TECHNO ECONOMIC ANALYSIS, DESIGN AND IMPLEMENT A SUITABLE COMMUNICATION METHOD FOR UTILITY SYSTEMS

Mahesh Sachintha Dunuweera

(118665 N)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations These separate of the requirement for the Degree of WWW.IID.mrt.ac.lk Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

August 2016

Declaration

"I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)".

M.S. Dunuweera	Date
The above candidate has ca	University of Moratuwa, Sri Lanka. Flectronic Theses & Dissertations rised out research for the Masters Thesis under my supervision. www.lib.mrt.ac.lk
Signature of the supervisor	Date
(Dr. P.S.N. De Silva)	
Signature of the supervisor	Date
(Dr. K.T.M.U Hemapala)	
Signature of the supervisor	Date
(Dr.Chandika Wavegedara)	

Abstract

This thesis presents a research work which is carried out to optimize the Zigbee based remote meter reading network. There are various technologies available to automate the meter reading such as PLC, GSM, Optical fibre and RF technologies. As far as utilities providers are concerned, their focus is on a reliable RMR system to read the meter at minimum possible cost. The development of a reliable RMR system is highly dependent on telecommunication infrastructure which is costly if GPRS is used as a way of communication. Therefore, research were done in depth to analyse the cost and function of RMR system as large number of sensors are used in the electrical utility.

This particular research is on data concentrator based RMR system focusing on the analysing of communication delay and resource optimization.

In this research Matlab Simulink software was used for simulations and Visual Studio C# is used for creating the software. Several simulations were carried out in this research, for simulating communication speed, communication path and study the behaviour with the presence of noises.

As the final outcome of the research, software was developed for selecting Zigbee power rating based on GPS locations and generated algorithms for calculating communication delay and path which can be incorporated to the ordinator. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

This dissertation is prepared as a result of the support and guidance provided by various personnel and parties.

First of all, I would like to express my heartiest gratitude to my supervisors, Dr. P.S.N De Silva from Lanka Electricity Company private Limited (LECO), Dr. K.T.M.U Hemapala from the Department of Electrical Engineering, University of Moratuwa (UOM) and Dr. Chandika Wavegedara from the Department of Electronic and Telecommunication Engineering (UOM) for their support, guidance and valuable advices throughout these academic years. Their continuous supervision and advices on the research, pave me the way for a successful completion of the scope of work. I would like to thank University of Moratuwa for giving me the opportunity for my Master studies. I would like to give my special thanks to Dr. P.S.N De Silva as the Head of Engineering of LECO, Mr. S.D.C. Gunawardana as the System Development Manager of LECO, the Branch Manager and all the staff at LECO Negombol Branchs and all staff at LECO Steadooffice, for giving me the support to accompletion of www.lib.mrt.ac.lk

Finally, thanks to all the lecturers & my friends that I have been working with throughout the period of study in University of Moratuwa.

Table of Contents Chapter 1

Chapt	ter 1	1
1. IN	TRODUCTION	1
1.1.	Introduction to Remote Meter Reading Technology	1
1.2.	Analysis of Remote Meter Reading Technology	2
1.3.	Problem Identification	3
1.4.	Objective	5
1.5.	Methodology	5
1.6.	Contribution	5
Chapt	ter 2	9
2. LI	TERATURE REVIEW	9
Chapt	ter 3	15
3. EI	NERGY METER AND RMR	15
3.1.	Introduction to Electricity Energy Meter	15
3.1	.1. Meter Data Communication Protocols	16
	3.1.1.1. Introduction to Object Identification System	17
3.1	.2. Read Meter Through GPRS (Mobile Network)	19
3.1		19
3.1	.4. PLC	19
3.1	.5. Radio Frequency	20
3.1	.6. Optical fibre Communication	21
Chapt	ter 4	22
4. DI	EVELOPMENT OF TEST BENCH FOR ZIGBEE NETWORK	22
4.1.	AnteLECO DDSF949 meter	24
4.1	.1. Communication module	24
4.1	.2. Coordinator	25
4.2.	LQI	27
4.3.	RSSI Measurement (dBm)	29
4.4.	Data usage of modem	32
4.5.	MATLAB Simulink	33
4.6.	White Gaussian Noise	34
4.7.	Free Space Propagation Model	34
4.8.	Economic Analysis	45
4.9.	Visual Studio C#	45

Chapter 5		50
5.	CONCLUSION AND DISCUSSION	50
Cha	apter 6	52
6.	FUTURE DEVELOPMENTS	52
7.	REFERENCES	53

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 1-1 Observe Mesh network using XCTU software	7
Figure 2-1 Cost and power consumption comparison of wireless technologies	10
Figure 2-2 Zigbee Network topologies	12
Figure 2-3 Zigbee tree routing and shortcut tree routing	13
Figure 3-1 Meter Reading Software	17
Figure 4-1 Location	22
Figure 4-2 Selected locations	23
Figure 4-3 DDSF949 Meter	24
Figure 4-4 Zigbee Routers	24
Figure 4-5 Coordinator	25
Figure 4-6 Observation of mesh network on XCTU software	26
Figure 4-7 LQI variation	26
Figure 4-8 RSSI Logger Software	28
Figure 4-9 Communication delay variation Vs Meter ID on 80 min and 1320 min time stamps	29
Figure 4-10 Communication delay variation Vs Time Stamp for 6th and 56th Meters	29
Figure 4-11 RSSI variation Vs Time Stamp for 1st and 23rd Meters	31
Figure 4-12 RSSI Variation Vs Meter No for day time and night time	31
Figure 4-13 Data usage for 100 meters Vs Reading No	32
Figure 4-14 Data Usage for meter reading	32
Figure 4-15 Number of Attempts to read meter	33
Figure 4-16 Simulation Model	35
Figure 4-10 Simulation Model University of Moratuwa, Sri Lanka.	36
Figure 4-18 Configuration Window Of Gaussian Noises Generatos crtations	37
Figure 4-19 Communication Speed Variation Of Links Vs Time	38
Figure 4-20 Communication Speed of 7th Link Vs Time	38
Figure 4-21 Number of Routings Vs Gaussian Noise Mean Value	39
Figure 4-22 Received No of Nodes Vs Test No	40
Figure 4-23 Simple zigbee arrangement of 10 nodes	41
Figure 4-24 Simulation of communication delay	42
Figure 4-25 Data propagation path	42
Figure 4-26 Developed software for generating levels	43
Figure 4-27 Generated Levels	43
Figure 4-28 Application and Network layers in Zigbee network	44
Figure 4-29 Distance Matrix	45
Figure 4-30 Report	46
Figure 4-31 Flow chart	47
Figure 4-32 Cost reduction vs Number of nodes (between 1 mW and 63 mW)	49

List of Tables

Table 2-1 Comparison among different wireless technologies	10
Table 2-2 Comparison between wireless technologies	11
Table 3-1 Some registers	18
Table 4-1 Selected Transformers	23
Table 4-2 Result of communication distance measurement	23
Table 4-3 Communication delay Vs time stamp and meter ID	28
Table 4-4 RSSI variation VS Meter ID and Time Stamp	30
Table 4-5 Transmit power	35
Table 4-6 Coordinates of Positions	37
Table 4-7 Test-Communicate with multiple Zigbee units in same time	40
Table 4-8 Practical tests with considering levels	44
Table 4-9 Cost comparison	48

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Abbreviations

Abbreviation			Description
RMR		University of M	Remote Meter Reading
RF			Radio Frequency
GPRS			General Packet Radio Service
GSM			Global System for Mobile Communications
PLC			Power Line Carrier
AMR			Automatic Meter Reading
SIM			Subscriber Identity Module
ΙΟΤ			Internet of Things
RSSI			Received Signal Strength Indicator
ZTR			szig Bée Pies Rotatingns
STR		www.110.1111t.a	Shortcut Tree Routing
AODV			Ad Hoc On Demand Distance Vector
DSDV			Destination Sequenced Distance Vector
TOD			Time Of Day
OBIS			Object Identification System
EDIS			Energy Data Identification System
LQI			Line Quality Index
LED			Light Emitting Diode
LD			Laser Diode

LIST OF APPENDICES

Appendix	Description	Page
Appendix – A	Meter Readout data	55
Appendix – B	Some Photos	58
Appendix – C	Coordinator Program code	59
Appendix – D	LQI Variation	68
Appendix – E	Simulation Program-Communication Speed	69
Appendix – F	Simulation Program-Communication Path	73
Appendix – G	Program-VS-Finding Levels and Zigbee pro selection	76
Appendix – H	BZ 501 Transformer area map	81

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk