# USE OF COCONUT SHELL CHARCOAL DUST AS A FILLER IN THE RUBBER INDUSTRY

A DISSERTATION PRESENTED TO

LIBRARY UNIVERSITY OF MORATUWA, SRI LAND

THE POLYMER TECHNOLOGY DIVISION

IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE MASTER OF SCIENCE IN POLYMER TECHNOLOGY

> 678 87" 678.046.2

N.J.W. GAMAGE APRIL 1987.



78519

um Thesis 78519

#### ACKNOWLEDGEMENT

THIS study has been made possible through the generous help and co-operation extended to me by many individuals and institutions, to all of whom I am most grateful. I regret that lack of space does not permit me to mention every name.

Especially, I would like to express my gratitude to my supervisor Dr. (Mrs.) L.Sivagurunathan, Head, Polymer Technology Division, University of Moratuwa for the advice,. suggestions, assistance and co-operation she extended to me, to make this industry oriented research project a success.

I acknowledge with thanks, the advice and guidance given by Dr. K.P. Fernando, Lecturer of the same Department.

I am deeply indebted to my Employer THE STATE TIMBER CORPORATION for sanctioning me leave and providing facilities and finance to follow the course and undertake this research project.

I am thankful to HAYCARB LTD., for the generous supply of coconut shell charcoal dust which was used in this investigation.

My special thanks are due to Miss Y. Karunarathna, who kindly undertook and accomplished the most difficult task of typing this dissertation at short notice.



#### SYNOPSIS

COCONUT SHELL CHARCOAL DUST (CSCD) is a waste product in the production of activated carbon. The main objective of this research project is to determine the suitability of this waste product as a reinforcing filler in the rubber industry.

With this objective in mind, firstly the characteristic properties of CSCD which can have an influence on reinforcement were determined. These determinations show that CSCD resembles HAF (N 330), FEF (N 550), SRF (N 770) blacks and lamp black in certain respects.

The effect of CSCD as a filler in two non-polar rubber compounds namely NR (RSS-2) and SBR (1500); and a polar rubber compound NBR (medium) has been investigated by measuring the tensile properties, dead load hardness, vertical rebound resilience and volume abrasion loss of the vulcanisates.

Finally, the HAF (N 330) in car tyre tread formulation was partially and wholly replaced by CSCD and results of physical testing of these vulcanisates compared with the vulcanisates of the control compound containing 50 pphr of HAF. A comparision was also made with the requirements for car tyre treads as specified by Sri Lanka Tyre Corporation.

These results show that CSCD can be used as a reinforcing filler in rubber industry. However, it was not possible to carry out any ageing test due to limited time.

ii



.

.

-

University of Moratuwa, Sri Lanka. Elopedicatedicos & Dissertations www.lib.mrt.ac.lk MY PARENTS.

## **UOM Verified Signature**

0

### LIST OF CONTENTS

|          |                                                | Page       |
|----------|------------------------------------------------|------------|
| ACKNOWL  | EDGEMENT                                       | (i)        |
| SYNOPSI  | S -                                            | ii         |
| CHA PTER | ONE                                            |            |
| 1.0      | INTRODUCTION                                   | 1          |
| 1.1      | USE OF CARBON BLACK IN RUBBER INDUSTRY         | <b>1</b> 4 |
| 1.2      | APPLICATION AREAS OF CARBON BLACK              | 1          |
| 1.3      | SUBSTITUENTS FOR CARBON BLACK                  | 1          |
| CHA PTER | TWO                                            |            |
| 2.0      | INFLUENCE OF FILLER ON ELASTOMER REINFORCEMENT | 5          |
| 2.1      | INTRODUCTION                                   | 5          |
| 2.2      | FACTORS INFLUENCING ELASTOMER REINFORCEMENT    | 5          |
| 2.3      | MORPHOLOGY OF CARBON BLACK                     | 6          |
| 2.4      | TYPICAL FILLER CHARACTERISTICS                 | 8          |
|          | 2.4.1 THE EXTENSITY FACTOR                     | 8          |
|          | 2.4.2 THE INTENSITY FACTOR                     | 8          |
|          | 2.4.3 GEOMETRICAL FACTOR                       | 8          |
| 2.5      | THE REINFORCEMENT MECHANISM                    | 10         |
|          | 2.5.1 MOLECULAR SLIPPAGE MODEL                 | 10         |
| CHA PTER | THREE                                          |            |
| 3.0      | DETERMINATION OF SOME PROPERTIES OF COCONUT    |            |
|          | SHELL CHARCOAL DUST                            | 13         |
| 3.1      | INTRODUCTION                                   | 13         |
| 3.2      | DEGREE OF CRYSTALLINITY OF CSCD                | 14         |
| 3.3      | IODINE ADSORPTION NUMBER OF CSCD               | 21         |
| 3.4      | DIBUTYLPHTHALATE ABSORPTION NUMBER OF CSCD     | 23         |
| 3.5      | TINT STRENGTH OF CSCD                          | 24         |

| 3.6     | pH VALUE OF CSCD                          | 26   |
|---------|-------------------------------------------|------|
| 3.7     | PERCENTAGE HEATING LOSS OF CSCD           | 27   |
| 3.8     | PERCENTAGE ASH CONTENT OF CSCD            | 28   |
| 3.9     | POUR DENSITY OF CSCD                      | 29   |
| 3.10    | PERCENTAGE SIEVE RESIDUE                  | 630  |
| 3.11    | SUMMARY OF PROPERTIES                     | 631  |
| 3.12    | SECTION OF REFERENCE BLACKS               | 634  |
| CHAPTER | FOUR                                      |      |
| 4.0     | COMPOUND FORMULATION AND PREPARATION OF   |      |
|         | TEST SPECIMENS                            | 1035 |
| 4.1     | INTRODUCTION                              | 1035 |
| 4.2     | TEST RECIPES                              | 1035 |
| 4.3     | WEIGHING PROCEDURE                        | 39   |
| 4.4     | MIXING PROCEDURE C Theses & Dissertations | 39   |
|         | 4.4.1 MIXING CYCLELAC.K                   | 40   |
| 4.5     | DETERMINATION OF CURE CHARACTERISTICS BY  |      |
|         | ODR                                       | 42   |
|         | 4.5.1 CURE TIME                           | 1042 |
| 4.6     | PREPERATION OF TEST SPECIMENS             | 48   |
|         | 4.6.1 DIMENSIONS OF TEST SPECIMENS        | 48   |
|         | 4.6.2 MOULDING OF TEST SPECIMENS          | 49   |
| CHAPTER | FIVE                                      |      |
| 5.0     | AN OUTLINE OF TEST METHODS                | 50   |
| 5.1     | INTRODUCTION                              | 50   |
| 5.2     | TENSILE TESTING                           | 51   |
| 5.3     | PERCENTAGE COMPRESSION SET UNDER CONSTANT |      |
|         | STRAIN IN AIR                             | 54   |

| 5.4     | ABRASION LOSS                            | 56          |
|---------|------------------------------------------|-------------|
| 5.5     | HARDNESS TESTING                         | 59          |
| 5.6     | REBOUND RESILIENCE                       | 61          |
| CHAPTER | SIX                                      |             |
| 6.0     | TABULATION AND ANALYSIS OF RESULTS       | 63          |
| 6.1     | INTRODUCTION                             | 63          |
| 6.2     | LIST OF TABLES AND FIGURES               | 63          |
| 6.3     | ANALYSIS OF RESULTS                      | 100         |
|         | 6.3.1 TENSILE STRENGTH                   | 100         |
|         | 6.3.2 MODULUS AT 300% ELONGATION         | 100         |
|         | 6.3.3 PERCENTAGE ELONGATION AT BREAK     | 101         |
|         | 6.3.4 DEAD LOAD HARDNESS                 | 101         |
|         | 6.3.5 VERTICAL REBOUND RESILIENCE        | 102         |
|         | 6.3.6 VOLUME ABRASION LOSS Dissertations | 103         |
|         | 6.3.7 PERCENTAGE COMPRESSION SET         | 103         |
| CHAPTER | SEVEN                                    |             |
| 7.0     | USE OF CSCD IN TYRE TREAD FORMULATIONS   | 104         |
| 7.1     | INTRODUCTION                             | 104         |
| 7.2     | MIXING PROCEDURE                         | 106         |
|         | 7.2.1 MIXING CYCLE                       | 106         |
| 7.3     | PREPARATION OF TEST SPECIMENS            | 108         |
| 7.4     | CURE CHARACTERISTICS                     | 108         |
| 7.5     | TESTING OF TYRE TREAD COMPOUNDS          | 108         |
| 7.6     | ANALYSIS OF RESULTS                      | 115         |
| 7.7     | INFERENCE                                | 116 LIBRARY |
|         |                                          | LANKA       |

CHAPTER EIGHT

| 8.0      | CONCLUSIONS AND SUGGESTIONS FOR FURTHER WORK | 117 |
|----------|----------------------------------------------|-----|
| 8.1      | INTRODUCTION                                 | 117 |
| 8.2      | CONCLUSIONS                                  | 117 |
| 8.3      | SUGGESTIONS FOR FURTHER WORK                 | 119 |
| LIST OF  | REFERENCES                                   | 120 |
| APPENDIX |                                              |     |
|          | X-RAY DIFFRACTOGRAM ANALYSIS REPORT          | ล 1 |



University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk