonlinear 

processes in geophysics, 11(5/6), 561-566. 

 

Harris, E., Videa, E., Pérez, L., Sandoval, E., Téllez, Y., Perez, M. L., ... & 

Balmaseda, A. (2000). Clinical, epidemiologic, and virologic features of dengue 

in the 1998 epidemic in Nicaragua. The American journal of tropical medicine 

and hygiene, 63(1), 5-11. 

 

Hii, Y. L. (2013). Climate and dengue fever: early warning based on temperature 

and rainfall. 

 

Hu, W., Clements, A., Williams, G., & Tong, S. (2010). Dengue fever and El 

Nino/Southern Oscillation in Queensland, Australia: a time series predictive 

model. Occupational and environmental medicine, 67(5), 307-311. 

 

Hu, W., Tong, S., Mengersen, K., & Connell, D. (2007). Weather variability and 

the incidence of cryptosporidiosis: comparison of time series poisson regression 

and SARIMA models. Annals of epidemiology, 17(9), 679-688. 

 

Jeefoo, P. (2012). Spatial Temporal Dynamics and Risk Zonation of Dengue 

Fever, Dengue Hemorrhagic Fever, and Dengue Shock Syndrome in Thailand. 

International Journal of Modern Education and Computer Science (IJMECS), 

4(9), 58. 

 

Johansson, M. A., Cummings, D. A., & Glass, G. E. (2009). Multiyear climate 

variability and dengue—El Nino southern oscillation, weather, and dengue 

incidence in Puerto Rico, Mexico, and Thailand: a longitudinal data analysis. 

PLoS medicine, 6(11), e1000168. 

 

Killick, R., & Eckley, I. A. (2011). Changepoint: an R package for changepoint 

analysis. R package version 0.6, URL http://CRAN. R-project. org/package= 

changepoint 

 



136 
 

Kim, Y. M., Park, J. W., & Cheong, H. K. (2012). Estimated effect of climatic 

variables on the transmission of Plasmodium vivax malaria in the Republic of 

Korea. Environmental health perspectives, 120(9), 131 

 

Lam, P. K., Tam, D. T. H., Diet, T. V., Tam, C. T., Tien, N. T. H., Kieu, N. T. T., 

... & Wills, B. (2013). Clinical characteristics of dengue shock syndrome in 

Vietnamese children: a 10-year prospective study in a single hospital. Clinical 

infectious diseases, 57(11), 1577-1586. 

 

Lowe, R., Bailey, T. C., Stephenson, D. B., Graham, R. J., Coelho, C. A., 

Carvalho, M. S., & Barcellos, C. (2011). Spatio-temporal modelling of climate-

sensitive disease risk: Towards an early warning system for dengue in Brazil. 

Computers & Geosciences, 37(3), 371-381. 

 

Luz, P. M., Vanni, T., Medlock, J., Paltiel, A. D., & Galvani, A. P. (2011). 

Dengue vector control strategies in an urban setting: an economic modelling 

assessment. The Lancet, 377(9778), 1673-1680. 

 

Ma, W., Sun, X., Song, Y., Tao, F., Feng, W., He, Y., ... & Yuan, Z. (2013). 

Applied mixed generalized additive model to assess the effect of temperature on 

the incidence of bacillary dysentery and its forecast. PloS one, 8(4), e62122. 

 

Martinez, E. Z., & Silva, E. A. S. D. (2011). Predicting the number of cases of 

dengue infection in Ribeirão Preto, São Paulo State, Brazil, using a SARIMA 

model. Cadernos de saude publica, 27(9), 1809-1818. 

 

Messer, W. B., Vitarana, U. T., Sivananthan, K., Elvtigala, J., Preethimala, L. D., 

Ramesh, R., ... & De Silva, A. M. (2002). Epidemiology of dengue in Sri Lanka 

before and after the emergence of epidemic dengue hemorrhagic fever. The 

American journal of tropical medicine and hygiene, 66(6), 765-773. 

 

Morin, C. W., Comrie, A. C., & Ernst, K. (2013). Climate and dengue 

transmission: evidence and implications. Environmental health perspectives, 

121(11-12), 1264-1272. 

 

Nakhapakorn, K., & Tripathi, N. K. (2005). An information value based analysis 

of physical and climatic factors affecting dengue fever and dengue haemorrhagic 

fever incidence. International Journal of Health Geographics, 4(1), 13. 

 



137 
 

Packages, R., & Pretty, R. wtc {biwavelet} Compute wavelet coherence. 

 

Pascual, M., Cazelles, B., Bouma, M. J., Chaves, L. F., & Koelle, K. (2008). 

Shifting patterns: malaria dynamics and rainfall variability in an African highland. 

Proceedings of the Royal Society B: Biological Sciences, 275(1631), 123-132. 

 

Pathirana, S., Kawabata, M., & Goonatilake, R. (2009). Study of potential risk of 

dengue disease outbreak in Sri Lanka using GIS and statistical modelling. Journal 

of Rural and Tropical Public Health, 8, 8. 

 

Pham, H. V., Doan, H. T., Phan, T. T., & Minh, N. N. T. (2011). Ecological 

factors associated with dengue fever in a central highlands Province, Vietnam. 

BMC infectious diseases, 11(1), 172. 

 

Pinto, E., Coelho, M., Oliver, L., & Massad, E. (2011). The influence of climate 

variables on dengue in Singapore. International journal of environmental health 

research, 21(6), 415-426. 

 

Prates, M. O., Dey, D. K., & Lachos, V. H. (2012). A dengue fever study in the 

state of. 

 

Seng, S. B., Chong, A. K., & Moore, A. (2005). Geostatistical modelling, analysis 

and mapping of epidemiology of dengue fever in Johor State, Malaysia. 

 

Serfling, R. E. (1963). Methods for current statistical analysis of excess 

pneumonia-influenza deaths. Public health reports, 78(6), 494. 

 

Thai, K. T., Cazelles, B., Van Nguyen, N., Vo, L. T., Boni, M. F., Farrar, J., ... & 

de Vries, P. J. (2010). Dengue dynamics in Binh Thuan province, southern 

Vietnam: periodicity, synchronicity and climate variability. PLoS neglected 

tropical diseases, 4(7), e747. 

 

Tissera, H. A., Ooi, E. E., Gubler, D. J., Tan, Y., Logendra, B., Wahala, W. M. P. 

B., ... & De Silva, A. D. (2011). New dengue virus type 1 genotype in Colombo, 

Sri Lanka. Emerging infectious diseases, 17(11), 2053-2055. 

 



138 
 

Torrence, C., & Compo, G. P. (1998). A practical guide to wavelet analysis. 

Bulletin of the American Meteorological society, 79(1), 61-78. 

 

Wu, P. C., Guo, H. R., Lung, S. C., Lin, C. Y., & Su, H. J. (2007). Weather as an 

effective predictor for occurrence of dengue fever in Taiwan. Acta tropica, 103(1), 

50-57. 

 

Wu, P. C., Lay, J. G., Guo, H. R., Lin, C. Y., Lung, S. C., & Su, H. J. (2009). 

Higher temperature and urbanization affect the spatial patterns of dengue fever 

transmission in subtropical Taiwan. Science of the total environment, 407(7), 

2224-2233. 

 

Xiao, H., Tian, H. Y., Cazelles, B., Li, X. J., Tong, S. L., Gao, L. D., ... & Zhang, 

X. X. (2013). Atmospheric moisture variability and transmission of hemorrhagic 

fever with renal syndrome in changsha city, mainland china, 1991–2010. PLoS 

neglected tropical diseases, 7(6), e2260. 

 

Yang, L., Qin, G., Zhao, N., Wang, C., & Song, G. (2012). Using a generalized 

additive model with autoregressive terms to study the effects of daily temperature 

on mortality. BMC medical research methodology, 12(1), 165. 

 

Yusof, Y., & Mustaffa, Z. (2011). Dengue outbreak prediction: A least squares 

support vector machines approach. International Journal of Computer Theory and 

Engineering, 3(4), 489-493. 

 

Zacarias, O. P., & Andersson, M. (2010). Mapping malaria incidence distribution 

that accounts for environmental factors in Maputo Province-Mozambique. Malar 

J, 9, 79. 

 

 

 

 

 

 

 

 



139 
 

Appendix A: Wavelet analyses of Dengue Cases by Districts 

 

Figure A1: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Colombo District, 2009 – September, 2014. 

 

Figure A2: Wavelet power spectrum of dengue incidence in Colombo district from 

2009 to September, 2014. 
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Figure A3: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Gampaha District, 2009 – September, 2014. 

Figure A4: wavelet power spectrum of dengue incidence in Gampaha district from 

2009 to September, 2014. 
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Figure A5: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Kalutara District, 2009 – September, 2014. 

 

Figure A6: wavelet power spectrum of dengue incidence in Kalutara district from 

2009 to September, 2014 
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Figure A7: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Kurunagala District, 2009 – September, 2014. 

 

Figure A8: wavelet power spectrum of dengue incidence in Kurunalaga district from 

2009 to September, 2014 
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Figure A9: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Rathnapura District, 2009 – September, 2014. 

 

Figure A10: wavelet power spectrum of dengue incidence in Rathnapura district from 

2009 to September, 2014 
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Figure A11: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Kandy District, 2009 – September, 2014. 

 

Figure A12: wavelet power spectrum of dengue incidence in Kandy district from 2009 

to September, 2014 
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Figure A13: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Matale District, 2009 – September, 2014. 

 

Figure A14: wavelet power spectrum of dengue incidence in Matale district from 

2009 to September, 2014 
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Figure A15: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Nuwara Eliya District, 2009 – September, 2014. 

 

Figure A16: wavelet power spectrum of dengue incidence in Nuwara Eliya district 

from 2009 to September, 2014 
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Figure A17: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Galle District, 2009 – September, 2014. 

 

Figure A18: wavelet power spectrum of dengue incidence in Galle district from 2009 

to September, 2014 

-1
0

1
2

3
4

Year

s
q

u
a

re
 r

o
o

t 
tr

a
n

s
fo

rm
e

d
 a

n
d

 n
o

rm
a

li
z
e

d

2009 2010 2011 2012 2013 2014

Galle District

Time

P
e

ri
o

d
 (

w
e

e
k
s
)

6
4

3
2

1
6

 8
 4

1.6e-02

6.2e-02

2.5e-01

1.0e+00

4.0e+00

1.6e+01

6.4e+01

2009 2010 2011 2012 2013 2014



148 
 

 

Figure A19: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Hambantota District, 2009 – September, 2014. 

 

Figure A20: wavelet power spectrum of dengue incidence in Hambantota district from 

2009 to September, 2014 
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Figure A21: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Matara District, 2009 – September, 2014. 

 

Figure A22: wavelet power spectrum of dengue incidence in Matara district from 

2009 to September, 2014 
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Figure A23: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Jaffna District, 2009 – September, 2014. 

 

Figure A24: wavelet power spectrum of dengue incidence in Jaffna district from 2009 

to September, 2014 
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Figure A25: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Killinochchie District, 2009 – September, 2014. 

 

Figure A26: wavelet power spectrum of dengue incidence in Killinochchie district 

from 2009 to September, 2014 
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Figure A27: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Mannar District, 2009 – September, 2014. 

 

Figure A28: wavelet power spectrum of dengue incidence in Mannar district from 

2009 to September, 2014 
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Figure A29: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Vavuniya District, 2009 – September, 2014. 

 

Figure A30: wavelet power spectrum of dengue incidence in Vavuniya district from 

2009 to September, 2014 
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Figure A31: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Trincomalee District, 2009 – September, 2014. 

 

Figure A32: wavelet power spectrum of dengue incidence in Trincomalee district 

from 2009 to September, 2014 
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Figure A33: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Puttalam District, 2009 – September, 2014. 

 

Figure A34: wavelet power spectrum of dengue incidence in Puttalam district from 

2009 to September, 2014 
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Figure A35: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Monaragala District, 2009 – September, 2014. 

Figure A36: wavelet power spectrum of dengue incidence in Monaragala district from 

2009 to September, 2014 
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Figure A37: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Kegalle District, 2009 – September, 2014. 

 

Figure A38: wavelet power spectrum of dengue incidence in Kegalle district from 

2009 to September, 2014 
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Figure A39: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Mulative District, 2009 – September, 2014. 

 

Figure A40: wavelet power spectrum of dengue incidence in Mulative district from 

2009 to September, 2014 
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Figure A41: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Ampara District, 2009 – September, 2014. 

 

Figure A42: wavelet power spectrum of dengue incidence in Ampara district from 

2009 to September, 2014  
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Figure A43: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Batticalo District, 2009 – September, 2014. 

 

Figure A44: wavelet power spectrum of dengue incidence in Batticalo district from 

2009 to September, 2014  
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Figure A45: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Anuradapura District, 2009 – September, 2014. 

 

Figure A46: wavelet power spectrum of dengue incidence in Anuradapura district 

from 2009 to September, 2014 
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Figure A47: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Polonnaruwa District, 2009 – September, 2014. 

 

Figure A48: wavelet power spectrum of dengue incidence in Plonnaruwa district from 

2009 to September, 2014  
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Figure A49: Time series plot of square root transformed and normalized aggregated 

dengue incidence in Badulla District, 2009 – September, 2014. 

 

Figure A50: wavelet power spectrum of dengue incidence in Badulla district from 

2009 to September, 2014  
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Appendix B: Wavelet analyses of Climatic Variables 

 

 

Figure B1: Time series plot of weekly mean temperature (0C) from January 2009 –  

September 2014 

 

 

Figure B2: Wavelet power spectrum of mean temperature in Colombo district from 

2009 to September, 2014 
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Figure B3: Time series plot of weekly maximum temperature (0C) from January 2009 

–  September 2014 

 

 

Figure B4: Wavelet power spectrum of maximum temperature in Colombo district 

from 2009 to September, 2014 
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Figure B5: Time series plot of weekly minimum temperature (0C) from January 2009 

–  September 2014 

 

 

Figure B6: Wavelet power spectrum of minimum temperature in Colombo district 

from 2009 to September, 2014 
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Figure B7: Time series plot of weekly relative humidity (%) from January 2009 –  

September 2014 

 

Figure B8: Wavelet power spectrum of humidity in Colombo district from 2009 to 

September, 2014 
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Figure B9: Time series plot of weekly precipitation (mm) from January 2009 –  

September 2014 

 

 

Figure B10: Wavelet power spectrum of precipitation in Colombo district from 2009 

to September, 2014 



169 
 

 

Figure B11: Time series plot of weekly mean visibility (km) from January 2009 –  

September 2014 

 

Figure B12: Wavelet power spectrum of mean visibility in Colombo district from 

2009 to September, 2014 
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Figure B13: Time series plot of weekly mean wind speed (km/h) from January 2009 –  

September 2014 

 

 

Figure B14: Wavelet power spectrum of mean wind speed in Colombo district from 

2009 to September, 2014 
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Figure B15: Time series plot of weekly maximum sustained wind speed (km/h) from 

January 2009 –  September 2014 

 

 

Figure B16: Wavelet power spectrum of maximum sustained wind speed (km/ h) in 

Colombo district from 2009 to September, 2014 
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Appendix C: Results of DLNM 

 

Call: 

glm(formula = Cases ~ cb.TEM + cb.TMAX + cb.PP + cb.H4 + cb.VM 

+ cb.VV + as.factor(Year) + as.factor(Week), family = 

quasipoisson()) 

Deviance Residuals:  

     Min        1Q    Median        3Q       Max   

-12.9271   -1.8347   -0.2185    1.9783    8.4264   

Coefficients: 

                      Estimate Std. Error t value Pr(>|t|)   

(Intercept)           2.575496   2.454822   1.049   0.2959   

cb.TEMv1.l1           0.161887   1.021405   0.158   0.8743   

cb.TEMv1.l2          -0.808253   1.337494  -0.604   0.5466   

cb.TEMv1.l3           1.318652   1.326758   0.994   0.3220   

cb.TEMv1.l4           0.717818   1.106650   0.649   0.5176   

cb.TEMv1.l5           0.071412   0.746380   0.096   0.9239   

cb.TMAXv1.l1         -0.731850   0.986271  -0.742   0.4593   

cb.TMAXv1.l2          1.303715   1.944450   0.670   0.5037   

cb.TMAXv1.l3         -2.274978   1.438795  -1.581   0.1161   

cb.TMAXv1.l4         -0.514038   0.953365  -0.539   0.5906   

cb.TMAXv1.l5         -0.318340   0.698409  -0.456   0.6492   

cb.PPv1.l1           -0.041687   0.134587  -0.310   0.7572   

cb.PPv2.l1            0.576822   0.473007   1.219   0.2247   

cb.PPv3.l1           -0.521393   1.222512  -0.426   0.6704   

cb.PPv4.l1           -1.490459   1.849657  -0.806   0.4217   

cb.PPv5.l1            0.283484   0.596299   0.475   0.6352   

cb.PPv1.l2            1.560629   1.495528   1.044   0.2985   

cb.PPv2.l2            0.819295   6.726087   0.122   0.9032   

cb.PPv3.l2           -0.900930  15.944428  -0.057   0.9550   
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cb.PPv4.l2            8.612236  20.806189   0.414   0.6796   

cb.PPv5.l2           10.366726   6.301800   1.645   0.1022   

cb.PPv1.l3           -2.927583   3.337170  -0.877   0.3818   

cb.PPv2.l3           -1.226584  15.875310  -0.077   0.9385   

cb.PPv3.l3            1.146546  38.276038   0.030   0.9761   

cb.PPv4.l3            1.181488  51.652315   0.023   0.9818   

cb.PPv5.l3          -33.969521  17.556674  -1.935   0.0550 . 

cb.PPv1.l4            1.304292   2.122377   0.615   0.5399   

cb.PPv2.l4           -0.454676  10.018507  -0.045   0.9639   

cb.PPv3.l4            0.899360  24.426967   0.037   0.9707   

cb.PPv4.l4           -7.648432  34.500371  -0.222   0.8249   

cb.PPv5.l4           23.198909  12.206558   1.901   0.0594 . 

cb.H4v1.l1           -0.087631   0.988158  -0.089   0.9295   

cb.H4v2.l1           -0.405079   0.562179  -0.721   0.4724   

cb.H4v1.l2           -0.537331   1.273626  -0.422   0.6738   

cb.H4v2.l2           -0.920131   0.558005  -1.649   0.1014   

cb.H4v1.l3            3.137602   1.557569   2.014   0.0459 * 

cb.H4v2.l3            0.531748   0.719368   0.739   0.4610   

cb.H4v1.l4           -3.336076   1.448590  -2.303   0.0228 * 

cb.H4v2.l4           -2.058437   1.065131  -1.933   0.0553 . 

cb.H4v1.l5           -0.200602   1.317641  -0.152   0.8792   

cb.H4v2.l5           -0.707887   0.693928  -1.020   0.3094   

cb.H4v1.l6            0.701396   0.883439   0.794   0.4286   

cb.H4v2.l6           -0.142374   0.455941  -0.312   0.7553   

cb.VMv1.l1           -0.596839   0.598257  -0.998   0.3202   

cb.VMv2.l1            0.216810   0.528602   0.410   0.6823   

cb.VMv1.l2            0.079761   0.669837   0.119   0.9054   

cb.VMv2.l2            0.583206   0.635194   0.918   0.3601   

cb.VMv1.l3            0.233236   1.110923   0.210   0.8340   
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cb.VMv2.l3            0.811982   0.858955   0.945   0.3461   

cb.VMv1.l4            0.009704   0.964934   0.010   0.9920   

cb.VMv2.l4           -1.035043   0.614454  -1.684   0.0943 . 

cb.VMv1.l5            0.581911   0.722671   0.805   0.4221   

cb.VMv2.l5            1.177928   0.565911   2.081   0.0392 * 

cb.VMv1.l6            0.492381   0.636870   0.773   0.4408   

cb.VMv2.l6           -0.602758   0.465919  -1.294   0.1979   

cb.VVv1.l1            3.050401   2.194891   1.390   0.1668   

cb.VVv2.l1            0.223482   0.523647   0.427   0.6702   

cb.VVv1.l2            1.749661   2.526520   0.693   0.4898   

cb.VVv2.l2           -0.843500   0.544625  -1.549   0.1237   

cb.VVv1.l3            5.409396   3.032733   1.784   0.0766 . 

cb.VVv2.l3            0.123604   0.763015   0.162   0.8715   

cb.VVv1.l4           -0.802995   4.068487  -0.197   0.8438   

cb.VVv2.l4           -1.217167   0.917718  -1.326   0.1869   

cb.VVv1.l5            5.448858   2.415345   2.256   0.0256 * 

cb.VVv2.l5           -1.045113   0.543457  -1.923   0.0565 . 

cb.VVv1.l6            0.361965   1.913471   0.189   0.8502   

cb.VVv2.l6           -0.112037   0.563082  -0.199   0.8426   

as.factor(Year)2010   0.644255   0.969502   0.665   0.5074   

as.factor(Year)2011   1.015308   0.900469   1.128   0.2614   

as.factor(Year)2012   1.554259   1.042632   1.491   0.1383   

as.factor(Year)2013   2.288741   1.246380   1.836   0.0684 . 

as.factor(Year)2014   2.249348   1.506726   1.493   0.1377   

as.factor(Week)2      0.044785   0.332218   0.135   0.8930   

as.factor(Week)3      0.191546   0.556413   0.344   0.7312   

as.factor(Week)4      0.154200   0.838943   0.184   0.8544   

as.factor(Week)5      0.069523   1.110472   0.063   0.9502   

as.factor(Week)6      0.271021   1.376369   0.197   0.8442   
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as.factor(Week)7      0.644636   1.648196   0.391   0.6963   

as.factor(Week)8      0.714294   1.924640   0.371   0.7111   

as.factor(Week)9      1.003582   2.191565   0.458   0.6477   

as.factor(Week)10     0.779856   2.379966   0.328   0.7436   

as.factor(Week)11     0.609344   2.564880   0.238   0.8126   

as.factor(Week)12     0.484967   2.730466   0.178   0.8593   

as.factor(Week)13     0.204299   2.874102   0.071   0.9434   

as.factor(Week)14    -0.129080   2.988529  -0.043   0.9656   

as.factor(Week)15    -0.659673   3.061023  -0.216   0.8297   

as.factor(Week)16    -0.210571   3.113451  -0.068   0.9462   

as.factor(Week)17    -0.167475   3.145608  -0.053   0.9576   

as.factor(Week)18    -0.409174   3.151776  -0.130   0.8969   

as.factor(Week)19    -0.395857   3.084539  -0.128   0.8981   

as.factor(Week)20     0.104383   2.999590   0.035   0.9723   

as.factor(Week)21     0.949203   2.924290   0.325   0.7460   

as.factor(Week)22     1.153124   2.833597   0.407   0.6847   

as.factor(Week)23     1.202118   2.783027   0.432   0.6664   

as.factor(Week)24     1.725927   2.675882   0.645   0.5200   

as.factor(Week)25     1.917063   2.511227   0.763   0.4465   

as.factor(Week)26     2.572721   2.362135   1.089   0.2780   

as.factor(Week)27     2.664733   2.274028   1.172   0.2433   

as.factor(Week)28     2.752624   2.176142   1.265   0.2080   

as.factor(Week)29     2.632909   2.130308   1.236   0.2186   

as.factor(Week)30     2.924052   2.106576   1.388   0.1673   

as.factor(Week)31     2.813014   2.105265   1.336   0.1837   

as.factor(Week)32     2.923913   2.124817   1.376   0.1710   

as.factor(Week)33     2.902987   2.179235   1.332   0.1850   

as.factor(Week)34     2.577762   2.229195   1.156   0.2495   

as.factor(Week)35     2.224697   2.317001   0.960   0.3386   
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as.factor(Week)36     1.658310   2.360789   0.702   0.4836   

as.factor(Week)37     2.137877   2.386563   0.896   0.3719   

as.factor(Week)38     1.695302   2.360851   0.718   0.4739   

as.factor(Week)39     1.818521   2.388858   0.761   0.4478   

as.factor(Week)40     1.731428   2.384401   0.726   0.4690   

as.factor(Week)41     1.342164   2.345245   0.572   0.5680   

as.factor(Week)42     1.451757   2.277326   0.637   0.5249   

as.factor(Week)43     1.155952   2.206702   0.524   0.6012   

as.factor(Week)44     0.538456   2.143537   0.251   0.8020   

as.factor(Week)45     0.737854   2.029040   0.364   0.7167   

as.factor(Week)46     0.704693   1.895953   0.372   0.7107   

as.factor(Week)47     0.833471   1.713526   0.486   0.6274   

as.factor(Week)48     0.740750   1.510222   0.490   0.6246   

as.factor(Week)49     0.879011   1.238490   0.710   0.4790   

as.factor(Week)50     0.469140   0.980194   0.479   0.6330   

as.factor(Week)51     0.348745   0.742414   0.470   0.6393   

as.factor(Week)52     0.332881   0.502842   0.662   0.5091   

as.factor(Week)53     0.245855   0.831679   0.296   0.7680   

 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

(Dispersion parameter for quasipoisson family taken to be 

16.03292) 

 

Null deviance: 16541.7  on 263  degrees of freedom 

Residual deviance:  2501.7  on 140  degrees of freedom 

 

Number of Fisher Scoring iterations: 5 
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Appendix D: R codes 

# Exploratory Data Analysis – Time series plots of dengue  

# incidence 

C_District=read.csv(file.choose(),header=T) 

attach(C_District) 

a=as.matrix(C_District) 

rr=as.ts(a,start=c(2008,52),frequency=c(1,52,52,52,52,49,

36)) 

for (i in 5 to 29){ 

win.graph(width=6.5, height=2.5,pointsize=8) 

plot(a[,i],type="b",bg=66,col="blue",ylab="Dengue 

Cases",xaxt="n",xlab="Year") 

lines( a[,i], col="blue") 

points( a[,i], col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

} 

#******************************************************** 

# Chapter 5 – Wavelet Analyses 

# Figure 5.1  

C_District=read.csv(file.choose(),header=T) 

attach(C_District) 

a=as.matrix(C_District[30]) 

rr=as.ts(a,start=c(2008,52),frequency=c(1,52,52,52,52,49,

21)) 

 

All=sqrt(All) 

ta=cbind(1:294, (All-mean(All))/sd(All)) 
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rr2=as.ts(ta[,2],start=c(2008,52),frequency=c(1,52,52,52,

52,49,21)) 

win.graph(width=6.5, height=2.5,pointsize=8) 

plot(rr2,type="b",bg=66,col="blue",ylab="square root 

transformed and normalized",xaxt="n") 

lines( rr2, col="blue") 

points( rr2, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

#Wavelet transformation of dengue cases 

C_District=read.csv(file.choose(),header=T) 

attach(C_District) 

##------------- Compute wavelet spectra------------------ 

library(biwavelet) 

Colombo=sqrt(Colombo) 

Gampaha=sqrt(Gampaha) 

Kalutara=sqrt(Kalutara) 

Kandy=sqrt(Kandy) 

Matale=sqrt(Matale) 

Nuwara.Eliya=sqrt(Nuwara.Eliya) 

Galle=sqrt(Galle) 

Hambantota=sqrt(Hambantota) 

Matara=sqrt(Matara) 

Jaffna=sqrt(Jaffna) 

Kilinochchi=sqrt(Kilinochchi) 

Mannar=sqrt(Mannar) 
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Vavuniya=sqrt(Vavuniya) 

Mulative=sqrt(Mulative) 

Batticalo=sqrt(Batticalo) 

Ampara=sqrt(Ampara) 

Trincomalee=sqrt(Trincomalee) 

Kurunagala=sqrt(Kurunagala) 

Puttalam=sqrt(Puttalam) 

Anuradhapura=sqrt(Anuradhapura) 

Polonnaruwa=sqrt(Polonnaruwa) 

Badulla=sqrt(Badulla) 

Monaragala=sqrt(Monaragala) 

Ratnapura=sqrt(Ratnapura) 

Kegalle=sqrt(Kegalle) 

 

t1=cbind(1:294, (Colombo-mean(Colombo))/sd(Colombo)) 

t2=cbind(1:294,(Gampaha-mean(Gampaha))/sd(Gampaha)) 

t3=cbind(1:294, (Kalutara-mean(Kalutara))/sd(Kalutara)) 

t4=cbind(1:294, (Kandy-mean(Kandy))/sd(Kandy)) 

t5=cbind(1:294,(Matale-mean(Matale))/sd(Matale)) 

t6=cbind(1:294, (Nuwara.Eliya-

mean(Nuwara.Eliya))/sd(Nuwara.Eliya)) 

t7=cbind(1:294,(Galle-mean(Galle))/sd(Galle)) 

t8=cbind(1:294, (Hambantota-

mean(Hambantota))/sd(Hambantota)) 

t9=cbind(1:294,(Matara-mean(Matara))/sd(Matara)) 

t10=cbind(1:294,(Jaffna-mean(Jaffna))/sd(Jaffna)) 
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t11=cbind(1:294,(Kilinochchi-

mean(Kilinochchi))/sd(Kilinochchi)) 

t12=cbind(1:294, (Mannar-mean(Mannar))/sd(Mannar)) 

t13=cbind(1:294,(Vavuniya-mean(Vavuniya))/sd(Vavuniya)) 

t14=cbind(1:294, (Mulative-mean(Mulative))/sd(Mulative)) 

t15=cbind(1:294, (Batticalo-

mean(Batticalo))/sd(Batticalo)) 

t16=cbind(1:294,(Ampara-mean(Ampara))/sd(Ampara)) 

t17=cbind(1:294, (Trincomalee-

mean(Trincomalee))/sd(Trincomalee)) 

t18=cbind(1:294, (Kurunagala-

mean(Kurunagala))/sd(Kurunagala)) 

t19=cbind(1:294,(Puttalam-mean(Puttalam))/sd(Puttalam)) 

t20=cbind(1:294, (Anuradhapura-

mean(Anuradhapura))/sd(Anuradhapura)) 

t21=cbind(1:294, (Polonnaruwa-

mean(Polonnaruwa))/sd(Polonnaruwa)) 

t22=cbind(1:294,(Badulla-mean(Badulla))/sd(Badulla)) 

t23=cbind(1:294,(Monaragala-

mean(Monaragala))/sd(Monaragala)) 

t24=cbind(1:294, (Ratnapura-

mean(Ratnapura))/sd(Ratnapura)) 

t25=cbind(1:294, (Kegalle-mean(Kegalle))/sd(Kegalle)) 

 

wt.t1=wt(t1) 

wt.t2=wt(t2) 

wt.t3=wt(t3) 

wt.t4=wt(t4) 

wt.t5=wt(t5) 
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wt.t6=wt(t6) 

wt.t7=wt(t7) 

wt.t8=wt(t8) 

wt.t9=wt(t9) 

wt.t10=wt(t10) 

wt.t11=wt(t11) 

wt.t12=wt(t12) 

wt.t13=wt(t13) 

wt.t14=wt(t14) 

wt.t15=wt(t15) 

wt.t16=wt(t16) 

wt.t17=wt(t17) 

wt.t18=wt(t18) 

wt.t19=wt(t19) 

wt.t20=wt(t20) 

wt.t21=wt(t21) 

wt.t22=wt(t22) 

wt.t23=wt(t23) 

wt.t24=wt(t24) 

wt.t25=wt(t25) 

# Figure 5.4 

par(mfrow=c(4,2),mai=c(0.3,0.7,0.2,0.2)) 

plot(wt.t1, plot.cb=F, 

plot.phase=F,xaxt="n",main="a",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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plot(wt.t2, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="b",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t3, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="c",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t4, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="d",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t5, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="e",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t6, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="f",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t7, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="g",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t8, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="h",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t9, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Matara",ylab="Period 

(weeks)") 
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axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t10, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Jaffna",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t11, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Killinochchi",ylab="Perio

d (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t12, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Mannar",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

plot(wt.t13, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Vavuniya",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t14, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Mulative",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t15, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Batticalo",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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plot(wt.t16, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Ampara",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t17, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Trincomalee",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t18, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Kurunagala",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

plot(wt.t19, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Puttalam",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t20, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Anuradhapura",ylab="Perio

d (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t21, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Polonnaruwa",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t22, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Badulla",ylab="Period 

(weeks)") 
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axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t23, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Monaragala",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.t24, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Ratnapura",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

plot(wt.t25, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="Kegall",ylab="Period 

(weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#---------------Figure 5.5------------------------------- 

par(mfrow=c(5,5),mai=c(0.3,0.3,0.2,0.2)) 

b=wt.t1$period 

a=apply(wt.t1$power.corr,1,mean) 

plot(b,a,type="l",main 

="Colombo",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t2$period 

a=apply(wt.t2$power.corr,1,mean) 

plot(b,a,type="l",main 

="Gampaha",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t3$period 

a=apply(wt.t3$power.corr,1,mean) 
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plot(b,a,type="l",main 

="Kalutara",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t4$period 

a=apply(wt.t4$power.corr,1,mean) 

plot(b,a,type="l",main 

="Kandy",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t5$period 

a=apply(wt.t5$power.corr,1,mean) 

plot(b,a,type="l",main 

="Matale",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t6$period 

a=apply(wt.t6$power.corr,1,mean) 

plot(b,a,type="l",main ="Nuwara 

Eliya",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t7$period 

a=apply(wt.t7$power.corr,1,mean) 

plot(b,a,type="l",main 

="Galle",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t8$period 

a=apply(wt.t8$power.corr,1,mean) 

plot(b,a,type="l",main 

="Hambantota",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t9$period 

a=apply(wt.t9$power.corr,1,mean) 

plot(b,a,type="l",main 

="Matara",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t10$period 

a=apply(wt.t10$power.corr,1,mean) 
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plot(b,a,type="l",main 

="Jaffna",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t11$period 

a=apply(wt.t11$power.corr,1,mean) 

plot(b,a,type="l",main 

="Killinochchie",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t12$period 

a=apply(wt.t12$power.corr,1,mean) 

plot(b,a,type="l",main 

="Mannar",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t13$period 

a=apply(wt.t13$power.corr,1,mean) 

plot(b,a,type="l",main 

="Vavuniya",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t14$period 

a=apply(wt.t14$power.corr,1,mean) 

plot(b,a,type="l",main 

="Mulative",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t15$period 

a=apply(wt.t15$power.corr,1,mean) 

plot(b,a,type="l",main 

="Batticalo",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t16$period 

a=apply(wt.t16$power.corr,1,mean) 

plot(b,a,type="l",main 

="Ampara",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t17$period 

a=apply(wt.t17$power.corr,1,mean) 
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plot(b,a,type="l",main 

="Trincomalee",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t18$period 

a=apply(wt.t18$power.corr,1,mean) 

plot(b,a,type="l",main 

="Kurunagala",mai=c(0.001,0.001,0.001,0.001)) 

 

b=wt.t19$period 

a=apply(wt.t19$power.corr,1,mean) 

plot(b,a,type="l",main 

="Puttalam",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t20$period 

a=apply(wt.t20$power.corr,1,mean) 

plot(b,a,type="l",main 

="Anuradhapura",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t21$period 

a=apply(wt.t21$power.corr,1,mean) 

plot(b,a,type="l",main 

="Polonnaruwa",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t22$period 

a=apply(wt.t22$power.corr,1,mean) 

plot(b,a,type="l",main 

="Badulla",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t23$period 

a=apply(wt.t23$power.corr,1,mean) 

plot(b,a,type="l",main 

="Monaragala",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t24$period 

a=apply(wt.t24$power.corr,1,mean) 
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plot(b,a,type="l",main 

="Rathnapura",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.t25$period 

a=apply(wt.t25$power.corr,1,mean) 

plot(b,a,type="l",main 

="Kegalle",mai=c(0.001,0.001,0.001,0.001)) 

 

# Wavelet Cluster Analysis 

C_District=read.csv(file.choose(),header=T) 

attach(C_District) 

C_District=read.csv(file.choose(),header=T) 

C_District[2] 

names(C_District) 

attach(C_District) 

apply(C_District,2,length) 

apply(C_District,2,mean,na.rm=T) 

 

library(biwavelet) 

Colombo=sqrt(Colombo) 

Gampaha=sqrt(Gampaha) 

Kalutara=sqrt(Kalutara) 

Kandy=sqrt(Kandy) 

Matale=sqrt(Matale) 

Nuwara.Eliya=sqrt(Nuwara.Eliya) 

Galle=sqrt(Galle) 

Hambantota=sqrt(Hambantota) 

Matara=sqrt(Matara) 
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Jaffna=sqrt(Jaffna) 

Kilinochchi=sqrt(Kilinochchi) 

Mannar=sqrt(Mannar) 

Vavuniya=sqrt(Vavuniya) 

Mulative=sqrt(Mulative) 

Batticalo=sqrt(Batticalo) 

Ampara=sqrt(Ampara) 

Trincomalee=sqrt(Trincomalee) 

Kurunagala=sqrt(Kurunagala) 

Puttalam=sqrt(Puttalam) 

Anuradhapura=sqrt(Anuradhapura) 

Polonnaruwa=sqrt(Polonnaruwa) 

Badulla=sqrt(Badulla) 

Monaragala=sqrt(Monaragala) 

Ratnapura=sqrt(Ratnapura) 

Kegalle=sqrt(Kegalle) 

 

t1=cbind(1:294, (Colombo-mean(Colombo))/sd(Colombo)) 

t2=cbind(1:294,(Gampaha-mean(Gampaha))/sd(Gampaha)) 

t3=cbind(1:294, (Kalutara-mean(Kalutara))/sd(Kalutara)) 

t4=cbind(1:294, (Kandy-mean(Kandy))/sd(Kandy)) 

t5=cbind(1:294,(Matale-mean(Matale))/sd(Matale)) 

t6=cbind(1:294, (Nuwara.Eliya-

mean(Nuwara.Eliya))/sd(Nuwara.Eliya)) 

t7=cbind(1:294,(Galle-mean(Galle))/sd(Galle)) 

t8=cbind(1:294, (Hambantota-

mean(Hambantota))/sd(Hambantota)) 
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t9=cbind(1:294,(Matara-mean(Matara))/sd(Matara)) 

t10=cbind(1:294,(Jaffna-mean(Jaffna))/sd(Jaffna)) 

t11=cbind(1:294,(Kilinochchi-

mean(Kilinochchi))/sd(Kilinochchi)) 

t12=cbind(1:294, (Mannar-mean(Mannar))/sd(Mannar)) 

t13=cbind(1:294,(Vavuniya-mean(Vavuniya))/sd(Vavuniya)) 

t14=cbind(1:294, (Mulative-mean(Mulative))/sd(Mulative)) 

t15=cbind(1:294, (Batticalo-

mean(Batticalo))/sd(Batticalo)) 

t16=cbind(1:294,(Ampara-mean(Ampara))/sd(Ampara)) 

t17=cbind(1:294, (Trincomalee-

mean(Trincomalee))/sd(Trincomalee)) 

t18=cbind(1:294, (Kurunagala-

mean(Kurunagala))/sd(Kurunagala)) 

t19=cbind(1:294,(Puttalam-mean(Puttalam))/sd(Puttalam)) 

t20=cbind(1:294, (Anuradhapura-

mean(Anuradhapura))/sd(Anuradhapura)) 

t21=cbind(1:294, (Polonnaruwa-

mean(Polonnaruwa))/sd(Polonnaruwa)) 

t22=cbind(1:294,(Badulla-mean(Badulla))/sd(Badulla)) 

t23=cbind(1:294,(Monaragala-

mean(Monaragala))/sd(Monaragala)) 

t24=cbind(1:294, (Ratnapura-

mean(Ratnapura))/sd(Ratnapura)) 

t25=cbind(1:294, (Kegalle-mean(Kegalle))/sd(Kegalle)) 

wt.t1=wt(t1) 

wt.t2=wt(t2) 

wt.t3=wt(t3) 

wt.t4=wt(t4) 
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wt.t5=wt(t5) 

wt.t6=wt(t6) 

wt.t7=wt(t7) 

wt.t8=wt(t8) 

wt.t9=wt(t9) 

wt.t10=wt(t10) 

wt.t11=wt(t11) 

wt.t12=wt(t12) 

wt.t13=wt(t13) 

wt.t14=wt(t14) 

wt.t15=wt(t15) 

wt.t16=wt(t16) 

wt.t17=wt(t17) 

wt.t18=wt(t18) 

wt.t19=wt(t19) 

wt.t20=wt(t20) 

wt.t21=wt(t21) 

wt.t22=wt(t22) 

wt.t23=wt(t23) 

wt.t24=wt(t24) 

wt.t25=wt(t25) 

## Store all wavelet spectra into array 

w.arr=array(NA, dim=c(25, NROW(wt.t1$wave), 

NCOL(wt.t1$wave))) 

w.arr[1, , ]=wt.t1$wave 

w.arr[2, , ]=wt.t2$wave 
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w.arr[3, , ]=wt.t3$wave 

w.arr[4, , ]=wt.t4$wave 

w.arr[5, , ]=wt.t5$wave 

w.arr[6, , ]=wt.t6$wave 

w.arr[7, , ]=wt.t7$wave 

w.arr[8, , ]=wt.t8$wave 

w.arr[9, , ]=wt.t9$wave 

w.arr[10, , ]=wt.t10$wave 

w.arr[11, , ]=wt.t11$wave 

w.arr[12, , ]=wt.t12$wave 

w.arr[13, , ]=wt.t13$wave 

w.arr[14, , ]=wt.t14$wave 

w.arr[15, , ]=wt.t15$wave 

w.arr[16, , ]=wt.t16$wave 

w.arr[17, , ]=wt.t17$wave 

w.arr[18, , ]=wt.t18$wave 

w.arr[19, , ]=wt.t19$wave 

w.arr[20, , ]=wt.t20$wave 

w.arr[21, , ]=wt.t21$wave 

w.arr[22, , ]=wt.t22$wave 

w.arr[23, , ]=wt.t23$wave 

w.arr[24, , ]=wt.t24$wave 

w.arr[25, , ]=wt.t25$wave 

## Compute dissimilarity and distance matrices 

w.arr.dis=wclust(w.arr) 
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plot(hclust(w.arr.dis$dist.mat, method="ward"), sub="", 

main="", ylab="Dissimilarity", hang=-1) 

#Figure 5.8 

par(mfrow=c(4,2),mai=c(0.3,0.7,0.2,0.2)) 

plot(wt.TEM, plot.cb=F, 

plot.phase=F,xaxt="n",main="a",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.TMAX, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="b",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.Tm, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="c",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.H, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="d",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.PP, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="e",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.VV, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="f",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(wt.V, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="g",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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plot(wt.VM, plot.cb=F, 

plot.phase=FALSE,xaxt="n",main="h",ylab="Period (weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#Figure 5.9 

par(mfrow=c(2,4),mai=c(0.3,0.3,0.2,0.2)) 

b=wt.TEM$period 

a=apply(wt.TEM$power.corr,1,mean) 

plot(b,a,type="l",main 

="a",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.TMAX$period 

a=apply(wt.TMAX$power.corr,1,mean) 

plot(b,a,type="l",main 

="b",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.Tm$period 

a=apply(wt.Tm$power.corr,1,mean) 

plot(b,a,type="l",main 

="c",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.H$period 

a=apply(wt.H$power.corr,1,mean) 

plot(b,a,type="l",main 

="d",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.PP$period 

a=apply(wt.PP$power.corr,1,mean) 

plot(b,a,type="l",main 

="e",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.VV$period 

a=apply(wt.VV$power.corr,1,mean) 
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plot(b,a,type="l",main 

="f",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.Vperiod 

a=apply(wt.V$power.corr,1,mean) 

plot(b,a,type="l",main 

="g",mai=c(0.001,0.001,0.001,0.001)) 

b=wt.VM$period 

a=apply(wt.VM$power.corr,1,mean) 

plot(b,a,type="l",main 

="h",mai=c(0.001,0.001,0.001,0.001)) 

 

#Figure 5.10 

rm(list=ls()) 

library(biwavelet) 

Colombo=read.csv(file.choose(),header=T) 

attach(Colombo) 

head(Colombo) 

names(Colombo) 

attach(Colombo) 

apply(Colombo1,2,length) 

par(mfrow=c(4,2),mai=c(0.6,0.7,0.4,0.2)) 

#ccf(mdeaths, fdeaths, ylab = "cross-correlation") 

ccf(TEM, Cases, main = "a", ylab = "cross-correlation", 

xlab="lag") 

ccf(TMAX, Cases, main = "b", ylab = "cross-correlation", 

xlab="lag") 

ccf(Tm, Cases, main = "c", ylab = "cross-correlation", 

xlab="lag") 
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ccf(H, Cases, main = "d", ylab = "cross-correlation", 

xlab="lag") 

ccf(PP, Cases, main = "e", ylab = "cross-correlation", 

xlab="lag") 

ccf(VV, Cases, main = "f", ylab = "cross-correlation", 

xlab="lag") 

ccf(V, Cases, main = "g", ylab = "cross-correlation", 

xlab="lag") 

ccf(VM, Cases, main = "h", ylab = "cross-correlation", 

xlab="lag") 

 

#Figure 5.12 – Figure 5.26 and Appendix B 

rm(list=ls()) 

library(biwavelet) 

Colombo=read.csv(file.choose(),header=T) 

attach(Colombo) 

head(Colombo) 

names(Colombo) 

attach(Colombo) 

apply(Colombo1,2,length) 

TEM1=sqrt(TEM) 

TMAX1=sqrt(TMAX) 

Tm1=sqrt(Tm) 

H1=sqrt(H) 

PP1=sqrt(PP) 

VV1=sqrt(VV) 

V1=sqrt(V) 

VM1=sqrt(VM) 



198 
 

Cases1=sqrt(Cases) 

TEM2=cbind(1:294, (TEM1-mean(TEM1))/sd(TEM1)) 

TMAX2=cbind(1:294,(TMAX1-mean(TMAX1))/sd(TMAX1)) 

Tm2=cbind(1:294, (Tm1-mean(Tm1))/sd(Tm1)) 

H2=cbind(1:294,(H1-mean(H1))/sd(H1)) 

PP2=cbind(1:294, (PP1-mean(PP1))/sd(PP1)) 

VV2=cbind(1:294,(VV1-mean(VV1))/sd(VV1)) 

V2=cbind(1:294, (V1-mean(V1))/sd(V1)) 

VM2=cbind(1:294,(VM1-mean(VM1))/sd(VM1)) 

Cases2=cbind(1:294,(Cases1-mean(Cases1))/sd(Cases1)) 

wt.TEM=wt(TEM2) 

wt.TMAX=wt(TMAX2) 

wt.Tm=wt(Tm2) 

wt.H=wt(H2) 

wt.PP=wt(PP2) 

wt.VV=wt(VV2) 

wt.V=wt(V2) 

wt.VM=wt(VM2) 

wt.Cases=wt(Cases2) 

## Store all wavelet spectra into array 

w.arr=array(NA, dim=c(9, NROW(wt.TEM$wave), 

NCOL(wt.TEM$wave))) 

w.arr[1, , ]=wt.TEM$wave 

w.arr[2, , ]=wt.TMAX$wave 

w.arr[3, , ]=wt.Tm$wave 

w.arr[4, , ]=wt.H$wave 
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w.arr[5, , ]=wt.PP$wave 

w.arr[6, , ]=wt.VV$wave 

w.arr[7, , ]=wt.V$wave 

w.arr[8, , ]=wt.VM$wave 

w.arr[9, , ]=wt.Cases$wave 

 

# time series 

plot(TEM,type="o",bg=66,col="blue",xlab="Year",ylab=" 

Mean Temperature",main = " ",xaxt="n") 

points( TEM, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(TMAX,type="o",bg=66,col="blue",xlab="Year",ylab="Max

imum Temperature",main = " ",xaxt="n") 

points( TMAX, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(Tm,type="o",bg=66,col="blue",xlab="Year",ylab="Minim

um Temperature",main = " ",xaxt="n") 

points( Tm, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(H,type="o",bg=66,col="blue",xlab="Year",ylab="Humidi

ty",main = " ",xaxt="n") 

points( H, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(PP,type="o",bg=66,col="blue",xlab="Year",ylab="Preci

pitation",main = " ",xaxt="n") 
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points( PP, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(VV,type="o",bg=66,col="blue",xlab="Year",ylab="Mean 

Visibility",main = " ",xaxt="n") 

points( VV, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(V,type="o",bg=66,col="blue",xlab="Year",ylab="Mean 

Wind Speed",main = " ",xaxt="n") 

points( V, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(VM,type="o",bg=66,col="blue",xlab="Year",ylab="Maxim

um sustained wind speed",main = " ",xaxt="n") 

points( VM, col="red", pch=19 ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

######################################################### 

#mean temperature 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.TEM, plot.cb=TRUE, 

plot.phase=FALSE,xaxt="n",ylab="Period (Weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

# maximum temperature 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.TMAX, plot.cb=TRUE, 

plot.phase=FALSE,xaxt="n",ylab="Period (Weeks)") 
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axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

# minimum temperature 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.Tm, plot.cb=TRUE, 

plot.phase=FALSE,xaxt="n",ylab="Period (Weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#Humidity 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.H, plot.cb=TRUE, 

plot.phase=FALSE,xaxt="n",ylab="Period (Weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

# minimum precipitation 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.PP, plot.cb=TRUE, 

plot.phase=FALSE,xaxt="n",ylab="Period (Weeks)") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#VV 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.VV, plot.cb=TRUE, plot.phase=FALSE,xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

# V 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.V, plot.cb=TRUE, plot.phase=FALSE,xaxt="n") 
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axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#VM 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.VM, plot.cb=TRUE, plot.phase=FALSE,xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

# Cases 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(wt.Cases, plot.cb=TRUE, plot.phase=FALSE,xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

######################################################## 

######## Cross-wavelet transform ####################### 

x <- 1:294 

Cases <- Cases 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x,Cases,type="o",xaxt="n",col="red",xlab="Year",pch=

20)  

par(new = TRUE) 

plot(x, TEM, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(TEM))) 

mtext("Mean temperature", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,TEM2) 
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par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

x <- 1:294 

Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 

plot(x, Tm, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(Tm))) 

mtext("Minimum temperature", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,Tm2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

x <- 1:294 
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Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 

plot(x, TMAX, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(TMAX))) 

mtext("Maximum temperature", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,TMAX2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

x <- 1:294 

Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 
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plot(x,H, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(H))) 

mtext("Humidity", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,H2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

x <- 1:294 

Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 

plot(x,PP, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(PP))) 

mtext("Precipitation", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,PP2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

x <- 1:294 

Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 

plot(x,VV, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(VV))) 

mtext("Visibility", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,VV2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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#******************************************************** 

x <- 1:294 

Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 

plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 

plot(x,V, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(V))) 

mtext("Wind Speed", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

xwt.t1=xwt(Cases2,V2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#******************************************************** 

x <- 1:294 

Cases <- Cases 

## second data set on a very different scale 

par(mar = c(5, 4, 4, 4) + 0.3)  # Leave space for z axis 
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plot(x, 

Cases,type="o",xaxt="n",col="red",xlab="Year",pch=20) # 

first plot 

par(new = TRUE) 

plot(x,VM, type = "o", axes = FALSE, bty = "n", xlab = 

"Year", ylab = "",xaxt="n",col="blue",pch=20) 

axis(side=4, at = pretty(range(VM))) 

mtext("Maximum Sustained Wind Speed", side=4, line=3) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#--------------------------------------------------------

xwt.t1=xwt(Cases2,VM2) 

par(oma=c(0, 0, 0, 1), mar=c(5, 4, 4, 5) + 0.1) 

plot(xwt.t1, plot.cb=TRUE, 

plot.phase=TRUE,ylab="Period(Weeks)",xaxt="n") 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#########################################################

## 

# Change point analysis 

rm(list=ls()) 

ls() 

 

library(changepoint) 

library(zoo) 

 

cpdata=read.csv(file.choose(),header=T) 

attach(cpdata) 

head(cpdata) 
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##### change point detection using PELT method 

Cases.pelt <- cpt.var(diff(Cases,difference=1),method = 

"PELT") 

TEM.pelt <- cpt.var(diff(TEM,difference=1),method = 

"PELT") 

TMAX.pelt <- cpt.var(diff(TMAX,difference=1),method = 

"PELT") 

Tm.pelt <- cpt.var(diff(Tm,difference=1),method = "PELT") 

H.pelt <- cpt.var(diff(H,difference=1),method = "PELT") 

PP.pelt <- cpt.var(diff(PP,difference=1),method = "PELT") 

VV.pelt <- cpt.var(diff(VV,difference=1),method = "PELT") 

V.pelt <- cpt.var(diff(V,difference=1),method = "PELT") 

VM.pelt <- cpt.var(diff(VM,difference=1),method = "PELT") 

logLik(Cases.pelt) 

logLik(TEM.pelt) 

 

#-------------------------------------------------------- 

 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

plot(TEM.pelt,ylab="Mean Temperature" ,xlab="Time",main = 

" ",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(TMAX.pelt,ylab="Maximum Temperature" 

,xlab="Time",main = " ",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(Tm.pelt,ylab="Minimum Temperature" ,xlab="Time",main 

= " ",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(H.pelt,ylab="Humidity" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(PP.pelt,ylab="Precipitation" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

plot(VV.pelt,ylab="Visibility" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 
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plot(V.pelt,ylab="Wind Speed" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

 

#-------------------------------------------------------- 

par(mfrow=c(2,1)) 

plot(Cases.pelt,ylab="Dengue Cases" ,xlab="Time",main = " 

",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

plot(VM.pelt,ylab="Maximum Sustained Wind Speed" 

,xlab="Time",main = " ",xaxt="n" ) 

axis(1,at=c(2,54,106,158,210,259),labels=c(2009,2010,2011

,2012,2013,2014)) 

######################################################### 

# DLNM 

########last model######################## 

rm(list=ls()) 

Colombo=read.csv(file.choose(),header=T) 

attach(Colombo) 

names(Colombo) 

head(Colombo) 

library(dlnm) 

library(splines) 

lagknots1 <- logknots(30, 4) 

lagknots <- logknots(30, 3) 
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cb.PP <- crossbasis(PP,lag=25, 

argvar=list("bs",df=5,degree=4,cen=median(PP)),arglag=lis

t(fun="poly",degree=3)) 

cb.TEM <- crossbasis(TEM, lag=30, 

argvar=list(df=1,cen=median(TEM)), 

arglag=list(knots=lagknots)) 

cb.TMAX <- crossbasis(TMAX, lag=30, 

argvar=list(df=1,cen=median(TMAX)), 

arglag=list(knots=lagknots)) 

cb.H4<- crossbasis(H, lag=20, 

argvar=list(df=2,cen=median(H)), 

arglag=list(knots=lagknots1)) 

cb.V<- crossbasis(V, lag=20, 

argvar=list(df=2,cen=median(V)), 

arglag=list(knots=lagknots1)) 

cb.VV<- crossbasis(VV, lag=20, 

argvar=list(df=2,cen=median(VV)), 

arglag=list(knots=lagknots1)) 

cb.VM<- crossbasis(VM, lag=20, 

argvar=list(df=2,cen=median(VM)), 

arglag=list(knots=lagknots1)) 

model5 <- glm(Cases ~ 

cb.TEM+cb.TMAX+cb.PP+cb.H4+cb.VM+cb.VV+as.factor(Year)+as

.factor(Week),family=quasipoisson()) 

AIC.cc<- -2*sum( dpois( model5$y, model5$fitted.values, 

log=TRUE))+  

2*summary(model5)$df[3]*summary(model5)$dispersion 

AIC.cc 

n=294 

QIC.cc<- -2*sum( dpois( model5$y, model5$fitted.values, 

log=TRUE))+  
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log(n)*summary(model5)$df[3]*summary(model5)$dispersion 

QIC.cc 

pred.TEM <- crosspred(cb.TEM, model5) 

plot(pred.TEM, xlab="Mean Temperature", zlab="RR") 

plot(pred.TEM, "contour", xlab="Mean Temperature", 

key.title=title("RR"), 

plot.title=title("Contour plot",xlab="Mean 

Temperature",ylab="Lag")) 

#pred.TEM2 <- crosspred(cb.TEM, model5,by=1) 

#plot(pred.TEM2, "slices", var=27, ci="bars", type="p", 

pch=19, ci.level=0.95, 

#main="Association with a 1 - unit increase above 

threshold (95%CI)",ylab="RR") 

 

#----------MAximum Temperature --------------- 

pred.TMAX <- crosspred(cb.TMAX, model5) 

plot(pred.TMAX, xlab="Maximum Temperature", zlab="RR") 

plot(pred.TMAX, "contour", xlab="Maximum Temperature", 

key.title=title("RR"), 

plot.title=title("Contour plot",xlab="Maximum 

Temperature",ylab="Lag")) 

#plot(pred.TMAX, "slices", var=c(30,32,34), 

#lag=c(15,20,25),ylab="RR") 

#pred.TMAX2 <- crosspred(cb.TMAX, model5,by=1) 

#plot(pred.TMAX2, "slices", var=30, ci="bars", type="p", 

pch=19, ci.level=0.95, 

#main="Association with a 1 - unit increase above 

threshold (95%CI)",ylab="RR") 
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#----------Precipitation--------------- 

pred.PP <- crosspred(cb.PP, model5) 

plot(pred.PP, xlab="Precipitation", zlab="RR") 

plot(pred.PP, "contour", xlab="Precipitation", 

key.title=title("RR"), 

plot.title=title("Contour 

plot",xlab="Precipitation",ylab="Lag")) 

#pred.PP2 <- crosspred(cb.PP, model5,by=1) 

#plot(pred.PP2, "slices", var=10, ci="bars", type="p", 

pch=19, ci.level=0.95, 

#main="Association with a 1 - unit increase above 

threshold (95%CI)",ylab="RR") 

 

#----------Humidity--------------- 

pred.H4 <- crosspred(cb.H4, model5) 

plot(pred.H4, xlab="Humidity", zlab="RR") 

plot(pred.H4, "contour", xlab="Humidity", 

key.title=title("RR"), 

plot.title=title("Contour 

plot",xlab="Humidity",ylab="Lag")) 

#pred.H42 <- crosspred(cb.H4, model5,by=1) 

#plot(pred.H42, "slices", var=65, ci="bars", type="p", 

pch=19, ci.level=0.95, 

#main="Association with a 1 - unit increase above 

threshold (95%CI)",ylab="RR") 

 

#####################----------VV--------------- 

pred.VV <- crosspred(cb.VV, model5) 

plot(pred.VV, xlab="Visibility", zlab="RR") 
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plot(pred.VV, "contour", xlab="Visibility", 

key.title=title("RR"), 

plot.title=title("Contour 

plot",xlab="Visibility",ylab="Lag")) 

pred.H42 <- crosspred(cb.H4, model5,by=1) 

plot(pred.H42, "slices", var=65, ci="bars", type="p", 

pch=19, ci.level=0.95, 

main="Association with a 1 - unit increase above 

threshold (95%CI)",ylab="RR") 

#####################----------VM--------------- 

pred.VM <- crosspred(cb.VM, model5) 

plot(pred.VM, xlab="Maximum sustained wind speed", 

zlab="RR") 

plot(pred.VM, "contour", xlab="Maximum sustained wind 

speed", key.title=title("RR"), 

plot.title=title("Contour plot",xlab="Maximum sustained 

wind speed",ylab="Lag")) 

pred.H42 <- crosspred(cb.H4, model5,by=1) 

plot(pred.H42, "slices", var=65, ci="bars", type="p", 

pch=19, ci.level=0.95, 

main="Association with a 1 - unit increase above 

threshold (95%CI)",ylab="RR") 

acf(model5$resid) 

library(car) 

qqPlot((model5$resid-

mean(model5$resid))/sd(model5$resid)) 

ks.test(rnorm(294),(model5$resid-

mean(model5$resid))/sd(model5$resid)) 

 


