
LB/DON/57/33

<u>A STUDY OF BUILT – UP TIMBER</u> <u>STRUCTURAL ELEMENTS</u>

THIS THESIS IS SUBMITTED TO THE DEPARTMENT OF CIVIL ENGINEERING IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING IN STRUCTURAL ENGINEERING DESIGN

Supervised By

Dr.M.T.P.Hettiarachchi

Senior Lecturer

Gen min

Department of Civil Engineering

DEPARTMENT OF CIVIL ENGINEERING

UNIVERSITY OF MORATUWA

SRILANKA

APRIL 2003

78425

78425

<u>A STUDY OF BUILT-UP TIMBER</u> <u>STRUCTURAL ELEMENTS</u>

This thesis is submitted to the department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of M.Eng. in Structural Engineering Design.

State State

Department of Civil Engineering, University of Moratuwa, Sri Lanka. April 2003.

÷.

بغر

DECLARATION

I hereby declare that the work included in the thesis, in part or whole, has not been submitted for any other academic qualification at any institution.

Eng. S. Mohanathevan.

Certified by :

Dr. (Mrs.) M.T.P.Hettiarachchi, Project Supervisor, Department of Civil Engineering, University of Moratuwa. Sri Lanka.

,**e**

>

2

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

ABSTRACT

Code on timber design (BS 5268 Part 2, 1991) gives no provisions for the design of layered braced and box timber columns except spaced timber columns. Very little information is available about these in the literature on timber structures.

This paper provides procedure for determining the axial load capacity of mechanically connected built-up columns, such as layered columns, spaced columns, braced columns and box columns. In addition to that, it gives information about nail connection details and arrangement.

Mainly concentrated on built-up timber columns made up with mechanical connection as it could be done locally. The theoretical development takes into account the effect of columns stability and effectiveness of the shear transfer.

The experimental results obtained by under graduate students are compared with theoretical predictions.

Conclusions are drawn with regards to the suitability of the design methods for builtup timber columns made by nailed connections.

۳ŧ

L

4.

ACKNOWLEDGEMENT

The author would like to acknowledge the financial support provided by the North East Provincial Council to follow the Master of Engineering course.

Assistance and encouragement from staff of the Department of Buildings, North East Province, Trincomalee and Department of Civil Engineering, University of Moratuwa, is greatly appreciated.

.

.

7

4

۴

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Contents

С	h	a	р	te	r	1

1.0

۵

¥

7

i.

*

Introduction		
1.1	Background	
	1.1.1 Types of Built up column	2
1.2	Objective	5
1.3	Scope	5
1.4	Methodology	5

Chapter 2

2.0	2.0 Literature Review		
	2.1 Comparison- Slenderness limit of compression member		16
Chapter 3		University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk	
3.0	Guide	lines – Design of Built up timber columns	18-23
	3.1	Layered columns	20
	3.2	Spaced columns	21
	3.3	Braced columns	22
	3.4	Box Columns	22

Chapter 4

4.0		Comparison of Experimental result Theoretical result			
	4.1	Introduction	24		
	4.2	Theoretical calculation as per NDS method	27		
	4.3	Theoretical calculation as per BS 5268:Part 2, 1991	29		

Chapter 5

à

1

.4

6

	5.0 Conclusion and Recommendations		33	
		5.1	Conclusion	33
		5.2	Recommendations	33
Refere	ences			34
Appendix A: Notations			35	
Appendix B: Images of Columns with actual failure situations			36	

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk .

Figures

4

*

4

		Page
Fig I	Layered timber column	2
Fig 2	Spaced timber column	3
Fig 3	Braced timber column	3
Fig 4(i)	Box timber column	4
Fig 4(ii)	Box timber column	4
Fig 5	Column cross sections	9
Fig 6	Column stress versus Length- Series A	10
Fig 7	Column stress versus Length- Series B	10
Fig 8	Column stress versus Length- Series C	11
Fig 9	Column cross sections Moratuwa, Sri Lanka,	12
Fig 10	Column stress versus Length- Series A	12
Fig 11	Column stress versus Length- Series B	13
Fig 12	Column stress versus Length- Series C	13
Fig 13	Column stress versus Length- Series D	14
Fig 14	Efficiency Curve	14
Fig 15	Nail arrangement	. 20
Fig 16	Nail arrangement	20
Fig 17	Nail arrangement	21
Fig 18(i)	Bending about x-x axis	22
Fig 18(ii)	Bending about y-y axis	23
Fig 19	Typical –bracing system for the built-up timber column	24
Fig 20(i)	100mm x 100mm section	25

Fig 20(ii)	150mm x 150mm section	25
Fig 20(iii)	200mm x 200mm section	25
Fig 20(iv)	250mm x 250mm section	26
Fig 20(v)	300mm x 300mm section	26
Fig 21	Cross section dimension in related to I value	29

۸

۰,

⊾

۲

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

-

Tables

.

٠

P

٠

۲

Table 1	Data for braced columns	9
Table 2	Comparison – slenderness limits of compression members	17
Table 3	Comparison of actual load with theoretical load (as per NDS method)	28
Table 4	Comparison of actual load with theoretical load (as per BS 5268:Part 2: 1991)	30

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Page

.