PADDY HUSK BASED CARBON BLACK FILLER FOR TYRE COMPOUND

S.D. Ajith Santha Kumara

10/8307

Department of Materials Science & Engineering

University of Moratuwa

Srilanka

June - 2014

PADDY HUSK BASED CARBON BLACK FILLER FOR TYRE COMPOUND

Saputhanthreege Don Ajith Santha Kumara

10/8307

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science in Materials Science

Department of Materials Science & Engineering

University of Moratuwa

Srilanka

June - 2014

Declaration

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Master's Dissertation under my supervision.

Signature of the supervisor:

Date:

Mr. Sampath Weragoda

Senior Lecturer,

Department of Materials Science and Engineering,

University of Moratuwa.

Acknowledgements

This study would not have been possible without the guidance and help of several individuals who in one way or another contributed and extended their valuable assistance in the preparation and completion of this study.

First and foremost, my upmost gratitude to my main supervisor, Mr. Sampath Weragoda, Senior Lecturer, Department of Materials Science and Engineering, University of Moratuwa, Srilanka for giving me the opportunity to pursue the M.Sc. dissertation and his guidance throughout the period of my research.

The good advice, support and the steadfast encouragement of Mr. V. Sivahar and Dr. Shantha Amarasinghe, Senior Lecturers, Department of Materials Science and Engineering, University of Moratuwa, Srilanka.

I gratefully acknowledge Dr. (Mrs.) Renuka Nilmini, Senior Research officer, Department of Polymer Chemistry, Rubber Research Institute, Srilanka.

I would like pay my gratitude to Mr. Bandula Kariyawasam, Former Head of University of Moratuwa, Sri Lanka. Laboratory, CT Kelani International Tyres Ltd. Srilanka

I should pay my gratitude to the laboratory staff of the department of materials science and engineering, University of Moratuwa, Srilanka. Also, I should pay my great pleasure to the laboratory staff of Department of Polymer Chemistry, Rubber Research Institute, Srilanka. Simultaneously, I should extend my gratitude to the Laboratory staff of Associated Motorways (Pvt.) Ltd., Asmot factory complex, Nagoda, Kalutara, Srilanka.

Last but not least, I wish to convey my gratitude to all the people who did not mention by name but so helpful in many ways in completing this research successfully.

Abstract

Carbon black is a generic term for an important family of products used for the reinforcement of rubber, which is also a black pigment, and an electrically conductive properties of filler material. It is a fluffy powder of extreme fineness and high surface area, composed essentially of elemental carbon. Carbon black is one of thermo-stable product among the chemicals used in rubber compounding.

Carbon black in general is the most widely used filler material in rubber industry. Carbon black is made from hydrocarbon fuel and therefore costly and has to be imported to Srilanka.

Paddy husk is a natural source which can be converted to Carbon black and can be very cost effective. In an Agricultural country like Srilanka, paddy husk is abundantly available and also it would be uplifting to local industry as a readily available renewable raw material source.

Carbon black particle size plays a major role with regard to cured rubber properties. It is directly related to strength of cured article. When a compound is used for tyre tread or plies, Carbon black particle size will be the most critical parameter. Carbon black particle size is not so critical when compounding in tyre bead, inner liner, and chafer compounds.

University of Moratuwa, Sri Lanka.

When Carbon black is to be produced from paddy husk first it is under gone pyrolysis in inert atmospheric conditions and converted into carbonized paddy husks. Then, carbonized paddy husk is ground in a grinder and further fined by ball milling. Accordingly it can be made fine 200nm level of particle size which is confirmed by Iodine adsorption number analysis.

As per the tensile, hardness, rheological test results, it was decided to use Paddy Husk Carbon Black (PHCB) for the **inner liner compound of tube type pneumatic bias ply tyre**. Accordingly, differently proportionate compound samples were prepared by replacing the existing normal carbon black with PHCB. Seven compound batches were prepared and rheological and physical properties were analyzed. According to test results, it was found that 40% of Normal carbon black could be replaced by PHCB for inner liner compound. Then selected sample is compared with the existing compound by Ply adhesion, Tear resistance tests and Age analysis so as to confirm suitability of inner liner compound. Further, selected compound was applied in actual tyre and feasibility of curing optimization in a normal manufacturing press is confirmed by thermocouple test.

TABLE OF CONTENTS

Declaration	
Acknowledgements	
Abstract	
Table of Content	
List of Figurers	
List of Tables	
List of Appendices	
1. Introduction	1
1.1 Objectives	1
2. Literature Review	2
2.1 Rubber Compound Fillers 2.1.1 Filler Properties	2 2
2.1.2 Particle size of filler	2
2.1.3 Structuresity of Moratuwa, Sri Lanka. 1.4 EdicateoActiviTyleses & Dissertations 2.2 Carbon Black as a filler t.ac.lk	3 3 4
2.3 Carbon black manufacturing process	6
2.4 Classification of Carbon Black	6
3. Methodology	8
3.1 Determination of ash content in Paddy husk	8
3.2 Preparation of Paddy husk Carbon Black (PHCB)	8
3.2.1 Paddy husk Carbonizing	8
3.2.2 Carbonized Paddy Husk Grinding	8
3.3 Determination of Carbon Black Particle Size by Iodine	8
Adsorption Number Test Method	
3.4 Paddy Husk Carbon Black usage in a Tyre Component	9

3.5 Paddy Husk Carbon Black (PHCB) for Tyre Inner Liner		
Compound		
3.5.1 Tyre Inner Liner Compound Formula for different	10	
proportionate between N330 and PHCB		
3.6 Preparation of seven compound samples	10	
3.7 Performance Comparison selected Sample with Existing	11	
Inner Liner		
3.7.1 Tear Resistance Test	11	
3.7.2 Ply Adhesion Test	11	
3.7.3 Age Analysis	12	
3.7.4 Thermocouple Study to determine actual curing	12	
in a press		
4. Result and Discussion		
4.1 Ash Content in Paddy Husk	13	
4.2 Weight of carbonized Paddy Husk	14	
4.3 Paddy Husk Carbon Black (PHCB) and its Particle size	14	
4.4 Physical and Rheological test results for seven compound www.lib.mrt.ac.lk samples	14	
4.5 Comparison of test result Selected Sample (3) with	16	
Existing Inner Liner (1)		
4.5.1 Tear Resistance Test Result	16	
4.5.2 Ply Adhesion Test Result	16	
4.5.3 Age Analysis Test Result	16	
4.5.4 Thermocouple Test Result	16	
5. Conclusion and Recommendations	19	
Reference List		

LIST OF FIGURES

Figure 2.1	Schematic diagram on Carbon Black particles in between	5
	Polymer molecules	
Figure 2.2	Functional groups in Carbon black	5
Figure 2.3	Schematic diagram of the microstructure of a reinforced	5
	Carbon black	
Figure 2.4	Production reactor in the oil furnace method	6
Figure 2.5	Production reactor in the lampblack method	7
Figure 3.1	Schematic diagram, sub component in a tyre	9
Figure 3.2	Standard Cured Sample for Tear Resistance Test	11

Page

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

LIST OF TABLES

Table 2.1	Classification of Carbon Black manufacturing process	
Table 2.2	2 Carbon Black Classification and Particle Size	
Table 3.1	Phr Compound formula – Typical Tyre Inner Liner Compound	9
Table 3.2	le 3.2 Planned ratios between N330 and PHCB to prepare different Samples	
Table 3.3	Tests, Units, Specifications and Used instruments	11
Table 4.1	Ash Content in Paddy Husk	13
Table 4.2	Particle size of PHCB	14
Table 4.3	Tests Results - Rheo Properties	15
Table 4.4	Tests Results - Physical Properties	15
Table 4.5	Tear Resistance Test Result University of Moratuwa, Sri Lanka.	16
Table 4.6	Adhesier FeshRestheses & Dissertations	16
Table 4.7	Age Analysis Test Result ac.lk	16
Table 4.8	Thermocouple Test Result	17
Table 5.1	Saving of PHCB introduction for Tyre Inner Liner	19

Page

LIST OF APPENDICES

Appendix	Description	Page
Appendix – A	ASTM Test Method of Iodine	21
	Adsorption Number	
Appendix – B	Designed Tyre Inner Liner Compound	25
	Formula for different proportionate in	
	between N330 & PHCB	
Appendix – C	Cost Saving Calculation PHCB Usage for	29
	tyre inner liner compound	-
(m=	University of Moratuwa, Sri Lanka.	
Appendix (D)	ElectroRheoTghaphys-CoDpound Samples	30
	www.lib.mrt.ac.lk	