NOVEL RADIOGRAPHIC TECHNIQUE TO ANALYZE THE POROSITY AND WATER ABSORPTION OF BRICKS

Maddumage Anura Kumara Jayatilaka

Degree of Master of Science

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

June 2014

NOVEL RADIOGRAPHIC TECHNIQUE TO ANALYZE THE POROSITY AND WATER ABSORPTION OF BRICKS

Maddumage Anura Kumara Jayatilaka

Dissertation submitted in partial fulfillment of the requirements for the Degree of Master of Science in Materials Science

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

June 2014

DECLARATION PAGE OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

Name: M.A.K. Jayatilaka

The above candidate has carried out research for the Master's dissertation under my supervision Electronic Theses & Dissertations Signature of the supervisor: Date:

Name of the supervisor: Mr. V Sivahar

ACKNOWLEDGEMENTS

I would like to thank project supervisor Mr. V. Sivahar, Senior Lecturer, Department of Materials Science and Engineering, University of Moratuwa for his constant encouragement and guidance in the research work. Thanks are also due to the Dr. Shantha Amarasinghe, Senior Lecturer, Department of Materials Science and Engineering, University of Moratuwa for his kind and moral support.

This research was carried out with the equipment and laboratory support of the Atomic Energy Authority. I express my sincere thanks for the co-operation for this research to staff of Atomic Energy Authority.

I acknowledge the contribution by Mr. Thilawala, Mr. Seneviratne, Mr. Chaminda Jayathunga Arachchi and Mr. M.N.M Faizer to various supports.

ABSTRACT

Properties of clay brick includes strength, water absorption, durability, expansion, efflorescence and pitting due to lime. Generally these properties are measured using destructive testing methods and as a result sampling errors are inevitable in addition to other considerations such as additional cost for discarding the tested component. Therefore to optimize the costing considerations as well as to reduce the sampling errors an NDT technique such as Radiographic Testing was used to evaluate the properties like water absorption etc.

Initially a theoretical model was developed to obtain a relationship between X-ray intensity and the absorbed water volume. From that model it was deduced that the natural log of the intensity changes and the absorbed water volume shows a linear relationship. First to find the appropriate tube voltage and the exposure time, a preliminary experiment was carried out as the first stage and from the results of that, the exposure time and the tube voltages were used for the subsequent second stage to determine whether the experimental findings were in line with the theoretical model

For the experimental purpose three sets of samples obtained from different locations were used with five clay bricks in each set. The samples were immersed in water for specified time intervals and the radiographic tests were performed on them. Natural log intensity (index) vs water volume relationship was studied and found to be linear which confirms the theoretical model developed. As per the findings of the research it could be concluded that the Radiographic testing method could be applied to find porosity and water absorption of clay bricks. Radiographic intensity of dry bricks remains constant for a given set. Therefore radiographs can be used to find origin of bricks and hence to sort out bricks of archeological importance.

TABLE OF CONTENTS

i
ii
iii
iv
vi
vii
vii
1
3
6
6
6
8
9
13
14
14
15
15
16
16
17
19
19
xperimental

5.2.1 Sample Set 1 -Normalized Intensity Index Vs Water Volume	21
5.2.2 Sample Set 2 - Normalized Intensity Index Vs Water Volume	26
5.2.2 Sample Set 3 -Normalized Intensity Index Vs Water Volume	29
5.3 Factors causing Deviation in the results	33
5.3.1 Radiographic Film Factors	33
5.3.2 Equipment Arrangement	33
5.4 Relationship between Normalized intensity at dry condition and Samp	le sets 36
5.5 Relationship between Normalized intensity index at dry condition a	and Void
volume	37
5.6 Absorbed Water Volume	37
6. Conclusions and suggestions	39
Reference List	40
Appendix 1 University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations	43

www.lib.mrt.ac.lk

LIST OF FIGURES

Figure 1:1 Industrial radiography of an object and a radiograph	2
Figure 3:1 The effect of wave length of primary radiation (tube voltage) on contra-	st 6
Figure 3:2 Intensity Variation with depth	7
Figure 3:3 Effect of the number of pixels on the image resolution [23]	9
Figure 3:4 Effect of the grey value resolution [23]	9
Figure 3:5 Exposure arrangements	11
Figure 4:1 Flow Chart for experimental procedure	13
Figure 4:2 Sample sets	15
Figure 4:3 Brick dimensions and a sample brick	15
Figure 4:4 Experiment setup	16
Figure 4:5 Radiographs of brick and aluminum plate	18
Figure 5:1Normalized intensity Vs Water volumes – Pre Test Brick 1	19
Figure 5:2 Normalized Intensity Index Vs Water Volume – Set 1 Brick 1	22
Figure 5:3 Normalized Intensity Index Vs Water Volume – Set 1 Brick 2	23
Figure 5:4 Normalized Intensity Index Vs Water Volume – Set 1 Brick 3	24
Figure 5:5 Normalized Intensity Index Vs Water Volume – Set 1 Brick 4	24
Figure 5:6 Normalized Intensity Index Vs Water Volume – Set 1 Brick 5	25
Figure 5:7 Normalized Intensity Index Vs Water Volume – Set 2 Brick 1	26
Figure 5:8 Normalized Intensity Index Vs Water Volume – Set 2 Brick 2	27
Figure 5:9 Normalized Intensity Index Vs Water Volume – Set 2 Brick 3	27
Figure 5:10 Normalized Intensity Index Vs Water Volume – Set 2 Brick 4	28
Figure 5:11 Normalized Intensity Index Vs Water Volume – Set 2 Brick 5	28
Figure 5:12 Normalized Intensity Index Vs Water Volume – Set 3 Brick 1	29
Figure 5:13 Normalized Intensity Index Vs Water Volume – Set 3 Brick 2	30
Figure 5:14 Normalized Intensity Index Vs Water Volume – Set 3 Brick 3	30
Figure 5:15 Normalized Intensity Index Vs Water Volume – Set 3 Brick 4	31
Figure 5:16 Normalized Intensity Index Vs Water Volume – Set 3 Brick 5	31
Figure 5:17 Grey value profile axis of a radiograph	33
Figure 5:18 (a) Radiograph (b) X direction grey value profile	34
Figure 5:19 (a) Radiograph (b) Y direction grey value profile	35
Figure 5:20 Normalized intensity of dry brick Vs Sample No	36
Figure 5:21 – Characteristic graph to find unknown water volume	38

LIST OF TABLES

Table 5:1 R^2 values for preliminary test samples	20
Table 5:2 R ² values, gradient and intercept for Set 1 samples	25
Table 5:3 R ² values, gradient and intercept for Set 2 samples	29
Table 5:4 R ² values, gradient and intercept for Set 3 samples	32

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF ABBREVIATIONS

- NDT Non Destructive Testing
- NDE Non Destructive Examination
- XRF X-ray fluorescence

- XRD X-ray diffraction
- RT Radiographic testing
- Initial intensity I_0
- Ι Intensity after attenuation
- Linear attenuation coefficient μ
- Material thickness d
- Attenuation coefficient due to photoelectric effect τ
- Attenuation coefficient due to scattering σ_s
- Attenuation coefficient due to pair production π

 w_a , w_w and w_s weight fraction of air, water and solid material respectively

 $\binom{\mu}{\rho}_{a}$, $\binom{\mu}{\rho}_{w}$ and $\binom{\mu}{\rho}_{p}$ mass absorption coefficients of air, water and solid University of Moratuwa, Sri Lanka. Electromaterial respectively sertations Bulk density ρ_{ave}

 V_a , V_w and V_s Volume of air, water and brick material respectively

- V_T Total volume
- V Void volume,
- I_{Al} , I_B Attenuated intensities received by the film by aluminum plate and brick respectively

Linear attenuation coefficient of aluminum plate and brick μ_{Al}, μ_B respectively

- Thickness of aluminum plate and brick respectively T_{AL}, T_B
- Grey B Mean grey value of bricks
- Grey Al Mean grey value of aluminum plate

ln Grey B Grey Al

Normalized intensity index

