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Abstract

Over the last few decades, service oriented architectures, in particularly web services, have grown in popularity
in the context of enterprise level application integration. As a result, most of the enterprise level software systems
tended to be developed with a flavor of web service components. However, like all other distributed software
technologies, web services also fail. Therefore, proper mechanisms and tools to handle system failures are vital to
avoid such exceptional behaviors. To address that problem, this paper investigates a state prediction mechanism for
web services using Hidden Markov Model (HMM). This approach is capable of predicting the future exceptional
behaviors of the web service by analyzing and identifying the error patterns generated by long-running web services.
This research can be further extended with an automated system input to determine the system state.
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1. INTRODUCTION

Over the last few decades usage of web services has been
a popular method of integrating enterprise applications in
the industry.Recently, a big trend has evolved to use SOA
(Service Oriented Architecture) in ERP (Enterprise Resource
Planning) systems [1].SOA allows the communication or exe-
cution between business logic of two or more systems via web
services.SOA provides systems working as stovepipes, an ideal
way to come up with a positive synergy by integrating them.
Systems may share data by consuming the databases of other
systems, invoking the business logic of them or in another
way. In enhancing the performance of a set of systems, SOA
is used as the most reliable way as it protects integrity of data.

However system failures have been a common and a major
issue in the software industry and other fields as well [2].These
failures occur due to many reasons like mistakes of human
operators, intrusions by hackers or code level bugs, heavy
loads on the system etc. [3]. When a failure occurs stake
holders of the system, mainly clients or end users get heavily
affected and their business routines and processes get stuck
and sometimes they may even lose market share, revenue and
reputation etc.

Therefore, proper mechanisms and tools to handle system
failures are vital to avoid such exceptional behaviors. One
solution being used in the industry is fault tolerant systems [4].
It allows systems to run and provide the business functionality
to the clients even though the systems meet failures. Making
and practicing new policies is another solution which has been
implemented to address and enhance the human dimension of
the problem [5].However in the local context there are few
or no proper systems to handle system failures. Most of them
operate without proper failure handling systems and waits until
clients complain that the system is down. Furthermore the tools
used do not provide useful results [6].

This paper proposes a failure prediction system which
allows the users to foresee the states or the failures before they
occur. The system is capable of identifying the future behavior
of the targeted system (i.e. web service) in three different
levels based on their severity with respect to the time and can
be used to help decision making and preparation before the

system reaches level of exceptional behavior.In the industry,
failure prediction is still not commonly in use. Only root-cause
analysis is done but it is also still manual. Using these methods
in web services issue tracking is a new approach, locally. This
research covers a significant amount of work in prediction
of failures or states via an accurate system which warns in
advance with enough time to prepare for the failure or to avoid
it.

The rest of the paper is organized as follows. Section 2
reviews the related literature. Section 3 describes the method-
ology and Section 4 shows the evaluation of the system
and its results.The found results and limitations are critically
discussed in Section 5.

2. RELATED WORK

A project by Liang and Sahoo [7] was carried out to monitor
run-time failures of a super computer. The researchers used
event logs to predict the failures of memory, network and I/O
operations and they have considered failures of systems as a
serious issue, and being based on that fact they have carried
out their research with the data (event logs) of IBM to identify
fatal events of the system in the future. Here the gathered
event logs are pre-processed as they can be used to feed into
classification techniques. Six basic severity levels are defined
in order to have a basic grouping among data. As the first
step, the number of each type of errors is gathered inside the
current data window. In the next step, accumulated numbers
of errors are counted during the whole observation time
period. As the final step of pre-processing they analyze how
errors are distributed over the given time period. In the next
stages they use three classification techniques: RIPPER (Rule
based classifier), SVM (Support Vector Machines) and Nearest
Neighbor Algorithm for predictions. The data windows are
identified as fatal and non-fatal windows, based on the fact
that the window contains fatal/non-fatal events. At the end of
the evaluations they show that Nearest Neighbor Algorithm
out- performs the other two techniques. Even though SVM
is known as the best among these, it could have an overhead
dealing with a large set of data. The researchers have overcome
the cost incurred when dealing with large set of data by
using Nearest Neighbor Algorithm. Further it is shown that
the prediction accuracy depends on the time duration that is
considered. With their data set they have reached the accuracy
level of 50% when dealing with the time duration of 12-6
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hours. According to them reliability is a serious issue they
have faced while gathering data - failure prone or not, against
the errors. The other issue is the accuracy which is much lower
and false positive alarms may be generated [7].

The research by Salfner and Malek [8] is focused to provide
failure predictions rather than providing fatal/ non-fatal event
predictions by HMM (Hidden Markov Models) to generate
predictions. Firstly they take the given data set as a set of
timestamp and error messages, together known as a set of
observations. Further the data are gathered and fed as obser-
vation set and failure set. The training data set is used to train
two HMM models as Failure HMM and Non-failure HMM.
Then the current observation sequence is processed against
these two models and the likelihood value is calculated using
a likelihood function to check whether the sequence is failure
prone or not. The classification is totally done with these
likelihood values. They have reached higher accurate levels
of predictions in Precision: fraction of correctly predicted
failures in comparison to all failure warnings (0.852), Recall:
fraction of correctly predicted failures in comparison to the
total number of failures (0.657), F-Measure: harmonic mean of
precision and recall (0.7419) and False Positive Rate: fraction
of false alarms in comparison to all non-failures (0.0145).
But there are several drawbacks in this method too. The time
duration they use is small relative to the IBM research though
they reach higher accuracy.

Yukihiro and Yasuhide [9] have implemented another failure
prediction method based on a statistical approach different
from other approaches. They have used log file history in
two steps to come up with the solution: First step is message
classification, and message pattern learning is the second step.
In message classification, log errors are parsed and classified
on the number of words matched with the error messages in
the error dictionary that is maintained with a given system.
The second step is executed by directly using [8] Probability
of occurrence of failure:

p_ No. of instances of P observed in predictive period of T

No. of instances of P observed in entire period

Several features are highlighted in this research: One of
them is the message classification is independent from the
format of the log entry as the messages are classified by word
matchings. Another one is real time pattern learning. Once a
failure occurred the type of the failure and the pattern that is
emitted with the failure is stored for future decision making.
According to their evaluation of results 80% in precision,
90% in recall and 0.85 in F-measure have been achieved.
However though this approach has several unique features
the learning technique is not that strong.

Achieving accuracy has not been addressed sufficiently in
IBM research, but HMM method has achieved it. Therefore in
the dimension of accuracy HMM leads. Then the classification
technique, Nearest Neighbor Algorithm used for prediction
has given accurate results while avoiding the costs incurred
with SVM [7]. But at the same time the prediction time
duration covered under HMM is relatively smaller than the
other research [8]. The research carried out with regard to
cloud data centers deviates from other approaches with their
strong classification technique and learning technique which
does not have a strong statistical basis.

Therefore the proposed research is carried out with a
strong statistical basis (with HMM) and has to provide

predictions with higher accuracy and for longer time
periods while maintaining the trade-off between them. The
provided solution is different from existing approaches like
failure avoidance and detection [10] and the carried out
research is based on failure prediction. The research and the
implementation was carried out by being associated with a
web service but still can be used with other systems which
generate a centralized log file system for the events of the
whole system or the system module.

3. METHODOLOGY

This section presents an overview of the proposed state pre-
diction methodology for web services. It includes three sub-
sections; data collection and pre-processing, failure prediction
and the implementation.

3.1 Data collection & Data pre-processing

Event log files of an Apache web service were used and
the system logs the events in a weekly basis. Log files were
collected over thirty for weeks and the required levels of
states of the web service were also gathered over the period.

Firstly all thirty four log files were parsed and scanned to
identify the unique errors to form the observation alphabet of
the HMM. Here all the errors were generalized into eighty
nine unique errors and so the size of the observation alphabet
(3>°) would have to be eighty nine.

Then the log errors have been parsed and coded into integers
from zero to eighty eight (0-88) and their corresponding
states were collected on the expert comments of the system
administrator. Basically it is a manual input.

The error entries of system log files form a sequence
of observations with relevant timestamps. To apply HMM
the observations should necessarily be equidistant. But the
observation sequence used here is not equidistant and the
error logs with equidistant error entries would not be in the
real world. Sometimes there are lengthy silent zones between
two errors (Figure 1).

imloaminsils man fannd

Figure 1: A capture from a log file

Before applying HMM the data set should be made
equidistant and a simple technique was used to make the
observation set equidistant here. The average time gap
between two errors it was nineteen minutes, which is too
large and may reduce the accuracy of the results. So a
‘null entry’(d) was entered into every silent zone making
the average time gap between two errors to be about three
minutes. Figure 2 shows a graphical representation of the
errors before and after the null entry has been added.

With the insertion of ’d’ the size of ) became ninety.
And at the end of the pre-processing the log file entries have
converted to a format showed in following figure together with
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Figure 2: Before & after null entry

states of the system.

HMM (Hidden Markov Model) is used as the machine
learning approach of the research. This section is further
divided to describe HMM generally and how the selected
approach is suitable for the research problem.

3.2 Failure Prediction

This section describes the HMM approach and its suitability
for the state prediction of web services.

HMM is a powerful statistical tool for modelling and
analyzing time series or sequential data [11] and it has
been used in research areas like speech recognition, genetic
analysis and intrusion detection [12], etc. Using HMM for
failure prediction assumes that patterns exist in error logs and
failures can be detected based on the patterns [13].

HMM can be defined with respect to following parameters:

1. Set of hidden states: S = {57, 53,..
the number of hidden states in the model.

., SN}, where N is

2. Transition probability distribution: A = {a;;};V0 <
i, < N, where a;; = P(q(t + 1) = s;|q: = s:)

3. Set of observations:Y . = {01, 02, ...,0p}, where M is
the number of hidden states in the model.

4. Emission probability distribution: B = {b;(k)};1 <
J < N,1 <k < M, where b;(k) = P(Og(t)|q(t) = s;),
S, =1, and 0b; (k)

5. Initial probability vector: 7 = {m;};1 < i < N,m; =
P(q; = s;), where Eszl =1,and m; >0

HMM is denoted by this automata (w, A, B),where 7 is
the initial probability matrix, A is the transition matrix and B
is the emission matrix.

Before describing the applicability of HMM for failure or
state prediction, understanding the relationship between the
system states and the error log is vital. When referring to the
research area of system reliability, there are three well-known
insights (i.e. errors, faults and failures) regarding to a given
system [14].Since among these three, failures have a severe
impact on the ultimate satisfaction of clients of the system,
this research is focused on predicting the future states of the
system.Not all errors would lead the system into failure or
elevate the system levels to severe ones. Based on the pattern
or the order the error sequence appears, the state to which the
system will lead to be determined. In other words, not only
errors having higher severity but also the errors having low
severity may lead the system into failures and higher severity
states vice versa. It is assumed that the subjected states can be

identified and predicted by the patterns of the error sequences.

Errors Faulls Failures
A- ByiA) 5‘]“_ 3

BBy ™

. L o o

B: 2 I FO (F1)

LN = —
byB) .'L‘v
C- 3}

Figure 3: Errors, Faults & Failures [14]

Here the failures or the system states (shown as F in
Figure 3) are hidden or un-observable and mostly identified
by complains of clients, system downs or the knowledge of
system administrators. But the errors (shown as A, B and C
in Figure 3) which cause failures are observable as they are
written to system log files. For a given set of discrete errors
(observations) there can be a set of corresponding system
operating levels (states). In other words, failures or the changes
of system levels generate error (log file entry) sequences
which are observable. So theoretically the notion of HMM
is perfectly matched with this as there exists a set of state
sequences with a set of corresponding observations [13].

3.3 Implementation

In the implementation a three state model was assumed for
states prediction of this particular system. The web service
may attain ’low’ (L), 'mid’ (M) and ’high’ (H) during its
running time. If the system operates on ’low’ state, it simply
means the web service is running in its usual way without
any defects or reason to be worried. When it operates in the
’high’ state it means that the system is showing exceptional
behaviors rather than it is expected to be.

The state 'mid’ falls between the above mentioned two
states and the system performs in a moderate level when
running on this state. The states set is: S = {L, M, H}.

The system changes its state among the above subjected
three states as shown above. Transition probability of
changing state from one to another is denoted by A;;. For
instance, if ¢ = low and j = high then Ajoy hign symbolizes
the probability of changing the state from ’low’ to ‘high’.
For this three state model, the state transition model and
the nine possible transitions are shown in Figure 4 and Table 1.

Then the alphabet (>°) is defined to be all the unique error
messages hit throughout the considered thirty four weeks. Here
an assumption is made that the finite set of observations can
be fully defined by the error messages gathered throughout
the subjected time period.The alphabet is defined as: > =
{0,1,2,3,...89}

Predicting future states comprises two major steps: First one
is training the HMM and calculating the probability of future
states with the trained HMMs is the second step.
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Figure 4: State transition machine

Table 1: STATE TRANSITION MATRIX

ALt = P(8%12 = L |5 =L) =02&78
Arn® = PSw = L[S, =M) =004
Arglt) = P(3%17 = L |5 =H) =0.036
Apyr () = P(S%1 = M|5; =L) =0.163
Anyn(t) = P(8:1 = M|5; =My =0782
Anyult) = P(8%+ = M|5; =H) =0051
Agr () = P(8%, = H|5, =L) =0004
Aguit) = P{Ba = H|S, =M) =0036
Apgglt) = P{(5%1 = HI|8: =H) =0.058

3.3.1 Training the model
In this research, training the Markov Model is all about
calculating the parameters in the automata (w, A, B)as the
project is carried out with a fully observed data set. Here fully
observed means the training data set is a complete one with
two sets containing observations and states without losses.
Here 7, A, B are for initial probability, transition and
emission matrices respectively. Additionally, two sets (i.e. >
& S) must be predefined for the model. As mentioned earlier
for this particular research ) is a set of size ninety which
contains the unique error messages collected over thirty four
weeks and codified to Y = {0,1,2,3,...89} and S is a set
of size three containing {L, M, H} which denotes Low, Mid
and High levels of the system as mentioned above.

m, the initial state probability distribution = {7} is defined
as:

No. of times the system stays at state i

T, = "
' No. of times the system stays at any state

A, the state transition probability distribution: A = {a;;}
o No. of times the transition occursfrom state i to j 3)
! No. of times the state is in i

And B, the emission probability matrix: B = {b;(k)}:

_ No. of times the state iemits the observation k

“4)

At the end of the training process a complete model with (7,
A, B) is delivered in matrix format.

= - - - -
* 7 No. of times the state i emits the observation k

3.3.2 State Prediction
Once the HMM is trained state prediction can be done in two
major steps based on the following prediction equation (5).

>

Stqk—1500--,5

P(St+h|01:t) = P(StJrhvSﬂFhfl) '-"7St|01:t)
&)

It can be further expanded to,

P(St+h|01:t) -

>

Sttk—1se-00,5t

P(Sisn|Sisn_1) ... P(Si+1]S:).P(S:|O.0)

(6)
Firstly belief state should be calculated. For calculating the
belief state the Forward Algorithm can be directly applied with
the purpose of optimal filtering. Here filtering means reducing
the noise by considering P(S;|O1.t) over P(S:|O¢)[15].
After finding the belief state calculating the prediction
probability is just a matter of power up the transition matrix
(A) and apply over the belief state. The two steps can be shown
graphically as in Figure 5.

filtering |

{
pradiction | | h 1

Figure 5: Graphical representation filtering and prediction
[15]

4. EVALUATION

To assess the accuracy of the prediction of the system four
types of measures [16] can be used (i.e. precision, recall,
f-measure and false positive rate).

Precision: fraction of correctly predicted failures in
comparison to all failure warnings.

Recall: fraction of correctly predicted failures in comparison
to the total number of failures.

F-measure: harmonic mean of precision and recall.

False positive rate: fraction of false alarms with comparison
to all non-failures.

Table 2: ACCURACY MEASUREMENTS

L. Truth
Prediction Failure MNon-Failure
Failure Trae Positive (TP) | False  Positive
(FF)
Non-Failure Falze Negative | True Negative
() )
(2)
Metric Formula
Precision p=TP/ (TP+ FF)
recall r=tpr= TP/{TP+FI¥)
False positive rate | fpr=FP/(FP+TN)
F-measure F=2Ip*r/p+r)
(b)

In order to calculate these measures, the matrix shown in
Table 2 (a) is formed and the formulas in Table 2 (b) are
used to calculate the above mentioned measures.

For the evaluation shown in Figure 6: the model has been
trained with the data of ten weeks and prediction has been
done for approximately ten hours.

The calculated precision is 0.09, recall is 1.0, false positive
rate is 0.05 and F-measure is 0.166. Overall accuracy for this
data set is about 64%. For the targeted prediction time box
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Figure 6: Prediction results for ten hours

the confusion matrix is shown in Table 3.

Table 3: CONFUSION MATRIX

Truth
Prediction Failure Non- Total
Failure
Failure 1 10 11
Non-Failure 0 190 190
Total 1 200

Though here the precision is a low value as shown in Figure
6 too, the system identifies the severe levels closer to the due
actual point. Other than that false positive rate is very low
indicating a feature of an accurate failure prediction system.

S. DISCUSSION

Software failures are badly affecting the system reliability,
which is a major quality factor in ISO/IEC 9126 quality model.
This paper provides a solution for this problem by introducing
a failure prediction mechanism to ensure fault-free execution
of web services. In this research, a machine learning approach
is used with HMM, which is trained with a vast collection of
log file data of a web service. Predicting comprises two steps.
First, it calculates the belief state by optimal filtering and then
the prediction algorithm is applied. Further the implemented
system is capable of predicting future states of the web service
in three different severity levels (i.e. 1, 2 & 3) for the next ten
hours.

This paper deals with the time component by making them
equidistant (i.e. when applying HMM based prediction errors
are assumed to be equidistant. As the log files contains silent
zones it is challenging to deal with them for an accurate pre-
diction. To meet a higher accuracy in this approach the system
should be in one particular maintenance level throughout the
whole period (i.e. from training period to prediction period).
Otherwise the same trained HMM becomes inapplicable for
all the predictions. Further, to have better results, determining
the system state against the error observation should be made
by a more reliable method rather collecting it from a human
expert.

As future work, tuning the model for more accurate pre-
dictions is intended to be done, and the system would be
integrated with a module which provides the current system
states automatically.
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