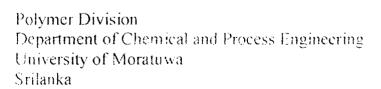


Quality Analysis for uPVC pipes

by


S. C. D. Perera

LIBRAW UBIVERSIVY OF MORATUCIA CON MORATINTO -

This thesis was submitted to the department of Chemical and Process Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science in Polymer Technology

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

678 03

678.743.2

March 2003

78478

78478

1200

Abstract

There is no doubt that quality has become a major feature in the survival plan of many companies today. Each company employee must be committed to the use of effective methods to achieve optimum efficiency, productivity, and quality to produce competitive goods. Statistical Process Control (SPC), in its broad sense, is a collection of production methods and management concepts and practices that can be used throughout the company. SPC involves the use of statistical signals to identify sources of variation, to improve performance, and to maintain control production at higher quality levels.

This work investigates the implementation phase of SPC in a company, which produce rigid unplasticized poly vinyl chloride (uPVC) pipes for cold water supplies. SPC techniques were used to identify the variations of finished pipes quality parameters and quantify these variations. Stepwise approach was initiated to control the processes and uplift the quality of the finished pipes. Selected processes were monitored, analyzed and improved through multi-disciplinary process actions teams. By using awareness and pilot project phases SPC was successfully implemented in a pipe extrusion line.

Process flow chart was used to define variable and attribute data of pipe extrusion line. Flow chart was helped to control and minimize external causes to a great extent. Internal and external customer satisfaction was achieved due to through monitoring of variable and attribute data from the incoming raw materials to finished pipe storage. Root causes for variations in the extrusion line were studied through detailed cause and effect relations. Improvements were initiated by treating to the root causes. Using control charts out of control situations were identified and out of control action plan was prepared to take prompt actions. Accuracy of the testing methods and calibration of measuring equipments were given more attention at each process step. From planed control charts PATs managed to obtain well-described measurements, knowledge on process control and detection of process disturbances, product assurance, knowledge on the level of control of the process, and control limits for process inherent variation.

Improvements in uPVC pipe quality and consistency was achieved through the use of SPC. This step was not easily or quickly achieved. It required extensive training at all levels, considerable planning, and most importantly, the consistent support of upper management in committing the manpower and funds to make it happen.

Ŷ

N

C.

I kneel down with gratitude before many, who criticized, argued, advised, guided and encouraged me throughout in making this a success.

- Mr. K. Subramaniam, M.Sc. Course coordinator, Polymer Division, Department of Chemical and Process Engineering, for many eye opening discussions I had with him and for valuable advise given to me at the initial stages.
- Dr. Shantha Amarasinghe, Senior Lecturer, Department of Chemical and Process Engineering, my supervisor: for lengthy discussions and inspirations given to me when I needed it most and giving me valuable advice and hints during the draft stages to make this a success and for correcting the draft.
- Dr. Jagath Premachandra, Senior Lecturer, Department of Chemical and Process Engineering, and Ms. Shantha Maduwage, Lecturer, Department of Chemical and Process Engineering, for their assistance in searching for a company to carry out the project.
- Mr. Gamini Darmawardana, Assistant Director, Srilanka Standards Institution, and Mr. Sujeewa Mahagama, Quality Assurance Officer, Srilanka Standards Institution, for providing me with necessary information to select a company to initiate the project.
- The Managing Director, Factory Manager, Quality Assurance Executive, Quality Assurance Assistants and all the staff at the factory for providing me with necessary data, discussions and granting permission to carry out the project in their premises.
- My dear friends Erosh, Sydney, Prashantha, Chandana, Ruwan, and all others, who have become a source of help, assistance and encouragement at my needy moments.
- Equity Investments Lanka Ltd., My Employer, For granting leave and all assistance
- Last but not least, my beloved wife Masha, her parents and my parents, who were like my shadow, ready to help me at a moment of notice be it night or day, for their continuous guidance, encouragement and blessings given at all times.

Contents

Chapter 1 Introduction	1
1.1 uPVC Pipe manufacturing	1
1.2 Aim and scope of present work	2
1.3 Outline of approach taken	2
1.4 Outline of the thesis	3
Chapter 2 Literature Review	4
2.1 Introduction	4
2.2 Art of water transport	4
2.3 Pipe extrusion	5
2.4 Statistical Process Control (SPC)	6
2.4.1 Evolution and usage of SPC in industry	6
2.4.2 Implementation of SPC	7
2.4.3 Implementation of Statistical Tools and Techniques	10
2.5 Justification of the present research	11
Chapter 3 Engineering properties of uPVC	13
3.1 Introduction University of Moratuwa, Sri Lanka,	13 . 11
3.2 PVC plastics Electronic Theses & Dissertations	13 /
3.2.1 Components and basic additives of a uPVC formulation	13 1 1998/27 2
3.2.2 uPVC Characteristics	14
3.2.3 Properties of uPVC	16
3.2.3.1 Mechanical properties	16
3.2.3.2 General physical properties	20
3.2.3.3 Chemical properties	20
3.2.3.4 Aging	21
3.2.3.5 Biological resistance	22
3.3 Manufacture of PVC	22
3.4 Rigid PVC (uPVC)	22
3.4.1 Rigid PVC conversion operations	24
3.4.2 Rigid PVC Rheology	24
Chapter 4 Manufacturing of uPVC Pipes for cold water supplies	26
4.1 Introduction	26
4.2 Pipe Extrusion	26

-

¥

ð,

Ļ

ī

	4.2.1 Raw Materials Description	28
	4.2.2 Raw materials handling	29
	4.2.2.1 Process of compounding	31
	4.2.2.2 Simple sequence of mixing	31
	4.2.3 Drying	31
	4.2.4 Rigid PVC Extrusion	31
	4.2.5 Extrusion Principles	32
	4.2.6 Extruders	34
	4.2.6.1 Breaker Plate and Screen Pack	35
	4.2.6.2 Die Design	35
	4.2.7 Pipe Sizing Operation	38
	4.2.8 Cooling	39
	4.2.9 Pullers	39
	4.2.10 Take- off Equipment	40
	4.2.11 Saw Equipment and Bundling	41
4.3	Physical characteristics of uPVC pipes	41
4.4	Company Background	42
Chapter 5	SPC usage in quality improvement	44
5.1	Introduction University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	44
5.2	What is Quality www.lib.mrt.ac.lk	44
5.3	The need for SPC	45
5.4	Prevention Versus Detection	46
5.5	SPC Goals	47
5.6	The Basic Tools for SPC	48
5.7	SPC Techniques	49
5.8	Obtainable Improvements and Results from SPC	50
5.9	Phases of SPC Implementation	51
	5.9.1 Awareness	51
	5.9.2 Pilot Project	51
	5.9.3 Integral Implementation in Production	52
	5.9.4 Setting the stage for TQM	52
5.10	Olassification of Parameters and their variation	53
5.1	Control Charts	55
	5.11.1 Classification of Control Charts	55
	5.11.2 Data points patterns on Control charts	58
5.1	2 Quality control and quality assurance of uPVC pipes	59

4

L:

3

1

.

5.12.2 Workmanship, Finish, and Appearance	
	62
5.12.3 Dimensions	62
hapter 6 Methodology of Study	63
6.1 Introduction	63
6.2 Awareness	63
6.3 Pilot Project	64
6.3.1 Process Action Teams (PATs)	64
6.3.2 Methods of ranking the processes	65
6.3.3 Methods of Cause and Effect analysis	65
6.3.4 Sampling methods adopted	65
6.3.5 Techniques used in control charts	66
6.3.6 Methods of Out of control action plan prepared	66
hapter 7 Implementation of Statistical Process Control	67
7.1 Introduction	67
7.2 Process description & cause and effect analysis	68
7.2.1 Incoming Raw material	68
7.2.2 Storage ectronic Theses & Dissertations	71
7.2.3 Blender (Mixer cooler)	72
7.2.4 Temporary Storage	73
7.2.5 Extrusion	74
7.2.5.1 Feeding (Hopper)	74
7.2.5.2 Screw and Barrel	74
7.2.5.3 Die	77
7.2.5.4 Gear area	· 77
7.2.5.5 Drive area (Motor)	78
7.2.5.6 Control panel	78
7.2.5.7 Lubrication	79
7.2.5.8 Clamping	79
7.2.5.9 Sizing	79
7.2.5.10 Cooler unit	80
7.2.5.11 Haul off (Take Off)	81
7.2.6 Marking	81
7.2.7 Cutting	81

¢,

•

	7.2.8 Final inspections	82
	7.2.9 Socketing	82
	7.2.10 Storage	83
7.3	Priority Analysis	83
	7.3.1 Introduction	83
	7.3.2 Case study 1	84
7.4	Control chart analysis	85
	7.4.1 Introduction	85
	7.4.2 Measurements	86
	7.4.3 Sampling and Testing	87
	7.4.4 Repeatability and Reproducibility study	87
	7.4.4.1 Introduction	87
	7.4.4.2 Repeatability study	88
	7.4.4.3 Reproducibility study	88
	7.4.5 Control charts	89
	7.4.5.1 Introduction	89
	7.4.5.2 Case study 2	89
	7.4.5.2.1 Introduction	89
	7.4.5.2.2 \overline{X} and R charts	90° (13362)
	7.4.5.2.3Continuation charts	96
	7:4.5.2.4 Results and Discussion of the	98 . 4016
	Case study 2	
7.5	Out of Control Action Plan (OCAP)	98
	7.5.1 Introduction	98
	7.5.2 Process control in pipe extrusion	102
	7.5.3 Defects and Remedies in uPVC Pipe Extrusion	103
Chapter 8	Conclusions and Future work	108
8.1	Conclusions	108
	8.1.1 Need of a pilot project	110
	8.1.2 Practical difficulties faced during the Pilot study	110
	8.1.3 Critical factors for an effective SPC implementation	113
	8.1.4 Requirements for a successful implementation of SPC	114
	8.1.5 Benefits gained from the application of the pilot project	114 .
8.2	Future Work	115

;

Appendix 1	Methods for Total Quality Management (by category)	122
Appendix 2	SLS 147: 1993 Scale of sampling	130
Appendix 3	The \widetilde{X} (Average) and R (Range) chart procedure	131

•

_ _ _ _

•

Ny.

æ

41

ŧ°

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

· · _ ··

List of Tables

.

Chapter 4

_ _ --

_ - ---____

Þ

I

7

C

0

Table 4.1	Importance of K value of PVC resin for end use
Table 4.2	Working behavior of additives in uPVC pipe formulations
Table 4.3	Physical characteristics of uPVC pipes

Chapter 7

Table 7.1	Total Pipe rejects in kilograms in December 2001
Table 7.2	Analysis of total machine down time (hours) of 110mm drainage pipe
Table 7.3	Measurements of Thickness of 50mm 400kPa pressure pipe sample
	No. 1-25 in shift 1
Table 7.4	Measurements of Thickness of 50mm 400kPa pressure pipe sample
	No. 26-50 in shift 2
Table 7.5	Measurements of Thickness of 50mm 400kPa pressure pipe, in
	controlled samples

Appendix 2

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

SLS 147: 1993 Scale of sampling Table A.2.1

List of Figures

Chapter 3

- Figure 3.1 Schematic of tensile stress-strain response of PVC
- Figure 3.2 The Maxwell model
- Figure 3.3 Post extrusion swelling or percentage memory

Chapter 4

- Figure 4.1 Aerial view of typical conventional Extrusion line
- Figure 4.2 Side view of a typical production line for the extrusion of pipe
- Figure 4.3 The principle of operation of a simple extruder
- Figure 4.4 The common features of a screw: (a) The screw rotates and it is closely fit to inside the barrel (b) The channel is deeper in the feed zone than the other zones of the screw (c) The screw is heated or cooled by water or oil to help control the temperature of the melt

- Figure 4.5 Typical resin mixing devices
- Figure 4.6 The opening in the die is shaped like a pipe
- Figure 4.7 The temperature of each band is individually controlled by an instrumented thermocouple
- Figure 4.8 A screen pack and supporting breaker plate assembly
- Figure 4.9 A simple die used to produce a pipe
- Figure 4.10 Common types of die designs (a) Pipe die with spider for pipe dimensions up to 250mm (b) Pipe die with breaker plate type mandrel support (c) Egan system spiral melt distributor
- Figure 4.11 Vacuum and pressure size techniques (a) External (pressure) sizing for small and medium pipe diameters (b) External sizing system
- Figure 4.12 Soft and flexible extrudate is pulled away at a faster rate than the natural extrusion rate
- Figure 4.13 Pipe's printed markings to certify their quality and manufacturing standards
- Figure 4.14 Typical pipe pack truckload

Chapter 7

- Figure 7.1 Flowchart of the uPVC pipe extrusion
- Figure 7.2 Ranges of thickness of 50mm 400kPa pressure pipe sample No. 1-25
- Figure 7.3 Ranges of thickness of 50mm 400kPa pressure pipe sample No. 26-50
- Figure 7.4 Means of thickness of 50mm 400kPa pressure pipe sample No. 1-25
- Figure 7.5 Means of thickness of 50mm 400kPa pressure pipe sample No. 26-50
- Figure 7.6 Ranges of thickness of 50mm 400kPa pressure pipe in controlled samples
- Figure 7.7 Means of thickness of 50mm 400kPa pressure pipe in controlled samples

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk