624: ~85" 626.824 (54%)

REGULATION OF WATER

IN THE

MAHAWELI PROJECT SYSTEMS

ΒY

LIGRAGY VERSITY OF MORATUWA, SPANNE stronic Theses & Dissertations www.lib.mrt.ac.lk R.T.C. PEIRIS B.Sc. (Eng.)

A DISSERTATION SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF ENGINEERING.

DEPARTMENT OF CIVIL ENGINEERING FACULTY OF ENGINEERING UNIVERSITY OF MORATUWA.

UM Thesis

University of Moratuwa

78499

FEBRUARY - 1985

78499

This dissertation has not been previously presented in whole or part, to any University or Institution for a higher degree.

University of Moratuwa, Sri Land Cleiry Electronic Theses & Dissert from R.T.C. PEIRIS.

February

1985.

TABLE OF CONTENTS

.

		PAGE
	ACKNOWLEDGEMENT	XII
	ABSTRACT	XIII
1.	REGULATION OF WATER FOR IRRIGATION	.1
1.1	Introduction	.1
1.2	History of Irrigation in Sri Lanka	3
1.2.1	Climatic Conditions	. 6
1.2.2	Method of Regulation and Distribution	7
1.2.3	Ancient Systems of Cultivation and Water Management	·9
1.2.4	Water Management and Regulations	10
1.3	Cultural Practices	16
1.3.1	Onfarm Facilities for Proper Water Management	. 19
2.	DESCRIPTION OF PROJECT SYSTEMS sectations	2 6
2.1	Physical Features	26
2.2	Present Position and Project Costs	28
2.3	Project Components	29
2.3.1	Reservoir Complexes	31
2.3.2	Irrigation Systems and Irrigated Perimeters	33
3.	OBJECTIVES OF THE STUDY	
3.1	General	35
3.2	Objectives	35
3.2.1	Systems Analysis	36
3.2.2	Water Management	5 / 37
3.3	Methodology Adopted	37
4.	SYSTEM FURMULATION	40
4.1	Introduction	40
4.2	Systems Analysis in Water Resources Development	40
4.2.1	Models in Systems Analysis	42
4.3	Simulation and Search or Sampling Techniques	44
4.4	System Optimization	. 48

(i)

(ii)

PAGE

5.	ESTIMATION OF HYDROLOGICAL DATA	50
5.1	General Hydrological Features	50
5.2	Estimation of Missing Hydrological Data	52
5.2.1	Methods Adopted	53
5.3	Virgin Flows	. <mark>6</mark> 0

6.	SYSTEM IRRIGATION REQUIREMENTS AND DIVERSION	
	REQUIREMENTS	66
6.1	Crop Water Requirements	66
6.1.1	Energy Balance	. 68
6.1.2	Water Balance	69
6.1.3	Consumptive Use	. 70
6.1.4	Factors Effecting Evapotranspiration	, 7 0
6.2	System Irrigation Requirements and Diversion	
	Requirements	74
6.2.1	Computation Method	74
6.2.2	Reference Crop Evapotranspiration	· 75
6.2.3	Crop Co-efficients Desc Discribons	· 78
6.2.4	Additional Water Requirements	78
6.2.5	Percolation Losses	79
6.2.6	Crop Irrigation Requirements	79
6.3	System Irrigation Requirements	81
6.3.1	Efficiency of the System	81
6.3.2	Return Flow	81
6.4	Limitation of Data Components	. 85-
6.4.1	Precipitation	÷ 85-
6.4.2	Evapotranspiration	86
6.5	Diversion Requirements	87
7.	POWER REQUIREMENTS	90
7.1	Generation of Hydro Electric Energy	90
8.	SYSTEMS SIMULATION	94
8.1	The Simulation Model	94
8.1.1	Description of the System	95
8.1.2	Definitions	95

ë,

(iii)

		PAGE
8.1.3	General Objectives	98
8.1.4	Criteria	99
8.1.5	Operational Rules of the System	100
8.2	Problem Formulation	102
8.2.1	Decomposition of Integrated System	103
8.2.2	Operation of the Water System	122
8.2.3	Simulation of Reservoirs and System Opera-	
	tion for Energy and Power Generation	125
8.3	Main Calling Programme SRILAN	130
8.3.1	Short Description of Other Subroutines	
	in SRILAN	132
8.3.2	Functions Reading and Interpolating Values For	
	Different Physical Quantities and Parameters	134
8.3.3	Subroutines for Continuity Control	135
8.3.4	Assigning and Conversion Subroutines	136
8.3.5	Subroutines Organizing the Output	136
8.4	Input Data	137
8.5	Rule Curves University of Moratuwa, Sri Lanka	139
9.	RESULTS AND CONCLUSIONS	147
9.1	Case l	147
9.2	Case 2	149
9.3	Case 3	151
9.4	Case 4	Ţ 15 3
9.5	Case 5	. 154
9.6	Sensitivity Calculations	156
9.7	Limitations	. 158
9.8	Further Investigations and Studies	160
9.9	Conclusions	161
	REFERENCES	163

(iv)

LIST OF FIGURES

		PAGE
1.1	Parakrama Bahu the Great	 2
1.2	Kondavattavana Pillar Inscription	12
1.3	Padavia Inscribed Pillar	14
1.4	Ploughing Scene	14
1.5	Chena Cultivation	17
1.6	Rice Growing Stage and Cultural Requirements	20
1.7	The Role of Water Control and Use of Additional Inputs on Rice Yields on a Country Wide Basis	20
1.8	Relationships Between Basic Soil Characteristics, Physical Soil Properties and Agricultural Qualities.	25
2.1	General Layout	27
2.2	Schematic Diagram of Reservoirs and Irrigation Systems	30
	University of Moratuwa, Sri Lanka.	
5.1	INFLOW POINT www.lib.mrt.ac.lk 01	61
5.2	INFLOW POINT 41 T AND 02	62
5.3	INFLOW POINT 03,04,05 AND 06	63
5.4	INFLOW POINT 09 AND 10	64
5.5	INFLOW POINT 07, 51 AND 48	65
6.1	Schematic Representation of the Daytime	
	Radiation Balance	67
6.2	Components of Soil Water Balance `	67
6.3	The Hydrological Cycle & Interaction Between Components	s 71
6.4	Diversion Requirements Computation Method	73
6.5	Weekly Data at Mahailluppallama	77
6.6	The Water Delivery, Farms and Water Removal Sub System of an Irrigation System	84
6.7	Model of Irrigation Return Flow System	84

7.1 Load Duration Curve

92 ·

(v)

PAGE

•

8.1	Layout of Components, Inflow Points and Irrigated Perimeters	· 96
8.2	Objective Function SRIR1	105
8.3	Flow Chart SRIRO	106
8.4	Flow Chart SRIR1	107
8.5	Flow Chart SRIRS2	110
8.6	Flow Chart SRIRP2	115
8.7	Schematic Representation of Energy Calculation	126
8.8	Power Vs Energy Curve	128
8.9	Iterative Procedure for Extra Releases	129
8.10	Flow Chart of the Main Calling Programme SRILAN	131
8.11	Variables for Rule Curves Reservoirs O2	140
8.12	Flow Chart for the Setting up of the Rule Curve	141

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

·-----

۰.

•

.

"

*

(vi)

LIST OF TABLES

1.1	Ancient Irrigation Works	5
1.2	Effect of Water Management Practices on grain yield, yield components, and plant height of IR8 and H4 varieties under natural paddy condi- tion. IRR1, 1968 wet season.	23
5.1	Summary of 28 year Mean Monthly Flow at Key Sites	51
6.1	Formulae to Estimate Crop Water Requirements	72
6.2	Mean Monthly Climatogical Data	76
6.3	Crop Factors	7Ġ
6.4	Mean Rainfall (mm) Used for Effective Rainfall Calculations	76
6.5	Water Issues System H	82
6.6	Effect of Irrigation Requirements on Diver- sion Requirements	89
7.1	Characteristics of Hydro Power Plants in the Mahaweli and Amban Ganga Used in the Simu- lation.	93
8.1	Weekly Periods in the Calculations	142
9.1	Irrigation Potential without any Storage Dams on Mahaweli Ganga	148
9.2	Irrigation Potential with Kotmale Reser- voir only.	150
9.3	Irrigation Potential with Kotmale and Victoria Reservoirs	153
9.4	Irrigation Potential Kotmale + Victoria + Randenigala + Moragahakanda Reservoirs	. 155
9.5	Irrigation Potential Kotmale + Victoria + Randenigala + Moragahakanda + Rotalawela Reser- voirs	157

÷.

PAGE

(vii)

NOTATIONS

А,В	Constants
A _M	Catchment area at site M in basin M
A _N	Catchment area at site N in basin N
С	Coefficient of tunnel loss
CA	Catchment area at A
CA _k	Net catchment area at K
CAr	Net catchment area at R
CAv	Net catchment area at V
с _в	Catchment area at B
CEE	Efficiency of turbine and generator
CRIRC	Coefficient of reduction in irrigation area for C
C01	Virgin flow at inflow point Ol
C01 [*]	Tentative flow at inflow point Ol
C02	Virgin flow at inflow point 02
C03	Virgin flow at inflow point O3
C04	Virgin flow at inflow point O4
C05	Virgin flow at inflow point O5
C06	Virgin flow at inflow point O6
C07	Virgin flow at inflow point O7
C09	Virgin flow at inflow point O9
C10	Virgin flow at inflow point 10
C41T	Virgin flow at inflow point 41T
C51	Virgin flow at inflow point 51
C101	Virgin flow at gauging station 101
C102	Virgin flow at gauging station 102
C103	Virgin flow at gauging station 103
C104	Virgin flow at gauging station 104
C105	Virgin flow at gauging station 105

C106	Virgin flow at gauging station 106
C110	Virgin flow at gauging station 110
C151	Virgin flow at gauging station 151
DA	Demand of discharge from reservoir A
DAB	Demand of discharge from reservoir A and B
DIRB	Water demand for perimeter B
DIRC	Water demand for perimeter C
DIRD	Water demand for perimeter D
DIR(J,M)	Water requirements for irrigated area (J) in time step (M)
DR	Diversion requirements
DSC	Dead storage
DTAB	Total discharge from reservoirs A and B including the
ч,	previous releases
E	Overall efficiency
Ea	Farm efficiency ersity of Moratuwa, Sri Lanka.
Ec	Water conveyance efficiency
e _n	Energy component
FA	Factor for catchment characteristics for losses for A
Fa	Actual irrigation area of the system
F _B	Factor for catchment characteristics for losses for B
F _M	Flow at site M in basin M
F _N	Flow at site N in basin N
FRIRC	Factor for reduction in irrigation area for C
FRIRD	Factor for reduction in irrigation area for D
FRIR(J) .	Restriction coefficient
f	Reduction factor
f _M	Flow at M in equivalent rainfall over the basin M
f	Flow at N in equivalent rainfall over basin N
f ₁	Constant

(viii)

(viii)

C106	Virgin flow at gauging station 106
C110	Virgin flow at gauging station 110
C151	Virgin flow at gauging station 151
DA	Demand of discharge from reservoir A
DAB	Demand of discharge from reservoir A and B
DIRB	Water demand for perimeter B
DIRC	Water demand for perimeter C
DIRD	Water demand for perimeter D
DIR(J,M)	Water requirements for irrigated area (J) in time step (M)
DR	Diversion requirements
DSC	Dead storage
DTAB	Total discharge from reservoirs A and B including the
	previous releases
Ε	Overall efficiency
Ea	Farm efficiency cronic Theses & Dissertations
Ec	Water conveyance efficiency
e _n	Energy component
FA	Factor for catchment characteristics for losses for A
Fa	Actual irrigation area of the system
ғ _в	Factor for catchment characteristics for losses for B
FM	Flow at site M in basin M
F _N	Flow at site N in basin N
FRIRC	Factor for reduction in irrigation area for C
FRIRD	Factor for reduction in irrigation area for D
FRIR(J)	Restriction coefficient
f	Reduction factor
f _M	Flow at M in equivalent rainfall over the basin M
fn	Flow at N in equivalent rainfall over basin N
f _l	Constant

(ix)

G-Anga	Diverted (observed) flow at Angamedilla
Ģ-bow	Diverted (observed) flow at Bowatenna
G-Elah	Diverted (observed) flow at Elahera
G-Mini	Diverted (observed) flow at Minipe anicut
G-Pol	Diverted (observed) flow at Polgolla barrage
GRC	Gross reservoir capacity
G101	Observed flow at gauging station 101
G102	Observed flow at gauging station 102
G103	Observed flow at gauging station 103
G104	Observed flow at gauging station 104
G106	Observed flow at gauging station 106
G110	Observed flow at gauging station 110
G151	Observed flow at gauging station 151
HC	Level above MSL at start of time step
НСН	Net head in the set of Moratuwa, Sri Lanka. Electronic Theses & Dissertations
HDST	Bed level or river level above MSL
HF	Level above MSL at end of time step
HOUR	No. of hours per week
11	Integer to select strategy for water release
I2	Integer to select strategy for water release
к	Multiplication factor
κ _I	Factor for catchment characteristics
κ _{II}	Factor for losses in basin
L _M	Losses in basin M
L _N	Losses in basin N
m	Month Jan, Feb, Mar, Apr, May, June, July, Aug, Sept, Oct, Nov, Dec.
PIIB	Irrigation shortgage
PIIPB	Irrigation deficit in perimeter B
PIIPC	Irrigation deficit in perimeter C

.....

(×)

PIIPD	Irrigation deficit in perimeter D
P _N	Power component
Q _A	Flow at A
Q _B	Flow at B
Q _k	Runoff for river for which data are available
Qr	Runoff for river for which data to be estimated
QAA	Discharge into reservoir A (flows into A)
QAE	Inflow from A (flows out)
QBE	Inflow from B (flows out)
QBL	Lateral discharge between B and A
QCE	Inflow from C (flows out)
QCL	Lateral discharge between C and B
QDE	Inflow from D (flows out)
QDL	Lateral discharge between D and E
QG _m	Flow at G in month more thoses & Dissertations
QR _m	Flow at R in month m
QTR	Turbine discharge
QV _m	Flow at V in month [°] m
RA	Longterm mean flow for the month at A
R _A '	Solar radiation above atmosphere
Ra	Reduced irrigation area of the system
R _B	Longterm mean flow for the month at B
R _b	Net outgoing thermal radiation
R _E	Rainfall at station E
Re	Effective rainfall
R _H	Rainfall at station H
R _M	Rainfall over basin M
R _N	Rainfall over basin N

Rs	Net shortwave radiation
R _W	Rainfall at station W
RES(J,M)	Restriction for irrigation area (J) in time step (M)
RRm	Average longterm rainfall on CA _r in month m
RVk	Runoff from the rainfall for catchment
RVm	Average longterm rainfall on CA $_{ m v}$ in month m
RV _r	Estimated runoff from the rainfall for catchment
SIR	System irrigation requirements
TWL	Depth of flow at powerplant outlet
UAE	Useful discharge from A
UBE	Useful discharge from B
UBL	Useful discharge between B and A
UCE	Useful discharge from C
UCL	Useful discharge between C and B
UDE	Useful discharge from D. & Dissertitions
UDL	Useful discharge between D and C
VA	Additional volume of water released from reservoir A for irrigation perimeter
VAB	Additional volume of water released from reservoirs A and B for irrigation
VAMA	Volume to be expected till the 18th week of the next year with a probability of 90% for reservoir A
VAMB	Volume to be expected till the 18th week of the next year with a probability of 90% for reservoir B
VCRD	Irrigation buffer
VCRDA	Volume corresponding to the rule curve for irrigation at the beginning of next week for the reservoir A
VCRE	Energy pool curve
VCREA	Volume corresponding to the energy curve for the reservoir A at the beginning of next week
VCRP	Flood protection curve

(xi)

-

(xii)

VCRPA	Volume corresponding to the flood protection curve of the reservoir A at the beginning of next time step
VCRPB	Volume corresponding tothe flood protection curve of the reservoir B at the beginning of next time step
VELB	Volume of unregulated water used in perimeter B
VELC	Volume of unregulated water used in perimeter C
VELD	Volume of unregulated water used in perimeter D
VEVPA	Volume of water evaporated from reservoir A in a week
VEVPB	Volume of water evaporated from reservoir B in a week
VIPIA	Volume released for irrigation purpose from reservoir A
VIPIAB	Volume of water released for irrigation purpose from reservoir A and B
VLPAMA	Volume discharged previously attachable to reservoir A
VLPAMB	Volume discharged previously attachable to reservoir B
VMAXB	Maximum amount of water released from reservoir A for irrigation purpose
VPA	Volume released from reservoir A for purpose of flood protection
VPAB	Volume released from reservoir A and B for purpose of flood protection
VPB	Volume released from reservoir B for purpose of flood protection
VSCA	Volume stored at the commencement of a week in the reservoir A
VSCB	Volume stores at the commencement of a week in the reservoir B
VSFA	Volume stored finally in a week in the reservoir A
VSFB	Volume stored finally in a week in the reservoir B
Wd	Total quantity of water drained from the effective
	root zone
Wet	Total quantity of water vaporized from soil and plant
[₩] f	Quantity of water issued to the farm

*

(xiii)

•

Wr	Quantity of water issued from the sluice
W _s	Quantity of water applied to the root zone of soil
Wz	Irrigation water applied to soil
W-106	Tentative flow at gauging station 106
Х	Actual flow at station x
Y	Estimated flow at station y
Q	Constant factor
∆t	Time interval
∆₩ _s	Change in soil water content

.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

4

(xiv.)

ACKNOWLEDGEMENT

The author is obliged to the Mahaweli Development Board for allowing him to participate in the Systems Analysis study as the Sri Lanka counterpart in the Netherlands and for permitting him to use all the relevant data required for this study.

Sincere gratitude is expressed to Professor V.N. Kulandaiswamy of the UNESCO for providing valuable guidance in the development phase of the study.

Thanks are also due to the academic staff of the M.Eng. Course of study, Civil Engineering Department of the University of Moratuwa, Sri Lanka for providing guidance with regard to this study.

The author is obliged to Mr. Sam Ratnasamy for typing the manuscript, and deeply thankful to his wife, Nimala, for her continued support and encouragement during all stages of the study.

ABSTRACT

Regulation of water resources systems has become increasingly complex during the recent decades and there is evidence that the process will become more so in future. In the Mahaweli Project Systems, especially in a country short of natural resources this task will call for sophistication in planning the system for the future with consideration being given in complete allocation of available resources for maximization of area under cultivation and generation of electrical energy. However, the average planner and the decision maker has been provided with very few new tools and techniques to compensate for the added complexities.

Once the water is made available for irrigation of lands, its use is limited unless water management aspects at field level are not implemented. In order that the results be successful, careful consideration of every aspect of water management including the cultural practices is necessary. In arriving at acceptable management practices, a brief review of ancient irrigation systems management practices are discussed in order to establish continuity with past traditions.

The specific objective is the determination of the most efficient use of the water resources of Mahaweli and adjacent river basins within the limits of constraints, fixed with regard to the priority to meet certain demands. This lays emphasis on minimizing the loss due to water deficits as regards the water demands for irrigation and energy and capacity requirements for hydro-power during the dry years and making a balance between water demands and flood control during wet years. A large number of components, variables and relationships define the system. In order to regulate water in such a system to achieve this specific objective a technique that is adequate to consider all the complexities has been devised. The method of System Analysis is used in this investigation to determine the most efficient use of the limited water resources available within the Project Systems. Systems Analysis in a sense, is a method of integrated thinking, and conceptually there is very little difference between mental and mathematical models. Systems analysis cannot replace experience, in fact, it augments it.

The water balance study used to determine the availability of water to meet the demands within the system, necessitated the reviewing and processing of hydrological data for INFLOWS and factors affecting the consumptive use for DEMANDS. The basic sub-systems used to build up the Macro System of water use and allocation are described in detail. The methodologies used include basic operational rules, priority for irrigation of certain areas, rule curves, probability criteria for inflows, trial and error process and successive approximations.

A rather detailed review was made of the crop water requirements and the diversion requirements for irrigated perimeters. The efficiencies of the irrigation applications, cropping patterns etc. are based on past experience as described herein. As the storage reservoirs are operated for energy generation the other river systems which generate major portion of electrical energy outside the Mahaweli Basin are also considered.

The model was prepared to simulate the integrated operation of all the hydraulic structures and power stations using available input data for INFLOWS, DEMANDS, and POWER TARGETS. The model is run for each year in a historical hydrologic period of 28 years with time step as one week for specified system characteristics and selected operational rules.

.

This is repeated for different combination of reservoirs, power stations, irrigated perimeters and different operational rules.

Sensitivity calculations were done to ascertain the validity of the assumptions and limitations of the analysis. Further studies and investigations are recommended based on the results of these calculations. The results of the water balance study are presented for different combinations of reservoirs and irrigation areas. Study reveals that the total area that can be successfully cultivated without any reservoirs to be about 150,000 ha. of land while the development of all the reservoirs will make it possible to cultivate about 350,000 ha. of land. The total annual energy production will be about 2650 GWh.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk