AUTONOMOUS FAULT ISOLATION AND POWER RESTORATION SYSTEM FOR MV/LV DISTRIBUTION

D.M.D.K.Dissanayaka

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2015

AUTONOMOUS FAULT ISOLATION AND POWER RESTORATION SYSTEM FOR MV/LV DISTRIBUTION

D.M.D.K.Dissanayaka

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2015

DECLARATION OF THE CANDIDATE & SUPERVISORS

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature

Date

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations The above contract has carried out research for the Masters thesis/ Dissertation under my supervision.

.....

Signature of the supervisor (Dr. W.D.A.S. Rodrigo) Date

.....

Signature of the supervisor (Dr. K.T.M.U. Hemapala) Date

ACKNOWLEDGEMENTS

It is with the deepest sense of gratitude, I acknowledge the tremendous encouragement, guidance and support extended to me by my supervisors Dr. W.A.D.S Rodrigo and Dr. K.T.M.U. Hemapala.

My sincere gratitude and thanks are also extended to all lectures of the Department of Electrical Engineering, University of Moratuwa for providing all the necessary facilities and guidance for all our academic activities.

I specially would like to appreciate for Ceylon Electricity Board for technical and financial support during this work. In addition, I would like to extend my sincere thanks to Chief Engineer Mr. S.H. Walpita.

I would like to appreciate my friends Mr. Waruna Geekiyanage, Mr. Chinthaka Ranawaka and Mr. Chirantha Jayasingha for the support provided in numerous ways

throughout this period University of Moratuwa, Sri Lanka.

I also would like www.hankballupersonal who gave their ideas, support and encouragement.

Finally, I owe my gratitude to my father, mother and my loving Harshani Anurada and her family for their endless support and encouragement and without them I would not have come this far.

D.M.D.K. Dissanayaka

ABSTRACT

The term "Distribution Automation" generally refers to a distribution network switching subsystem devices equipped with the advanced technologies dedicated for purposes such as, ease of real time monitoring and controlling, reliability improvement management, integrating of distribution network and electricity market operation. Improving the reliability of electric power delivered to the end users is one of the main targets of employing distribution automation. Therefore, developing autonomous fault isolation and power restoration system for LV/MV distribution can be attractive reliability enhancement solution for the electric utilities.

Electrical utility industries are not focusing on automating Low Voltage (LV) distribution system due to complexity of the LV distribution network feeders. However, there is a room available for automation if an algorithm could be developed for autonomous fault isolation and power restoration. Development of a comprehensive algorithm opens up a new pathway for LV distribution.

Electrical distribution system network consists in large numbers of Remote Switching Subsystem Dorices (RSSD) and these devices communicate in different protocol. These devices can be monitored and controlled remotely by linking with Supervisory Control and Data Acquisition (SCADA) system. However, investing on a fully fledge SCADA is not so economical for a small scale distribution utility. As a solution; scalable distribution automation will enable small scale distribution utilities to enter into distribution automation with optimal capital investment. Hence, developing a scalable SCADA is the solution for smaller distribution automation.

Results of this thesis are, a proto type LV distribution system has been developed to demonstrate the algorithm for autonomous fault isolation and power restoration system. Also has been implemented open platform SCADA system in view of acquiring multi-protocol remote switching subsystem devices.

Key words Distribution automation, Fault management activities, Fault isolation and power restoration, SCADA system, Protocol, Algorithm

TABLE OF CONTENTS

Declaration of the candidate & Supervisor	i
Acknowledgements	ii
Abstract	iii
Table of content	iv
List of Figures	vii
List of Tables	ix
List of abbreviations	х

Chapter 1

1.

Introdu	uction	1
1.1	Background	1
1.2	Introduction to Distribution Automation System	2
1.3	Importance of introducing Scalable SCADA	3
1.4	Literature Review	4
1.5	Identification of the problem atuwa, Sri Lanka.	8
1.6	Motivation Lib mart on Us	10
1.7	Objective of the Study	10
1.8	Contribution	11
1.9	Organization of the thesis	11

Chapter 2

2.	LV Fe	LV Feeder Automation					
	2.1	Case Study: Time duration for fault management activities forManual operated LV distribution network12					
	2.2	Fault Management Activities in LV Feeder					
	2.3 LV Feeder Automation for Fault Management Activities						
		2.3.1 Feeder Automation	19				
		2.3.2 Proposed architecture for LV feeder automaton	20				
	2.4	Algorithm to LV Feeder Automation for Fault Management Activities					

Chapter 3

3.

MV SC	SCADA system 36				
3.1	Remote Switching Subsystem Devices 33				
3.2	Proprietary protocols, open standards & Interoperability 3				
3.3	Comm	unication protocols available in Remote			
	Switch	ing Subsystem Devices	37		
	3.3.1	IEC 870-5-101	38		
	3.3.2	DNP3	39		
3.4	Propos	ed multi - protocol Device Integration method	40		
3.5	Comm	unication media and technology	41		
3.6	Comm	unication media options	41		
	3.6.1	Twisted pair & Coaxial cables	42		
	3.6.2	Fiber Optic Cable	42		
	3.6.3	Radio link	42		
	3.6.4	Satellite link	43		
den	3.6.5	Cellular (GPRS/3G)	43		
3.7	Propos	ed Communication Media Electronic Theses & Dissertations	44		
3.8	Proposed communication architecture 44				
3.9	Software package to developed SCADA 47				
3.10	Key ar	ea of the Software package	48		
	3.10.1	Cost	49		
	3.10.2	Scalability	49		
	3.10.3	Security	49		
	3.10.4	Supported operating systems	50		
	3.10.5	Software architecture	50		
	3.10.6	Alarm handling. trending, data logging & reporting	50		
3.11	Propos	sed Software package to developed SCADA	50		
3.12	Develo for inte	oped Open Platform scalable MV SCADA system egrating Remote Switching Subsystem Devices	51		

Chapter 4

4.	Financ	icial feasibility for implementing open plat form					
	MV SO	CADA s	CADA system 5				
	4.1	Project	Project Cost Estimation 5				
		4.1.1	Capital cost	53			
		4.1.2	Operation & maintenance (O&M) cost	54			
	4.2 Benefits due to MV distribution automation						
	4.2.1 Reduction in outage Duration						
	4.2.2 Reduction in Manpower due to reduction in Crew travel time						
		4.2.3 Cost Benefit Analysis					
Chapt	er 5						
5.	Resear	ch impl	ementation	60			
	5.1	Implement a prototype autonomous LV Fault					
	Isolation and Power Restoration together with Algorithm 6						
	5.2 Developing of open plat Vooras CADAS systemika.						

Subsystems devices in Western Province South II of Ceylon Electricity Board

64

Chapt	er 6	
6.	Conclusion and Recommendation	69

LIST OF FIGURE

Figure 2.1:	Time durations for fault management activities without and with automation schemes	15	
Figure 2.2:	General form of LV distribution network in Sri Lanka		
Figure 2.3:	General form of LV distribution network in Sri Lanka	20	
Figure 2.4:	Proposed LV feeder automation architecture	21	
Figure 2.5:	General LV distribution network configured according to the data structure	24	
Figure 2.6:	The first configuration of faulty sections and power restoration	25	
Figure 2.7:	The second configuration of faulty sections and power restoration	26	
Figure 2.8:	The third configuration of faulty sections and power restoration	27	
Figure 2.9:	The fourth configuration of faulty sections and power restoration it of Moratuwa, Sri Lanka.	27	
Figure 2.10	Pigorithin for retrect faulty section iDissertations other side in adjoining switch (part 1 of 2)	30	
Figure 2.10:	Algorithm for detect faulty section in either side in adjoining switch (part 2 of 2)	31	
Figure 2.11:	Algorithm for detect faulty section in same side and power restoration (part 1 of 2)	32	
Figure 2.11:	Algorithm for detect faulty section in same side and power restoration (part 2 of 2)	33	
Figure 2.12:	Algorithm for detect faulty section in adjoining side and power restoration	34	
Figure 2.13:	Algorithm for reset the system	35	
Figure 3.1:	Proposed communication architecture	47	
Figure 3.2:	Proposed Developing Open Platform scalable MV SCADA system	52	
Figure 4.1:	Protection zones in a typical 33 kV radial distribution feeder	57	
Figure 5.1:	Schematic diagram of proto type	62	

Figure 5.2: Designed and implemented hardware part of the				
	autonomous LV Fault Isolation and Power Restoration system	63		
Figure 5.3:	Stage of software development	63		
Figure 5.4:	HMI of the system			
Figure 5.5:	Installation of GPRS Modem	65		
Figure 5.6:	Success of communication	65		
Figure 5.7:	Adding RTU to OPC Server	66		
Figure 5.8:	Data acquisition to OPC server from Auto Circuit Recloser	66		
Figure 5.9:	One of page Graphical User Interface	67		
Figure 5.10:	Added database	67		
Figure 5.11:	Developed open flat form SCADA system	68		

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLE

Table 2.1:	Time duration taken for fault management activities 12				
Table 2.2:	Average time duration taken for fault management activities	14			
Table 3.1:	Detail of the existing and proposed Remote Switching Subsystem Devices about SCADA data	36			
Table 3.2:	Available open communication protocols	38			
Table 3.3:	Summary of option for selecting communication media	44			
Table 3.4:	Cost of software packages				
Table 3.5:	Each SCADA software package gained mark				
Table 4.1:	Capital cost estimation for WPS II open platform MV SCADA system 5				
Table 4.2:	MV feeder failure data for year 2012, 2013, 2014				
Table 4.3:	Electronic Theses & Dissertations www.lib.mrt.ac.lk	57			

LIST OF ABBREVIATIONS

Abbreviation	Description
ACR	Auto Circuit Recloses
ADSS	All-Dielectric Self-Supporting
AFIPR	Autonomous Fault Isolation and Power Restoration
CB	Circuit Breaker
CIS	Customer Information System
DAS	Distribution Automation System
DCC	Distribution Control Center
DDNS	Dynamic Domain Name System
DDLO	Drop Down Lift Off
DMS	Data Management System
DNP	Distributed Network Protocol
EF	Earth Fault
FI	Fault Indicators
FIS	University of Monatum System Lanka.
GIS	Electronic Theses & Dissertations Geographical Interface System
GPRS	General Packet Radio Service
GSM	Global System for Mobile
GSS	Grid Substation
HMI	Human Machine Interface
IEC	International Electrotechnical Commission
IED	Intelligent Electronic Device
IEEE	Electrical and Electronic Engineers
kWh	kilo Watt hour
LBS	Load Break Switches
LKR	Lanka Rupees
LV	Low Voltage
MFCS	Micro Feeder Control System
Mn	Million
MSCADA	Micro SCADA

MV			Medium Voltage
OC			Over Current
O&M			Operation & maintenance
OPC			Object linking & embedding for process control
OPGW			Optical Power Ground Wire
RSSD			Remote Switching Subsystem Devices
RTU			Remote Terminal Unit
SCADA			Supervisory Control and Data Acquisition
SIM			Single Inline Module
SMS			Short Message Service
TCP/IP			Transport Control Protocol/Internet Protocol
UF			Under Frequency
UHF			Ultra High Frequency
VHF			Very High Frequency
VPN			Virtual Private Network
VSAT	linter	TT	Very Small Aperture Terminal
WOC		Electr	Wrapped Optical Cable
WPS II	S	www.]	Western Province South II