DEVELOPMENT OF LIGHT WEIGHT CEMENT BLOCKS WITH BOTTOM ASH FROM COAL FIRED THERMAL POWER PLANTS

Rathnayake Savitha

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

May 2015

AUTHOR'S DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters dissertation under my supervision.

Signature of the supervisor:

Date:

Prof.S.M.A.Nanayakkara Department of Civil Engineering University of Moratuwa

Abstract

In the Nuraicholai coal fired thermal power plant, 7500 MT of coal per day is burnt producing 750 MT and 75 MT of two main waste products fly ash and bottom ash respectively. Fly ash is used in cement manufacture, but bottom ash is presently regarded as a waste material. However, there is a possibility to convert bottom ash to a value added material. This thesis presents findings pertaining to the feasibility of using bottom ash as a replacement of sand in producing light weight cement blocks. Chemical analysis carried out using Atomic Absorption Spectroscopy on Nuraicholai power plant bottom ash waste showed that the harmful elements present such as As, Pb, Cr, Cd, Cu, Ni and Se were within internationally specified toxicity limits for soil. It was found that bottom ash at oven dry condition had a loose bulk density of 600 kg/m³, which is about 40% that of river sand which has a nominal loose bulk density of about 1450 kg/m³. Important physical and mechanical properties such as compressive strength, water absorption, density, accelerated erosion resistance and drying shrinkage & wetting expansion were tested for blocks produced by partly or fully replacing fine aggregate with bottom ash. Heat conductivity of blocks produced with bottom ash was found to be less than the good quality conventional cement blocks available in Sri Lanka. Comparatively, performance of the bottom ash blocks was very good and comparable with conventional cement blocks produced with river sand and quarry dust. Further, trials were carried out with river sand, crushed rock sand and coarse aggregate in order to find out optimum mix proportions and to investigate the feasibility of medium scale production of bottom ash blocks using a conventional type of block making machine. The optimum mixes which give strength, density and water absorption of desirable amount were found with Cement, Quarry dust, Bottom ash and 5-10 mm crushed rock University of Moratuwa, Sri Lanka. aggregates.

Keywords. Electronic Theses & Dissertations ash, fine aggregate, crushed rock aggregate, light weight cement www.lib.mrt.ac.lk

blocks

Acknowledgements

The author wishes to express especial thanks and sincere gratitude to Prof. S.M.A.Nanayakkara, University of Moratuwa for his invaluable guidance, encouragement, patience and precious time that offered to her. The author also wishes to thank the staff of the Department of Civil Engineering and the Department of Materials Engineering, University of Moratuwa who provided guidance and assistance throughout the research work.

The author also wishes to thank the Department of Chemistry of University of Colombo, Industrial Technology Institute and Atomic Energy Authority of Sri Lanka for carrying out tests to determine chemical and other properties of bottom ash.

The author wishes to thank National Building Research Organization (NBRO) management and staff Eng. (Dr). Asiri Karunawardena, Director General, NBRO, Mr. Kishan Sugathapala, Director, Human Settlements Planning and Training Division University of Moratuwa, Sri Lanka, and Mrs. S. K. Muthurathne, Director, and Mr. N.B.M.Ranatunge, Research Consultant of Building Materials Research and Testing Division, and Mr. Clarence Perera, Consultant, NBRO who provided guidance and assistance throughout the research work and preparation of this report.

TABLE OF CONTENTS

Author's declaration	i
Abstract	ii
Acknowledgements	iii
Table of contents	iv
List of Figures	vii
List of Tables	viii
CHAPTER 1	1
1. INTRODUCTION	1
1.1 Need for Research	1
1.2 Objective of the Study	4
1.3 Guide to Thesis	5
CHAPTER 2	6
2. LITERATURE REVIEW	6
2.1 Coal Fired Power Plants of Moratuwa, Sri Lanka.	6
2.1.1 Coal www.lib mrt ac.lk	6
21.2 Cool oshos os hy products	7
2.1.2 Coarasties as by-products	/
2.1.3 Extraction of bottom ash	10
2.2 Properties of Bottom Ash	12
2.2.1 Physical properties	12
2.2.2 Chemical composition and trace elements	13
2.3 Bottom Ash Usage in the World	16
2.3.1 Use of bottom ash as a raw material in cement production	17
2.3.2 Use as a structural fill material	17
2.3.3 Applications of bottom ash in concrete	18
2.3.4 Road construction applications	19
2.3.5 Pavement construction	20

2.4	Possibility of Using Bottom Ash in Cement Block Making	20
2.5	Studies on Natural Radiation in Bottom Ash	20
2.6	Thermal Properties of Bottom Ash Blocks	26
CHAPT	ER 3	27
3. RES	SEARCH METHODOLOGY	27
3.1	Sampling of Bottom Ash	27
3.2	Determination of Properties of Bottom Ash	30
3.2.	1 Chemical properties	30
3.2.	2 Loss on Ignition	30
3.2.	3 Leaching properties	30
3.2.	4 Radiation effect	31
3.2.	5 Sieve analysis	31
3.2.	6 Particle density & water absorption	31
3.2.	7 Loose bulk density of Moratuwa, Sri Lanka.	31
3.2.	8 Crostructure of 6 Theses & Dissertations	31
3.2.	9 Effect of particle size fraction on strength of cement mortars	31
3.3	Survey on Block Production	32
3.4	Determination of Properties of Bottom Ash Blocks Produced with Cinva	-
Ram	Machine	32
3.5	Determination of Properties of Bottom Ash Blocks Produced with Ceme	nt
Block	Making Machine	34
3.5	.1 Thermal properties of bottom ash blocks	34
3.5	.2 Drying shrinkage and wetting expansion	34
CHAPT	ER 4	37
4. AN	ALYSIS OF TEST RESULTS	37
4.1	Evaluation of Bottom Ash Properties	37
4.1.	1 Chemical properties	37

4.1.2	2 Loss on Ignition of bottom ash	38
4.1.	3 Leaching properties	38
4.1.4	4 Radiation effect	38
4.1.:	5 Sieve analysis	40
4.1.	5 Particle density & water absorption	46
4.1.	7 Loose bulk density	46
4.1.3	8 Microstructure of bottom ash	47
4.1.9	9 Mortar cube testing	47
4.2	Blocks Produced with Cinva-Ram Machine and Their Properties	49
4.3	Properties of Blocks Produced with Cement Block Making Machine	50
4.3.	1 Compressive strength and water absorption	54
4.3.	2 Thermal conductivity of bottom ash blocks	54
4.3.	3 Drying shrinkage and wetting expansion of blocks	54
4.4	University of Moratuwa, Sri Lanka. Ratiological Significance of Bottom Ash Building Blocks for Construct	ction
of Dw	www.lib.mrt.ac.lk	55
4.4.	Activity concentration	55
CHAPTI	ER 5	56
5. COS	ST ANALYSIS OF PRODUCTION OF BOTTOM ASH BLOCKS UNTIONAL CEMENT BLOCK MAKING MACHINE	SING
CHAPT	ER 6	57
6. COI	NCLUSIONS AND RECOMMENDATIONS	57
REFERE	NCES	59
ANNEX	URE:	63
Annex	ure 1: Detail test results of sieve analysis of bottom ash samples	63
Annex	ure 2: Detail test results of physical properties and comparison of test r	esults
(Block	s produced with conventional cement block making machine)	68
Annex	ure 3: Details of cost analysis	103

LIST OF FIGURES

Figure 2-1: Nuraicholai coal power plant	6
Figure 2-2: SEM image of fly ash	9
Figure 2-3: Extraction of Bottom ash	11
Figure 2-4: Particle size distribution of bottom ash samples	12
Figure 2-5: Bottom ash uses (in thousands tons) in 2012	17
Figure 2-6: Bottom ash applications as a percentage of totals reused in the U.S. in	1
2006	17
Figure 3-1: Large area of land covered with bottom ash in the ash pond of power	er
plant	27
Figure 3-2 : Sampling of bottom ash	28
Figure 3-3 : Bottom ash sample is loaded to the vehicle	28
Figure 3-4 : Cinva-Ram machine	33
Figure 3-5: Cinva- Ram machine moulds filled with mortar mix and machine is	in
operation	33
Figure 3-6 : Thermocouples are arranged at required depth and distances	35
Figure 3-7 Casting of bottom ash mortar specimen	35
Figure 3-8 shot wire testing arrangement	35
Figure 3-9: Humidity Cabinet to maintain 17% humidity at 50°C	36
Figure 3-10: Samples arranged in a humidity cabinet	36
Figure 3-11: Length comparator to measure change in length	36
Figure 4-1: Grading Curve of Bottom Ash Sample 1	41
Figure 4-2: Grading Curve of Bottom Ash Sample 1(<8mm)	42
Figure 4-3: Grading Curve for Bottom Ash Sample 2	43
Figure 4-4: Grading Curve for Bottom Ash Sample 3	44
Figure 4-5: Grading Curve for Bottom Ash Sample 4	45
Figure 4-6: SEM image of as received bottom ash at mag.60	47
Figure 4-7: SEM image of as received bottom ash at mag.500	47
Figure 4-8: Cement-Bottom ash block produced with Cinva-Ram machine	49
Figure 4-9: Cement- Bottom ash blocks produced with cement block making	
machine	50

LIST OF TABLES

Table 2-1: Fly ash in common cements	8
Table 2-2: Method of removal of bottom ash output	10
Table 2-3: Types as per composition of bottom ashes	13
Table 2-4 : Trace elements in bottom ash	14
Table 2-5: Trace elements concentration	15
Table 2-6: Limiting values of radiological hazard indicators from the literatures	23
Table 2-7: Radiation activity concentration of common building materials	24
Table 2-8: Typical and maximum activity concentrations in common building	
materials and industrial by-products used for building materials in the EU	25
Table 3-1: Details of sampling	29
Table 4-1: Composition of bottom ash	37
Table 4-2: Results of analysis of radioactivity	39
Table 4-3: Radiation properties of bottom ash and blocks	39
Table 4-4: Summary of gradation and lines content, is bottom ash samples	40
Table 4-5 Sure analysis of too in astas ample Dissertations.	41
Table 4-6: Sieve analysis of bottom as Sample 1 after removing over 8mm partic	eles
	42
Table 4-7: Sieve analysis of bottom ash Sample 2	43
Table 4-8: Sieve analysis of bottom ash Sample 3	44
Table 4-9: Sieve analysis of bottom ash Sample 4	45
Table 4-10: Particle densities & Water absorption of bottom ash samples	46
Table 4-11: Loose bulk density of bottom ash	46
Table 4-12: Test results of mortar cubes	48
Table 4-13: Test results of mortar cubes with narrow/small particle range/size	48
Table 4-14 :Test results of properties of bottom ash blocks	49
Table 4-15: Results of blocks made with conventional cement block making	
machine	51
Table 4-16: Results of blocks made with conventional cement block making	

Table 4-17 : Bottom ash mixes with unsatisfactory strength and water absorption.	53
Table 4-18: Mix proportions satisfying the strength and water absorption	
requirements specified in SLS 855-1:1989	51
Table 4-19 : Measured thermal conductivity of bottom ash blocks	54
Table 4-20 : Measured thermal conductivity of clay bricks and cement blocks	54
Table 4-21: Test results of drying shrinkage and wetting expansion	54
Table 4-22: Comparison of activity concentrations of each sample	55
Table 5-1: Summary of cost analysis of satisfactory bottom ash blocks	56

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

CHAPTER 1

1. INTRODUCTION

1.1 Need for Research

Coal combustion is a popular choice to produce electricity worldwide. The two main waste products coming from coal fired power plants are fly ash and bottom ash. Disposal of waste produced from the thermal power plant requires proper handling to overcome environmental effects caused by such material. The Lakvijaya Power Station (also known as the Nuraicholai Power Station after its location) is a large coal-fired power station in Nuraicholai, Puttalam, Sri Lanka. In the Nuraicholai coal fired thermal power plant, 7500MT of coal is burnt per day when the plant is running at its full capacity to generate 900 MW and it produces 750 MT of fly ash and 75 MT of bottom ash per day. Although fly ash could be gainfully utilized in cement manufacture, bottom ash is presently regarded as a waste material.

At present, bottom ash is not used in any useful application. Therefore, disposing of University of Moratuwa, Sri Lanka. bottom ash a problem. This material is presently piled up in a large dumping area causing and water pollution. However, this environmental problem may be overcome if bottom ash could be utilized as a substitute for river sand or crushed rock sand in the manufacture of cement blocks. This is possible because bottom ash has a high content of silica (>95%) as in river sand.

In Sri Lanka, bricks and blocks are the most commonly used material for wall construction. These are conventional material and there have been very little development in terms of new building bricks or blocks. Both bricks and blocks have been designed for easy handling in terms of size and weight. In Sri Lanka, there are three types of cement blocks are in use. They are solid, cellular and hollow blocks. Size of a block with normal weight aggregate is limited because of this handling problem due to its weight. Commonly used standard cement block sizes in Sri Lanka are, 390mm x 200mm x 190mm, 390mm x 150mm x 190mm and 390mm x 100mm x 190mm. These blocks are used for wall construction. Paving blocks are only solid blocks, becoming more common.

Important properties of cement blocks are strength, absorption, density and dimensional stability (drying shrinkage and wetting expansion). Requirements for the above properties are specified in Sri Lanka Standard (SLS 855-1: 1989). Thermal properties are not specified in this standard. Light weight block with larger size will be useful for masonry construction because it will increase the labour efficiency/input in construction, reduce mortar joints and reduce the number of blocks per unit area.

Published literature indicates that other countries have successfully used bottom ash for several applications such as filling material, pavement bases, building block making and paving block making (Bai & Basheer 2001; Geetha & Ramamurthy 2011; Kim & Lee 2011; Nisnevich & Eshel 2001; Pavlenco, Malyshkin & Tkachenko 2001).

Because of the light weight properties of bottom ash, it has a potential to produce light weight block especially in view of its low, particle adensity, granular structure and mineral composition r Manufacturing slight Diverget terment blocks using bottom ash aggregate ensures wavulilization of waste from coal fired power plant and can solve persistent environmental and economical problems as follows;

- i. avoiding leaching of heavy metals from bottom ash stock piles
- ii. removal of waste piles, thus conserving land for more productive uses
- iii. conservation of natural resources by reducing the consumption of river sand
- iv. Reduction in production cost of cement blocks
- v. In designing a building, section size of structural members can be reduced due to lighter dead load due to light weight blocks

Dumping of coal bottom ash as a waste material at the rate of 75MT per day has given rise to serious environmental problems and need to address the following issues:

- Arresting environmental pollution of land, ground water and water ways or even air pollution.
- Devising methods of economic utilization of coal bottom ash

Apart from the problems which are of recent origin, the construction industry has been facing the problem of adverse effects of excessive mining of river sand over a long period of time. Control measures introduced to overcome these environmental effects have resulted in an acute scarcity, escalation of prices and poor quality of river sand available for the use in the construction industry and in the manufacture of cement based products such as sand-cement blocks.

The problem of environmental pollution caused by the dumping of coal bottom ash could be overcome by making effective use of this material, if possible with some value addition.

Some of the important research objectives set out to implement the National Science and Technology Policy of Sri Lanka are,

- Disseminating the benefits of S&T activities to all sectors
- Improved environmental quality
- Utilization of industrial wastes
- Improved construction Malitatuwa, Sri Lanka.

This research was Ealised out at National Building Research Organization (NBRO) which launched its research programme to achieve these objectives. Bottom ash has been piling up around the Lakvijaya power plant in Nuraicholai polluting hundreds of acres of land. It contains toxic metals such as arsenic, lead and Cadmium.

Although the toxicity levels are not very high to be considered as hazardous, the material is yet environmentally unfriendly and likely to pollute the ground water if it is allowed to accumulate without control. Presently, it could be used as a material for land filling but this usage will not alleviate the environmental problem to a sufficient level. Moreover, there is no value addition to the material when used as a fill material. This research has not only addressed these issues, but has also been successful in addressing the environmental issues arising from excessive mining from river sand, because bottom ash can be used as a replacement to river sand.

1.2 Objective of the Study

Although the literature review showed that there have been many research studies regarding the utilization of bottom ash, studies related to use of bottom ash in Sri Lanka were not available.

Materials used for the manufacture of cement blocks and clay bricks are sand, cement and clay. Extraction of clay and sand causes environmental problems. The new trend in block manufacture is to replace river sand with crushed rock sand. However, rock quarrying/ crushing also causes environmental problems. Therefore, replacement of both river sand and crushed rock sand with a more eco-friendly material will be beneficial.

The main objective of this research was to investigate the possibility of utilizing bottom ash from coal fired power plants to produce light weight blocks for building construction because it will give rise to economic benefits in construction, and it could also reduce the demand for river sand and quarry dust in block production.

In order to meet the mine objective of the tressearch the following methodology was adopted.

- 1. Literature surveyw.lib.mrt.ac.lk
- 2. Experimental investigation of properties of bottom ash
- Determination of suitable mix proportions for cement mortar blocks made of bottom ash
- 4. Determination of physical, mechanical, and thermal properties of bottom ash cement mortar blocks
- 5. Cost analysis of production of cement mortar blocks with bottom ash

Nuraicholai Power Plant was started to meet the energy requirement of Sri Lanka. However environmental pollution due to dusty waste materials has been occurring, therefore, there is a need for research on waste management. At the same time, there is a huge demand of building blocks in the Sri Lankan construction sector. Therefore, the solution offered by this research project will be very useful, leading to the manufacture of cost effective, light weight blocks using bottom ash as a replacement of river sand or crushed rock sand. Research study was focused to producing building blocks to satisfy the requirements specified in SLS 855-1:1989 with minimum characteristic compressive strength of 2 N/mm². To supplement the work described in the methodology a study on present cement block making techniques, methods and materials used (by circulating a questionnaire to block manufacturers and by visiting industries of interest) was also carried out.

1.3 Guide to Thesis

Chapter 1 describes need and objective of this research.

Chapter 2 describes literature survey carried out on coal fired power plants, byproducts of coal fired power plants and their ways of extraction, physical, thermal and chemical properties of bottom ash, bottom ash applications in the world, possibility of making blocks using bottom ash, radioactive elements in bottom ash.

Chapter 3 describes research methodology, experimental investigation on properties of bottom ash and bottom ash blocks, survey on block production and sampling of bottom ash bottom ash Electronic Theses & Dissertations

Chapter 5 describes cost analysis of bottom ash blocks which satisfied strength and absorption requirements.

Chapter 6 describes conclusions and recommendations of this research study.

CHAPTER 2

2. LITERATURE REVIEW

2.1 Coal Fired Power Plants

In Sri Lanka, oil fired thermal power plants were first constructed to meet the ever increasing demand for electricity. In view of their high cost of production and adverse environmental effects, the authorities decided to set up coal fired power plants. However, the amount of waste produced from a coal-fired power plant is high and proper handling and disposal systems are needed. The production of coal ashes and the environmental problem which arises from them has prompted various studies on the utilization of ash, contemplating on producing value added material with these wastes.

2.1.1 Coal

At the Lakvijaya Power Station (Fig.2-1), coal is imported from Indonesia since it is cheap and sof good quality. Even though the coal fit India is comparatively cheap, Indonesian is used since the coal in India contains more sulfur (Institute of www.lib.mrt.ac.lk Engineers Sri Lanka 2013). As per the conversation with the authorities of the power plant, coal is imported from South Africa too. However, at the time of sampling, coal used was from Indonesia.

Figure 2-1: Nuraicholai coal power plant

Coal (from the Old English term col), which means "mineral of fossilized carbon" is a combustible black or brownish-black sedimentary rock mainly of carbonized plant matter, found to produce energy in the form of heat. It is composed primarily of carbon along with variable quantities of other elements, mainly hydrogen, sulfur, oxygen and nitrogen, as well as small quantities of aluminium, Zirconium and many other metals. Silica is present in ash of coal. When coal is fired, trace elements such as As, Sb, Cd, Cr, Pb, Ni, Se, Ti and Zn occur in particles of bottom ash and fly ash.

2.1.2 Coal ashes as by-products

Fly ash and bottom ash are the two main waste products in coal firing thermal power plants. Dust in emissions from the furnace is fly ash and it is separated from gaseous emissions released to atmosphere from stacks. Dust collected at the bottom of the furnace is known as bottom ash and it is conveyed to a hopper and collected ash is removed periodically to waste disposal areas.

2.1.2.1 Fly ash

Fly ash is primarily composed of valuable industrial minerals such as alumina, silica, lime and iron oxide. Greater concentrations of these elements are in fly ash compared to bottom ash (Kim & Lee, 2011). Furthermore, very fine particles in fly ash are highly reactive. Therefore, fly ash has a high demand for use in cement production as a supplementary cementitious material for producing blended cement. Table 2-1 shows the types of common cements which contain fly ash as a supplementary cementitious material.

Fly ash has specific gravity in the range of 2.20 and fineness 400.0 m²/kg when measured using Blaine's method. Chemical analysis on fly ash showed that it contains varying amounts of Silicon dioxide (SiO₂), Aluminum oxide (Al₂O₃), Ferric oxide (Fe₂O₃), Calcium oxide (CaO), Magnesium oxide (MgO), Sulfur trioxide (SO₃), Sodium oxide (Na₂O) and Potassium oxide (K₂O) for difference sources. Fly ash also contains trace elements such as mercury, arsenic, antimony, chromium, selenium, lead, cadmium, nickel, and zinc (Nisnevich & Eshel 2001; Sandra 2009).

Main	Туре	s of	Composition (Percentage by mass)										
Туре	com	non		Main Constituents								1	
	cement			e		Poz	zzolana	Fly	Ash		Lime	estone	ona
		Clinker		Blast Furnac Slag	Silica Fume	Natural	Natural calcined	Siliceous	Calcareous	Burnt Shale	L	LL	Minor additi constituents
		CEM 11 A-V	80-94	-	-	-	-	6-20	-	-	-	-	0-5
	lent	CEM 11 B-V	65-79	-	-	-	-	21- 35					0-5
	ly ash cen	CEM 11 A-W	80-94	-	-	-	-	-	6-20	-	-	-	0-5
	Portland f	CEM 11 B-W	65-79	-	-	-	-	-	21- 35	-	-	-	0-5
	ecement	CEM	80-94Jn Ele	 80-9University of Moratuwa, Sri Lanka. Electronic Theses & Dfstations 					*	0-5			
CEM II	Portland composite	CEM 11 B-M	65-79	+ -			21	to 35				*	0-5
	ic cement	CEM IV/A	65-89	-	←		11 to 3	35		-	-	-	0-5
CEM IV	Pozzolani	CEM 1V/B	45-64	-	←		36 to 5	55	>	-	-	-	0-5
	site	CEM V/A	40-64	18- 30	-	~	18	to 30	-	-	-	-	0-5
CEM V	Compo cement	CEM V/B	20-38	31- 50	-	* - ·	31	to 50	*	-	-	-	0-5

Table 2-1: Fly ash in common cements

Source: BS EN 197: 2000

Figure 2-2 shows the SEM image of fly ash in which round particles can be observed.

As per the American Standard there are two classes of fly ash. They are F and C. The F class fly ash has pozzolanic properties whereas the C class fly ash has both pozzolanic and cementitious properties (ASTM C 618 : 2012). When fly ash is used in concrete, the heat of hydration will be reduced, and the long term strength will be increased, that the Fatly stage of the heat of hydration of the being dured to the reduced in mix design, testing at the table is used in concrete, workability is improved, setting time will be extended and water permeability will be reduced. However, there are some disadvantages of using fly ash in concrete such as the resistance to carbonation will be reduced. Therefore, adequate curing is important and cover requirements should be ensured (Thomas 2007).

2.1.2.2 Bottom ash

Bottom ash is composed of heavier particles with a coarse granular composition that are collected from grates beneath the furnace. Bottom ash is also primarily composed of valuable industrial minerals such as alumina, silica, lime and iron oxide, but in lesser concentrations as compared to fly ash.

2.1.3 Extraction of bottom ash

Three types of methods are commonly used in thermal power plants to extract bottom ash (See Table 2-2). Nuraicholai thermal power plant uses jet pumps to extract bottom ash in slurry form (see Figure 2-3). This slurry is then transferred to a storage area.

If fly ash is not totally extracted separately, the bottom ash that is sluiced to the storage area will usually be combined with fly ash.

Μ	ethod	Form of	Advantages	Disadvanta ges
		bottom ash	C	e
		output		
Using j	et pumps	Slurry	Reduce high heat to	Water requirement is
		-	environment, Reduce	high, Involves lot of
			dust formation, Less	piping and valves
			space	
Using	scraper	Dry	Simple, Less water	Space requirement is
chain	conveyor		requirement	high, Good quality
and	belt 🕞	University of	Moratuwa Sri Lanka	chains are required
convey	or and	El TI		•
Using	air	Electorine Ir	leses No water usagelons	High cost
cooling	system	www.lib.mrt.	ac.lk Clean system	

Table 2-2: Method of removal of bottom ash output

Note: Information given in this table was provided by Eng. Indika of Nuraicholai power plant on 14th March 2013.

Figure 2-3: Extraction of Bottom ash

Source: Coal Bottom Ash/ Boiler Slag Material, 2012(RMRC-3G 2012)

2.2 Properties of Bottom Ash

2.2.1 Physical properties

According to Bai & Basheer, 2001 Bottom ash has angular particles with very porous surface textures. It is incombustible. The ash particles range in size from a fine gravel to a fine sand with very low percentages of silt-clay sized particles. Bottom ash is predominantly sand-sized, usually with 50 to 90 percent passing 4.75 mm sieve and 0 to 10 percent passing 0.075 mm sieve.

The largest bottom ash particle sizes typically range from 19 mm to 38 mm. Bottom ash is usually a well-graded material although variations in particle size distribution may be encountered in ash from the same power plant. Density of bottom ash is in the range of 750kg/m³. According to BS EN 13055-1:2002, it falls under the category of light weight aggregate since the density is less than 1000 kg/m³. Figure 2-4 shows particle size distribution of some bottom ash samples in different power plants in the US. It can be seen that most of the samples have particle size of less than 10 mm². University of Moratuwa, Sri Lanka.

Figure 2-4: Particle size distribution of bottom ash samples Source: *Coal Bottom Ash/ Boiler Slag Material*,2012(RMRC-3G 2012)

2.2.2 Chemical composition and trace elements

The major chemical components of bottom ash are the same as fly ash; however, due to the larger particle size and lower specific surface area, bottom ash has a lower potential to leach trace elements than fly ash when used in the same application.

Due to the variability in bottom ash composition between coal plants, industry-wide generalizations about the environmental impact of bottom ash cannot be made (Baba & Kaya 2004; Lee & Taeyon 2011). Therefore, leachability of heavy metals from bottom ash obtained from Lakvijaya power station also should be determined from time to time. Chemical composition of bottom ash and types of bottom ash as per its chemical composition are given in Table 2-3. Table 2-3 &2-4 show categorization of bottom ash as per their main or trace elements constituents. Table 2-5 shows usual range of trace elements constituents in coal and ashes.

Composition as a percentage (%)								
Composition	Electronic These	Sub-bituminous s & Dissertations	Bituminous					
SiO ₂	www.10.80-48.30.ac.1	k 45.3	48.81-58.9					
AbO3	2.50-24.90	24.0	10.12-36.0					
Fe ₂ O ₃	0.50-8.20	18.0	2.4-6.10					
MgO	0.40-4.60	0.58	0.2-5.61					
CaO	8.60-45.10	1.4	1.3-11.81					
Na ₂ O	0.15-1.15	0.45	0.04-0.92					
K ₂ O	0.02-3.60	0.53	0.6-2.31					
TiO ₂	0.18-1.32	1.5	0.39-0.60					
P ₂ O ₅	-	2.2	0.02-0.79					
MnO	0.03-0.21	0.05	0.02-0.08					
SO ₃	5.10-20.20	2.2	< 0.1-4.06					
S	0.1	0.2-0.3	0.01					
LOI	4.6	9-17.8	9.75					

Table	2-3: Types	as	per composition	of bottom	ashes
	~				

Source: Jayaranjan, Hullebusch& Annachhatre 2014

Trace elements	Trace element composition of bottom ash (mg kg ⁻¹ dry basis)					
	Lignite	Sub-bitumino us	Bituminous			
As	-	25-30	1.8			
В	-	321-467	15.30			
Ba	62-109	428-523	-			
Cd	<5	0.5-0.6	0.3			
Со	3-7	10-13	17.5			
Cr	47-194	65-99	47			
Cu	18-121	33-49	32			
Hg	0.4-1.6	-	-			
Li	4.30	93-147	28			
Mn	University of Mc	ratuwa, Sri Lank	991 a.			
Ni 🔘	Electr301293These	s & Distortations	30			
Pb	www.l <u>i</u> b ₃ grrt.ac.l	k 16-29	2.6			
Zn	33-226	59-99	47			
1						

Table 2	2-4 :	Trace	elements	in	bottom	ash

Source: Jayaranjan, Hullebusch & Annachhatre 2014

Element	Concentration (mg/kg)						
	Fly ash	Bottom ash	FGD material	Coal	Soil		
As	2-1385	0.02-168	0.8-386	0.5-106	1-50		
В	10-5000	2-513	42-948	1.2-365	2-100		
Ba	1-13800	110-9360	25-2280	150	100-3000		
Cd	0.1-130	0.1-4.7	0.06-40.7	0.1-6.5	0.1-0.7		
Cr	4-900	0.2-5820	2-180	N.D-610	1-1000		
Cu	19-2200	4-930	6-1490	1.8-185	2-100		
Hg	0.01-12	0.01-6	0.01-6	0.01-1.6	N.D		
Mn	25-3000	56-1940	40-625	6-181	20-3000		
Мо	1-236	1-443	N.D-63.7 N.D-73		0.2-5		
Ni	-4300 n	iversity of M 10-2900	oratuwa. Si N.D-156	i Lanka 0.4-104 tations	5-500		
Pb	3-2120	w.9id-h199.ac	$.1k^{0.3-300}$	4-218	2-200		
Se	0.2-130	0.1-10	N.D-160	0.4-8	0.1-2		
Sr	30-7600	170-6440	70-3170	100	50-1000		
Ti	1310-10100	1540-13000	-	20-3200	1000-10000		
V	12-1180	12-540	N.D-260	N.D-1280	20-50		
Zn	14-3500	4-1800	8-610	N.D-5600	10-300		

Table 2-5: Trace elements concentration

Source: Jayaranjan, Hullebusch & Annachhatre 2014

2.3 Bottom Ash Usage in the World

The quality and amount of bottom ash depends on the quality of coal burnt and type of furnace used to burn the coal. When coal is burnt in a boiler, 10% of ash is dry bottom ash and 90% is captured and recovered as fly ash. These amounts vary 20% and 80% respectively for bottom and fly ash as per the studies in different countries (Beretka & Mathew 1985; Nisnevich & Eshel 2001).

Currently bottom ash is used for various applications in the world, such as snow and ice control, production of cement, road bases and subbases, structural fill material and as an aggregate in light weight concrete and masonry units. Over the past few decades, regulatory guidelines for recycling of coal combustion byproducts have been developed. As per the US EPA website (Environmental Protection Agency 2015), they conducted two regulatory determinations on the management and use of coal combustion byproducts in 1993 and in 2000.

Upon conducting these assessments, the EPA did, not identify environmental hazards associated with the Beneficial use Tof coal combustion products and concluded these materials did not warranty regulation as lkazardous wastes. In May 2000, the EPA made the statement, "we do not wish to place any unnecessary barriers on the beneficial use of fossil fuel combustion wastes so that they can be used in applications that conserve natural resources and reduce disposal costs." This includes the beneficial use of coal combustion products in both encapsulated and unencapsulated transportation applications. The EPA recognizes that unencapsulated uses of coal combustion byproducts require proper hydrogeological evaluation to ensure adequate groundwater protection.

2.3.1 Use of bottom ash as a raw material in cement production

Figure 2-5 shows that more than 50% of bottom ash produced in the world is used in manufacturing of cement (RMRC-3G 2012).

Figure 2-5: Bottom ash uses (in thousands tons) in 2012

Figure 2-6: Bottom ash applications as a percentage of totals reused in the U.S. in 2006

Source: Coal Bottom Ash/ Boiler Slag Material, 2012 (RMRC-3G 2012)

At many construction sites, large quantities of fill materials are frequently required to level low places for construction and drainage purposes, build embankments, fill trenches, backfill foundations, etc. According to the reference (RMRC-3G 2012) bottom ash is commonly used in these applications in U.S. if it is available and close enough to be transported economically. However, the possibility of groundwater contamination by trace elements that are commonly associated with coal combustion by-products is a concern.

2.3.3 Applications of bottom ash in concrete

Applicability of an industrial bottom ash, supplied from Tuncbilek Power Station-Turkey, in concrete industry was evaluated by Baba and Kaya (Baba & Kaya 2004). In the laboratory experiments, the bottom ash was used up to 25% as a partial substitute for the Portland cement. Based on the obtained results, it was concluded that the addition of bottom ash up to 10% as a replacement material for Portland cement could improve the mechanical properties of concrete, and thus, could be used in the concrete industry Babat & Raya 2004 juwa, Sri Lanka.

Electronic Theses & Dissertations

Bottom ash is a light weight material. The density of hardened concrete linearly decreases as the replacement of aggregate with bottom or fly ash and compressive strength was not strongly affected by the replacement of fine aggregate with bottom ash (Kim and Lee 2011). Also Kim and Lee found that flexural strength of concrete almost linearly decreased as the replacement ratio of bottom ash was increased. The modulus of rupture was decreased, since the cracks caused by flexural load easily propagated through bottom ash particles while the normal aggregates were hard to penetrate, and consequently the direction of the crack propagation was changed by the normal aggregate. Therefore, producing high strength concrete with 100% replacement of fine aggregate with bottom ash is not possible.

Studies on bottom ash also showed that low density, low thermal conductivity, low shrinkage and high heat resistance concrete could be achieved with the replacement of fine aggregate with bottom ash (Nisnevich & Eshel 2001).

2.3.4 Road construction applications

Blended fly ash and bottom ash is referred to as ponded ash. Ponded ash has been used in stabilized base or subbase mixes and in embankment construction. However, in the Nuraicholai coal fired power plant, fly ash is extracted separately and sold to cement companies to produce blended cement or use as a supplementary cementitious material (SCM) in concrete production. Therefore, the bottom ash that is piled separately hardly contains any fly ash.

The U.S. Environmental Protection Agency (EPA) has delegated responsibility in the U.S. to the states to ensure that coal combustion by-products are properly used. In the U.S., Bottom ash has been used as fine aggregate substitute in hot mix asphalt wearing surfaces and base courses, and in emulsified asphalt cold mix wearing surfaces and base courses. Bottom ash is more commonly used in base courses than wearing surfaces. Laboratory research carried out in the U.S. has shown that hot mix asphalt with up to 15 percent bottom ash had comparable performance to control mixes, therefore costnieffectivey and Melestuin asphalt invariant (Environmental Protection Verify 2015) tronic Theses & Dissertations www.lib.mrt.ac.lk

Bottom ash has also been used in stabilized base applications. Stabilized base or subbase mixtures contain a blend of aggregates and cementitious materials that bind the aggregates to increase bearing strength. Types of cementitious materials typically used include Portland cement, cement kiln dust, or pozzolans with activators, such as lime, cement kiln dusts, and lime kiln dusts. These cementitious properties have been found in coal bottom ash, which make it attractive options for stabilized base. The pozzolanic or cement-like activity of this material, which contributes to the timedependent change in mechanical properties, can be controlled by adjusting the particle size through sieving only or grinding and sieving (Bai & Basheer 2001).

2.3.5 Pavement construction

Bottom ash has occasionally been used as unbound aggregate or granular base material for pavement construction. Bottom ash is considered as fine aggregates in this application. To meet required specifications, the bottom ash may need to be blended with other natural aggregates prior to use as a base or subbase material. Screening or grinding may also be necessary particularly for the bottom ash, where large particle sizes greater than 19mm are present in the ash (Bai & Basheer 2001).

2.4 Possibility of Using Bottom Ash in Cement Block Making

In India, main power generation is coal-based and utilization of bottom ash is a challenge. Tata power installed and commissioned a bottom ash brick-making pilot plant. The bricks are being manufactured in a very eco-friendly manner and are being used to make walkways, road paving and internal walls. Bottom ash was used for landscaping areas within the premises. They used 400 kg of bottom ash and 500 kg of fly ash per day to produce 250 bricks (www.tatapower.com, 06.07.2012).

2.5 Studies on Natural Radiation in Bottom Ash www.lib.mrt.ac.lk

As a general view, application of coal combustion ashes in building materials has been limited by the presence of minor components that are hazardous, such as radioactive substances, chlorinated dioxins and heavy metals, or have a negative impact on product quality or production economics, such as phosphate, fluoride, carbon and chloride (Quindos et al. 2004). Therefore, it is necessary to study those effect in bottom ash thoroughly before put into use. Previous studies on using bottom ash as a replacing material for fine aggregate in concrete also showed that concrete could be manufactured in compliance simultaneously with good density and compressive strength. It is established that lightweight concrete with highly porous bottom ash as aggregate and high volume of fly ash, is a potential structural material, possessing the optimum correlation between the desirable properties: sufficiently high strength and essentially low density (Nisnevich & Eshel 2001). As per U.S. Environmental Protection Agency 2012 radiation of bottom ash is less than that of fly ash.

All materials naturally have certain amount of radiation. Therefore, human beings have always been exposed to natural radiations arising from within and outside the earth. The exposure to ionizing radiations from natural sources occurs because of the naturally occurring radioactive elements in the soil and rocks, cosmic rays entering the earth's atmosphere from outer space and the internal exposure from radioactive elements through food, water and air. Natural radioactivity is wide spread in the earth's environment and it exists in various geological formations in soil, rocks, plants, water and air. The natural radioactivity of soil sample is usually determined from the Ra-226, Th-232, and K-40 contents (Singh et al. 2004).

The distribution of Ra-226, Th-232 and K-40 in soil is not uniform. Uniformity with respect to exposure to radiation has been defined in terms of radium equivalent activity (Ra_{eq}) in Bq/kg to compare the specific activity of materials containing different amount of Ran226rsThy232 and K+40wdt, is related through the following relation.

 $Ra_{eq} = C_{Ra} + 1.43 C_{Th} + 0.07 C_{K}$

Where "C" denote activity concentrations (Singh, Rani and Mahajan 2004).

OECD, (the Organization for Economic Co-operation and Development) which is for social security, economic, social and environmental change for countries include Australia, Canada, Denmark, India, Hong Kong, China, Indonesia, Italy, Japan, Pakistan, Saudi Arabia, Thailand and US etc. set the limit for radiation activity as 370Bq kg⁻¹(Singh, Rani and Mahajan 2004).

Following equations and formulae are used to calculate Radiation equivalent value for soil or relevant materials (Singh, Rani and Mahajan 2004).

1. Radium Equivalent Activity (Raeq)

$$Ra_{eq} = C(Ra) + 1.43C(Th) + 0.077C(K) - Eq. 1$$

2. Criteria Formula

$$\frac{C_{Ra}}{740Bq/kg} + \frac{C_{Th}}{520Bq/kg} + \frac{C_{K}}{9620Bq/kg} \le 1 - --- Eq.2$$

Where C(Ra), C(Th) and C(K) are the activities of 226 Ra, 232 Th and 40 K respectively, in Bq kg⁻¹.

3. External hazard index (H_{ex}) and internal hazard index (H_{in})

$$H_{ex} = \frac{A_{Ra}}{370} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} < 1$$

$$-----Eq.3$$

$$H_{in} = \frac{A_{Ra}}{185} + \frac{A_{Th}}{259} + \frac{A_{K}}{4810} < 1$$

$$-----Eq.4$$

Where A_{Ra} , A_{Th} and A_K represent the activity concentration (Bq/kg) of ²²⁶Ra, ²³²Th and ⁴⁰K respectively.

and ⁴⁰K respectively. 4. Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka. 4. Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka. Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors into the Thirs and & University of Moratuwa, Sri Lanka.<math>Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka. Absoluted indefectors interval and & University of Moratuwa, Sri Lanka.Absoluted indefectors interval and & University of Moratuwa, Sri Lanka.

$$D_{in} = D_{out} \times 1.4$$
 ----- Eq.6

5. Annual indoor effective dose (Ein)
$$(E_{in}) = D_{in} (nGy.h^{-1}) \times 8760(h) \times 0.7 (SvGyh^{-1}) \times 0.8 \times 10^{-6} - \text{Eq.7}$$

In Table 2-6, limiting values of natural radiation are presented. These values are based on international publications as indicated in the Table 2-6.

Indicator		Limiting Value	Reference	
Activity	²²⁶ Ra	50 (Avg)	NEA-OECD 1979	
Concentration(Bq/kg)	²³² Th	50 (Avg)	-do-	
	⁴⁰ K	500 (Avg)	-do-	
Ra _{eq} (Bq/kg)		<370	Beretka & Mathew 1985	
Criteria formula		<1	Keller & Muth 1990	
Hazard Indices	HexEq.3	<1	Beretka & Mathew 1985	
H _{in} Eq.4		<1	-do-	
Absorbed indoor dose n Eq.5,Eq.6 (nGyh ⁻¹)	ate	84 (Avg)	Quindos & Arteche 2004, UNSCEAR 2000	
Annual effective dose (Eq.7	(mSvy ⁻¹)	0.45 (Avg)	UNSCEAR 1993	

Table 2-6: Limiting values of radiological hazard indicators from the literatures

Comparison could be done for the Activity concentration of bottom ash, bottom ash block and river sand blocks tested in this research with the typical activity concentration of Moratuwa, Sri Lanka. Electronic Theses & Dissertations In Table 2-4 radiation activity concentration of common building materials are given

based on national and international documents.

Country	Building Material	Typical Activity Concentration (Bq/kg)			Ra _{eq} (Ba/kg)	Reference	
	1. Tutor Mi	²²⁶ Ra	²³² Th	⁴⁰ K	(24,16)		
EU	Concrete	40	30	400	113	European	
countries	Aerated & light-weight concrete	60	40	430	150	commission 1999Directorate -General Environment.	
	Clay(red) bricks	50	50	670	173	Nuclear Safety and Civil	
	Sand-lime bricks	10	10	330	50	Protection	
	Natural building stone	60	60	640	195		
	Natural Gypsum	10	10	80	30		
	Blast furnace slag	270	70	240	388		
	Coal fly ash	180	100	650	373		
Sri Lanka	Clay brick	35	72	585	183	Hewamanna et al. 1999	

Table 2-7: Radiation activity concentration of common building materials

University of Moratuwa, Sri Lanka.

As a general safety measure health risks associated working with bottom ash can be minimized wearing, nedessary readessary safety, wear such as respirator, safety goggle, Alkali-resistant gloves, boots and long-sleeved protective clothing. Arsenic content and radiation of bottom ash to be tested time to time to keep the workers not to exceed the limit of exposure to Arsenic and radiation effect, when bottom ash is put into use.

Annual effective dose

To estimate the annual effective dose, one has to take into account the conversion factor from the absorbed dose $(Gy.h^{-1})$ in air to the effective dose $(Sv h^{-1})$ and the indoor occupancy factor. In the recent reports, a value of $0.7Sv.y^{-1}$ was used for the conversion factor from the absorbed dose in air to the effective dose received by adults, and 0.8 for the indoor occupancy factor, implying that 80% of time is spent indoors, on average, around the world (UNSCEAR 2000).

Therefore, the annual effective doses $(mSv.y^{-1})$ for indoors received by adults were estimated using the following formula.

Indoors
$$(E_{in}) = D_{in}(nGy.h^{-1}) \times 8760(h) \times 0.7(SvGyh^{-1}) \times 0.8 \times 10^{-6}$$

The population weighted Sri Lankan average is 0.20mSvy⁻¹. National estimates of average annual effective dose from terrestrial gamma rays for 13 countries is given in (UNSCEAR 1993) and has a population weighted world average of 0.45mSvy⁻¹. Table 2-8 indicates the activity concentration of most common building materials, which is useful to compare the traditional and most recent building materials.

Table 2-8: Typical and maximum activity concentrations in common building materials and industrial by-products used for building materials in the EU.

Material	Typical activity			Maximum activity		
	concentration (Bq kg ¹)		concentration (Bq kg ¹)			
Most common building	226 Ra	232 Th	40 K	226 Ra	232 Th	40 K
materials						
(may include by-						
products)	id-		un deserver	Cui Tau	1	
Concrete	40sily	30 110	1400 wa,	240-an	Ki90	1600
Aerated and lights	160nic	4 deses	430D1SS	C260001	IS190	1600
weight concrete www	w.lib.r	nrt.ac.ll	K			
Clay (red) bricks	50	50	670	200	200	2000
Sand-lime bricks	10	10	330	25	30	700
Natural building stones	60	60	640	500	310	4000
Natural gypsum	10	10	80	70	100	200
By-product gypsum	390	20	60	1100	160	300
(Phosphogypsum)						
Blast furnace slag	270	70	240	2100	340	1000
Coal fly ash	180	100	650	1100	300	1500

Source: Radiological Protection Principles concerning the Natural Radioactivity of Building Materials European Commission 1999 (Radiation Protection 112)

Typical concentrations are population-weighted national means of different Member States. Maximum concentrations are maximum values reported in references. Higher values might have been reported elsewhere.

2.6 Thermal Properties of Bottom Ash Blocks

The comfort of a dweller within a building is affected by the heat transmitted across the bricks or blocks in the wall of the building. Hence thermal properties of blocks are important in evaluating their performance as masonry units.

Thermal properties are not specified as essential requirements in the Sri Lanka standards for bricks or blocks (SLS 855-1: 1989).

Thermal conductivity is the property of a material to conduct heat. Heat transfer occurs at a higher rate across materials of high thermal conductivity than across materials of low thermal conductivity. Given two surfaces on either side of the material with a temperature difference between them, the thermal conductivity is the heat energy transferred per unit time and per unit surface area, divided by the temperature difference.

Specific heat capacity and thermal diffusivity are also measures of thermal properties. A low value of thermal conductivity is desired for the bricks as this means that heat conduction Ewithin the brick is guidinized, guidifying the brick to be a good insulator Thermal conductivity of Utricks linade from coal ash and fly ash is lower than that of clay bricks (Sandra 2009).
CHAPTER 3

3. RESEARCH METHODOLOGY

3.1 Sampling of Bottom Ash

The practice adapted at the power plant is to dump the bottom ash produced in one day at a given point. The next day it is taken away from that point and spread over a large area using a back-hoe. Fig. 3-1 shows that bottom ash dumped in the ash pond of power plant. Fig. 3-2 & 3-3 show sampling of bottom ash from bottom ash piles after removing top layer of at least 150 mm and to represent the batch by taking from equal interval, then loading to the vehicle. Sampling was done as per British Standard (BS EN 932-1:1997).

Figure 3-1: Large area of land covered with bottom ash in the ash pond of power plant

Figure 3-2: Sampling of bottom ash

Figure 3-3: Bottom ash sample is loaded to the vehicle

This research was carried out during the period from 2012 to 2014. During this period bottom ash samples were collected four times with equal time interval. Sampling details are presented in Table 3-1. Source of coal during this period was from Indonesia.

Table 3-1: Details	of sampling
--------------------	-------------

Sample	Date of	Quantity	Properties tested
No	sampling		
1	Not known*	100kg	chemical and physical
2	14.03.2013	250kg	chemical, physical, thermal and Cinva- Ram trials
3	05.08.2013	350kg	chemical, physical, thermal, radiation and conventional cement block trials
4	05.12.2013	750kg	chemical, physical, thermal and conventional cement block trials

*During 2012 by Environmental Division of NBRO

Since bottom ash is produced continuously and the source of coal was the same during the research period, the quantity produced within a three to four-month period was treated as a batch. A bulk sample was taken to represent average properties of a batch.

A specified apparatus as per the standard was used to take a sample in order to avoid biased sampling. Addquateo mimbeh esters appling sincrementss was taken to avoid sampling variation caused by the theorem of the batch. Sampling increments were selected at random from all the parts of a batch that the batch sample is to represent.

The following equation was used to decide the minimum mass of a bulk sample as per BS EN 932-1:1997.

 $M=6 \ge \sqrt{D} \ge \ell_b$

M- Mass of the sample in kg

D- Maximum grain size in mm

 ℓ_{b-} Loose bulk density in Mega-grams per cubic metre

3.2 Determination of Properties of Bottom Ash

Chemical composition, loss on ignition, leaching properties, radiation effect, sieve analysis, particle density and water absorption, loose bulk density, microstructure and strength of mortar were tested for bottom ash. Test methods given in British standard and American Standards were used for these tests. Tests results were compared with test results on river sand derived from previous studies (Savitha & Ranatunge 2010).

Bottom ash sampled as Table 3-1 were tested for the following physical and chemical properties: gradation, fines content, fineness, particle density and water absorption, bulk density, microstructure, loss on ignition, mineralogical analysis and chemical analysis for the content of Mg, Pb, Cr, Cd, Cu, Ni, and Se and effects of leaching of these elements and radiation effects.

3.2.1 Chemical properties

Chemical analysis is important to find out the composition and harmful elements in bottom ash. It was cathied out using Atomic Absorption Spectroscopy.

3.2.2 Loss on gnition Www.lib.mrt.ac.lk

Usually Loss on Ignition (LOI) test is carried out for cement and not for aggregate. However, this test should be carried out for bottom ash in order to detect the presence of partially burnt coal in bottom ash sample. Bottom ash containing partially burnt coal cannot be used for block making as it can adversely affect the mechanical and physical properties of the block. Testing was carried out as per Sri Lanka Standard (SLS 107-2: 2008).

3.2.3 Leaching properties

This test determines the possibility of leaching harmful metals from the bottom ash block. Leachability test was done by agitating the sample in water and keeping for 24 hours followed by testing the water for harmful elements. Testing was carried out as per American Standard (ASTM D 3987 : 2006).

3.2.4 Radiation effect

If radioactive materials are present in bottom ash, people handling and using the product made out of bottom ash will face health problems. Therefore, presence of such materials in bottom ash was checked by testing a sample at the Atomic Energy Authority Laboratory. Test was carried out by using High Purity Germanium Detector (HPGD).

3.2.5 Sieve analysis

Particle size distribution of bottom ash is important for proper packing. Testing was carried out as per British Standard (BS EN 933-1: 1997).

3.2.6 Particle density & water absorption

Particle density and water absorption are important to predict the behavior of block produced with bottom ash. Tests were carried out as per British Standard (BS EN 1097-6: 2000).

3.2.7 Loose bulk density

Usually, mix by volume is used in cement block manufacturing. Therefore, loose bulk density was determined as per British Standard (BS EN 1097-3 : 1998).

3.2.8 Microstructure of bottom ash

Shape and microstructure of bottom ash particles were observed using scanning electron microscope.

3.2.9 Effect of particle size fraction on strength of cement mortars

Mortar cubes made with bottom ash were tested in accordance with American Standard (ASTM C 87 : 2010) in order to check the influence of particle size fraction of bottom ash on strength properties. Two size fractions of bottom ash (i.e. particles < 4 mm and 600-800µm) were tested and compared with same size fractions of river sand.

3.3 Survey on Block Production

In order to assess the present situation of cement block making in Sri Lanka, about ten block manufacturers in the western province (mainly, Nawala, Homagama and Moratuwa area) were interviewed. The outcome of interviews including their production details and experience were used to study common compositions to select suitable mixes.

In Sri Lanka, cement block making is carried out using a conventional type of machine in which the cement-aggregate mixture is vibrated first and the pressure is applied for better bonding. Usually local small scale cement block manufacturers use 1:20 (cement: aggregate) mix by volume.

However, manufacturers who are more concerned about quality would limit this mix to 1:9 with control on moisture content of aggregate, thus making it possible to comply with the requirements on water absorption, density and compressive strength

tests as per Sri Lanka standard; (SLS 855 ; Part 1: 1989): Lanka. 3.4 Determination Electronic Theses & Dissertations of Properties of Bottom Ash Blocks Produced with Cinva-WWW.IID.mrt.ac.IK

The main objective of this research was to investigate the possibility of utilizing the bottom ash from coal fired power plants to produce light weight building blocks for building construction. The other objective was to produce a cost effective cement block suitable for small or medium scale production using locally available machinery and raw materials.

Bottom ash collected from Nuraicholai power plant was processed by sieving or grinding and sieving if needed to obtain particle size less than 4 mm. Mortar/concrete mixes were designed with bottom ash for carrying out trials on the production of blocks with Cinva-Ram machine and with conventional cement block making machine. Fresh properties of mortar/concrete were determined. Mechanical and thermal properties of blocks produced as trials with selected mixes were tested.

From the questionnaire survey of cement block manufacturers, it was found that up to 1:20 cement: aggregate by volume with or without admixture is used to produce cement blocks. As the first trial cement mortar blocks with bottom ash were produced with Cinva-Ram machine where only pressure is applied for compaction. Figure 3-4 & 3-5 show Cinva-Ram machine filled with mortar mix and pressure is being applied.

Figure 3-4 Cirva-Ram machine Theses & Dissertations

Figure 3-5: Cinva- Ram machine moulds filled with mortar mix and machine is in operation

Materials used for bottom ash block produced with Cinva- Ram machine were:

- 1. Cement: OPC 42.5N
- 2. Sieved Bottom Ash (<4 mm)

The mix proportions of cement and bottom ash were selected based on mix proportions used by cement block manufacturers in the Western Province, Sri Lanka.

The selected volume proportions of cement: bottom ash were 1:3, 1:6, 1:8, 1:13, 1:22 and 1:26.

3.5 Determination of Properties of Bottom Ash Blocks Produced with Cement Block Making Machine

In the second stage of producing cement blocks, conventional block making machine was used. Materials used for bottom ash block produced with Conventional Cement Block Making Machine were:

- 1. Cement: OPC 42.5N
- 2. Sieved Bottom Ash (<4 mm)
- 3. Sieved River Sand (<4 mm)
- 4. Crushed Rock Sand (<4 mm)
- 5. Gravel (5-10 mm graded)

Physical properties of bottom ash blocks produced using the Conventional Cement Block Making Machine were determined using Sri Lanka Standard test methods

(SLS 855-2: 1989). University of Moratuwa, Sri Lanka. 3.5.1 The real properties of bottom ash blocks www.lib.mrt.ac.lk

When blocks are produced with bottom ash, better insulation is expected. In order to verify this fact, thermal properties of bottom ash blocks should be tested. To find out the thermal behavior of bottom ash blocks, thermal conductivity which is a measure of how readily a material can conduct heat, specific heat which is ability of a substance to store thermal energy and thermal diffusivity which is ratio of thermal conductivity to heat capacity were determined. Hot-wire method (Sandra 2009) was used to determine the thermal conductivity and thermal diffusivity (Figure 3-6 to 3-9).

Hot-Wire Method

In this method, hot wire (Ni-Cr wire) was mounted centrally and thermocouples were spaced in equal measured distances. Temperature with time were recorded with a data logger and calculations were carried based on the methods described in reference (Prabhath et al., 2014) Figures 3-6 to 3-10 shows the steps in the hot wire test procedure.

Figure 3-6: Thermocouples are arranged at required depth and distances

Figure 3-7: Casting of bottom ash mortar specimen

Figure 3-8: Hot wire testing arrangement

3.5.2 Drying shrinkage and wetting expansion

For drying shrinkage and wetting expansion test, in order to represent cement rich mix and bottom ash rich mix, standard mixes 1:3 and 1:6 were selected to carry out drying shrinkage and wetting expansion tests. Figures 3-10 to 3-12 show test equipment and method of the tests. Tests were carried out as per the test method stated in SLS 855-2: 1989.

Figure 3-9: Humidity Cabinet to maintain 17% humidity at 50°C University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Figure 3-11: Length comparator to measure change in length

CHAPTER 4

4. ANALYSIS OF TEST RESULTS

4.1 Evaluation of Bottom Ash Properties

4.1.1 Chemical properties

Chemical analysis was carried out using Atomic Absorption Spectroscopy on Nuraicholai power plant bottom ash waste and given in Table 4-1. The limiting values of the harmful elements specified in EPA (Environmental Protection Agency) are also given in Table 4-1. It can be seen that the concentrations of harmful elements present such as As, Pb, Cr, Cd, Cu, Ni and Se were below the internationally specified toxicity limits for use in soil as a filling material as per U.S. Environmental Protection Agency.

Table 4-1: Composition of bottom ash

				Limiting value specified in
(ins T	Iniversity of M	oratuma Sr	EPA, US in
15			oratuwa, Si	uncontaminated soil used as
Parameter	Unit L	lectrorobserves	Walde Disser	Cafillomaterial at regulated fill
L.	S V	www.lib.mrt.ac.	lk	operations
		Minimum	Maximum	Value
As	mg/kg	0.62	4.9	<11.3
Mg	mg/kg	37.0	220.0	< 325,000
K	mg/kg	<20.0	211.0	-
Na	mg/kg	80.0	782.0	-
Ca	g/kg	0.66	5.20	_
Al	g/kg	1.8*	1.8*	-
Fe	g/kg	4.37g/kg	33.85	-
SiO ₂	%	88	98	_
Pb	mg/kg	<ldl(2ppm)< td=""><td></td><td>< 107</td></ldl(2ppm)<>		< 107
Cr	mg/kg	<ldl(2ppm)< td=""><td></td><td>< 21</td></ldl(2ppm)<>		< 21
Cd	mg/kg	<ldl(0.2ppm)< td=""><td></td><td>< 5.2</td></ldl(0.2ppm)<>		< 5.2
Cu	mg/kg	<ldl(1.0ppm)< td=""><td></td><td>< 2900</td></ldl(1.0ppm)<>		< 2900
Ni	mg/kg	<ldl(2ppm)-<="" td=""><td>2</td><td>< 100</td></ldl(>	2	< 100
Se	mg/kg	<ldl (20ppb)<="" td=""><td></td><td>< 1.3</td></ldl>		< 1.3

LDL-Lower Detection Limit

*only one sample checked for this mineral

As per international requirements, concentrations of all the tested heavy metals are within the allowable limit for soil. Among the toxic heavy metals present in bottom ash, Arsenic (As) is having the highest percentage.

Arsenic is a semi-metal element in the Periodic Table. It is odorless and tasteless. Effects of As are thickening and discoloration of the skin, stomach pain, nausea, vomiting, diarrhea, paralysis, blindness and cancer. Even though the amount of As in bottom ash is within the specified limits for soil, continuous exposure to bottom ash may be harmful. Therefore, safety shoes, clothes & gloves should be used when work with bottom ash.

4.1.2 Loss on Ignition of bottom ash

Values observed for bottom ash were in the range of 1-2%. Observed value indicates that negligible unburnt coal and moisture of the tested samples.

4.1.3 Leaching properties

Test results of bottom ash reptained by Environmental Division of National Building Research results in and chemical Department set University of Colombo showed that there was no Asy Pbyaho Set that all eached to water. As per the sample tested, there was no possibility of leaching harmful metals from the bottom ash.

4.1.4 Radiation effect

Sample of bottom ash from the Nuraicholai power plant was tested for the levels of radioactive emission by Atomic Energy Authority using Gamma Spectrometry with high purity Germanium detector. From the reported results given in Table 4-2, radium equivalent values were calculated using the equation 1 in Chapter 2. Results given in Table 4-2 were comparable with the emission levels found in other common building materials such as soil or sand. According to the test report by AEA, bottom ash was neutral and it can be used for building material making without any fear of radiation effect.

Sample	Radio Nuclide	Activity (Bq/kg)
bottom ash	K-40	98±7
	Pb-210	NOT DETECTED
	Ra-226	(minimum detectable
	Th-232	activity is 8.0)
		$29{\pm}2$
		37±3
block produced from	K-40	92±6
bottom ash as a fine	Pb-210	16±3
aggregate	Ra-226	28 ± 2
	Th-232	37±3
block produced from river	K-40	159±9
sand as a fine aggregate	Pb-210	8 ± 1
	Ra-226	$13{\pm}1$
	Th-232	33±2

Table 4-2: Results of analysis of radioactivity

Table 4-3: Radiation properties of bottom ash and blocks

Sample	Radium Equivalent Value
	(Bq/kg)
bottom ash University of Moratuwa,	Sri Lanka. 89
block produced from bottom ish as a sine & Diss	ertations 87
aggregate www.lib.mrt.ac.lk	
block produced from river sand as a fine	71
aggregate	

OECD Radium equivalent value limit for building material is 370Bq/kg. Therefore, this bottom ash sample is safe with respect to harmful radiation effect in respect of radium equivalent value.

4.1.5 Sieve analysis

Test results of particle size distribution of bottom ash samples showed that samples 1 & 2 do not comply with the grading limits specified in BS EN 12620:2002. Sample No 3&4 complied with grading limits specified in BS EN limits for medium graded fine aggregate. Table 4-4 shows the summary of gradation and fines content ($< 63\mu$ m) in the samples tested. Tables 4-5 to 4-9 present detail of sieve analysis and Figures 4-1 to 4-5 give relevant graphs. Detail test results are given in the Annexure1.

Table 4-4: Summary of gradation and fines content in bottom ash samples

	Samp	le No.	Gradation	Fines content %
	1		0 - 16 mm	8.5
	2		0 - 16 mm	1.7
	3	TT. 1	0-4 mm	23.1
1	4	Univers	sity of Amatuv	va, Sri Lappisa.
		Electro	nic Theses & I	Dissertations
-		www.li	b.mrt.ac.lk	

Sieve Size (mm)	Percentage mass passing	Specified limits for
		coarse zone fine
		aggregate D≤4 mm and
		d=0 (BS EN 12620:
		2002)
16.0	100.0	100
8.0	81.8	100
5.0	72.6	95-100
4.0	68.4	85-99
0.500	34.3	5-45
0.063	8.5	0-3
Pan	0	

Table 4-5: Sieve analysis of bottom ash Sample 1

Figure 4-1: Grading Curve of Bottom Ash Sample 1

Sieve Size (mm)	Percentage mass passing	Specified limits for coarse
		zone fine aggregate D≤4
		mm and d=0 (BS EN
		12620: 2002)
8.0	100.0	100
5.0	89.6	95-100
4.0	84.3	85-99
0.500	42.2	5-45
0.063	10.5	0-3
Pan	0	

Table 4-6: Sieve analysis of bottom ash Sample 1 after removing over 8mm particles

Figure 4-2: Grading Curve of Bottom Ash Sample 1(<8mm)

Sieve Size (mm)	Percentage mass passing	Specified limits for medium zone fine aggregate D≤4 mm and d=0 (BS EN 12620: 2002)
8.0 5.0 4.0 0.500 0.063 Pan	97.3 94.0 91.3 67.1 1.7 0	100 95-100 85-99 55-100 0-3

Table 4-7: Sieve analysis of bottom ash Sample 2

Figure 4-3: Grading Curve for Bottom Ash Sample 2

Sieve Size (mm)	Percentage mass passing	Specified limits for medium zone fine aggregate D≤4 mm and d=0 (BS EN 12620: 2002)
8.0 5.0 4.0 0.500 0.063 Pan	100.0 99.0 98.4 82.9 23.1 0	100 95-100 85-99 55-100 0-3

Table 4-8: Sieve analysis of bottom ash Sample 3

Figure 4-4: Grading Curve for Bottom Ash Sample 3

Sieve Size (mm)	Percentage mass passing	Specified limits for
		aggregate $D \leq 1$ mm and
		d=0 (BS EN 12620: 2002)
8.0	95.7	100
5.0	94.0	95-100
4.0	89.1	85-99
0.500	66.2	55-100
0.063	16.3	0-3
Pan	0	

Table 4-9: Sieve analysis of bottom ash Sample 4

Figure 4-5: Grading Curve for Bottom Ash Sample 4

4.1.6 Particle density & water absorption

Test results of particle density and water absorption of the bottom ash samples are given in Table 4-10. Detail results are given in annexure 1. It can be seen that particle density of bottom ash is in the range of 1500-1750kg/m³ and water absorption is in the range of 17-30% by dry mass while river sand had particle density of 2600-2750 kg/m³ and water absorption of 0.4-1.0% (Savitha & Ranatunge 2010). Low particle density will be an advantage in producing a light weight block, however higher water absorption by bottom ash can cause a problem.

Table 4-10: Particle densities & Water absorption of bottom ash samples

Sample	Particle Density (kg/m ³)		Water Absorption	
No	Saturated Surface	Oven dry	(%)	
	dry condition	condition		
1	1750	1490	17.4	
2	1740	1470	18.4	
3	1550	1200	29.1	
4	Linearcity of Marshall Sri Lank 30.5			
5	Oniversity of Woratuwa, Shi Lanka.			
	(Electronic Theses & Dissertations			

4.1.7 Loose bulk density.lib.mrt.ac.lk

Test results of loose bulk density of the bottom ash samples are given in Table 4-11. Detail results are given in the Annexure 1. Bottom ash had loose bulk density of 590-770 kg/m³, while loose bulk density of river sand and crushed rock sand were 1450 and 1500 kg/m³ respectively (Savitha & Ranatunge 2010).

Table 4-11: Loose bulk density of bottom ash

Sample No.	Loose Bulk Density at oven dry condition (kg/m ³)
1	590
2	650
3	750
4	770

4.1.8 Microstructure of bottom ash

When a sample of bottom ash was examined using a scanning electron microscope, irregular particles with large amount of pores were observed (Fig 4-6 & 4-7), thus giving the low particle density.

Figure 4-6: SEM image of as received bottom ash at mag.60

4.1.9 Mortar cube testing

A standard mortar mix of cement and bottom ash in the ratio of 1:3 by volume was prepared as per the method specified in BS 12: 1996 (Specification for Portland cement) and 70mm x 70mm x 70mm mortar cubes were prepared for testing. Compaction was applied using vibrating table. The tests were repeated by replacing bottom ash with river sand in order to compare the performance of the two materials. The test results obtained are given in Table 4-12.

Type of	Mi	X	W/C Ratio	Saturated Density (kg/m ³)	Comp Stre (N/r	ength mm ²)
aggregate	By Volume	By Weight	By weight		3-day	28-day
Bottom Ash (<4mm)	1:3	1:1.5	0.45	1850	12.7	28.8
River Sand(<4mm)	1:3	1:3.15	0.45	2450	28.8	59.4

Table 4-12: Test results of mortar cubes

Cement mortar with bottom ash had nearly half the strength of cement mortar with river sand. In order to find out the reason for the difference in strength, a narrow range of particles was used in testing. Both fine aggregates were reduced to smaller particle size fractions and 600-800µm particles were used for testing. Results are given in Table 4-13. If water cement ratio is kept as constant for trials with bottom ash and river sand it was not possible to cast cubes, because mortar mix was not workable. Therefore, two different water cement ratios were used in the trials. Water/Cement ratios reported (aggregates were S.S.D level) in Table 4-13 gave same plunger penetration value (same consistency). Therefore, it was not possible to make a conclusion on whether difference in strength is due to large amount of pores in bottom ash or Water/Cement ratio.

Type of aggregate		Mix	W/C Ratio	Saturated Density (kg/m ³)	Comp Stre (N/r	ressive ength mm ²)
	By Volume	By Weight	weight		3-day	28-day
Bottom ash (600-	1:3	1:2.36	0.40	1800	6.5	8.8
800µm)						
Loose Bulk						
Density-850kg/m ³						
River Sand (600-	1:3	1:4.45	0.26	2240	6.8	12.4
800µm)Loose						
Bulk Density-						
1410 kg/m^3						

Table 4-13: Test results of mortar cubes with narrow/small particle range/size

4.2 Blocks Produced with Cinva-Ram Machine and Their Properties

Figure 4-8 shows blocks produced with Cinva-Ram machine. Test results of Cinva-Ram block trials are presented in Table 4-14.

Figure 4-8: Cement-Bottom ash block produced with Cinva-Ram machine

Mix by volume	we ratio	Universityit Electronic received w v(kg/m ³).1	v of Morat Water Absorption mr(kg/mf)	uwa Sri Moisture Lontentta (%)	Lanka. Compressive tionsfrength (N/mm ²)	Depth of penetration (Erosion test as per SLS) (mm)
1:3	0.21	1150	265	5.9	11.3	0
1:6	0.37	1100	284	4.2	3.3	0
1:8	0.56	960	444	3.7	2.2	0
1:13	0.76	930	488	5.7	1.4	4
1:22	1.17	730	517	6.2	0.4	>10
1:26	1.35	760	555	7.0	0.3	>10

Table 4-14 :Test results of properties of bottom ash blocks

Water to cement ratio for each mix was decided by doing drop test. In each mix proportions, at least four samples were tested. Initially, a suitable mix proportion (by weight) was selected based on commonly used mix proportions in Sri Lanka for ordinary cement block manufacturing. Then it was converted to volume basis.

The SLS 855: 1989 specified that the strength of blocks (produced with whatever mix) should be equal or exceed 1.2 N/mm² and that the water absorption should not exceed 240 kg/m³.

According to the test results given in Table 4-14, none of the mixes satisfies the water absorption requirement. Therefore, when selecting mix proportions for the second stage of producing blocks, quarry dust and coarse aggregate (5-10mm) were considered to reduce the water absorption. Compressive strength test carried out for river sand block with 1:3 by volume proportion also gave the compressive strength of 10.1 N/mm². However, it was not possible to keep constant water cement ratio due to consistency requirement. Mix proportion 1:6 or more with river sand could not be produced with this machine, because green strength was insufficient.

4.3 Properties of Blocks Produced with Cement Block Making Machine4.3.1 Compressive strength and water absorption

machine.

Figure 4-9 shows cement-bottom ash blocks produced with cement block making

Figure 4-9: Cement- Bottom ash blocks produced with cement block making machine

Test results of mixes with and without bottom ash with conventional cement block making machine are presented in Tables 4-15. For each mix proportions, four blocks were tested and individual results of each blocks are given in the Annexure 2. Reported results in Table 4-15 were the arithmetic mean of four or more individual results. Details of individual test results and comparison using student T-analysis are given in Annexure 2. Blocks with several mix proportions as given in Table 4-15 were tested in order to find out the proper mix which will give all the required properties as per SLS 855. The mix proportions satisfying and unsatisfying the SLS 855 requirements are given in Table 4-16 and 4-17 respectively.

Table 4-15 : Results of blocks made with conventional cement block making machine

Mix No.	Mix proportion by volume							Properti	ies
	Cement	River sand	Quarry dust	Bottom ash	Crushed rock agg. (5-10mm)	Water	Lonsity (kg/m ³)	Water absorption (kg/m ³)	Compressiv e strength at 28 days (N/mm ²)
RQ 1		3	3	0		0.9	1913	203	5.6
QB1	12/	0	eczro	mz.	neses a	c 1.15s	er <u>1301</u> 01	^{11S} 290	4.1
RQC 1 💐	T	2W	ww.li	b.011	rt.ac3lk	1.0	2214	88	8.8
QBC 1	1	0	2	2	3	1.2	1958	143	6.4
BC 1	1	0	0	4	3	1.8	1701	167	4.6
QC 1	1	0	4	0	3	1.0	-	-	9.1
QB 2	1	0	3	4	0	2.8	1636	-	3.9
QBC 2	1	0	1	3	1.5	1.5	1807	152	5.2
B 1	1	0	0	7	0	3.0	1127	350	1.2
QBC 3	1	0	2	3.5	1	2.0	1777	116	4.2
QC 2	1	0	12	0	8	2.8	2051	179	1.2
BC 2	1	0	0	12	8	5.0	2049	181	1.5
RQ 2	1	4	5	0	0	1.0	1953	186	4.2
QB 3	1	0	5	4	0	1.9	1501	306	3.5
BC 3	1	0	0	7	3	1.2	1499	298	2.3
BC 4	1	0	0	14	6	4.0	1385	327	1.0
BC 5	1	0	0	9	4	1.7	-	-	1.6
QBC 4	1	0	2	6	2	2.0	1442	298	2.0
QBC 5	1	0	4	12	4	4.0	1435	298	0.8
BC 6	1	0	0	6	4	2.0	1680	179	2.7

Table 4-16 shows the test results of mixes with cement, quarry dust, bottom ash and crushed rock aggregate combinations.

Mix	Mix proportion by volume						Properties		
No.	Cement	River sand	Quarry dust	Bottom ash	Crushed rock agg. (5-10 mm) graded)	Water	Density (kg/m ³)	Water absorption (kg/m ³)	Compressive strength at 28 days (N/mm ²)
QBC 1	1	0	2	2	3	1.2	1958	143	6.4
BC 1	1	0	0	4	3	1.8	1701	167	4.6
QBC 2	1	0	1	3	1.5	1.5	1807	152	5.2
QBC 3	1	0	2	3.5	1	2.0	1777	116	4.2
BC 6	1	0	0	6	4	2.0	1680	179	2.7

Table 4-16: Results of blocks made with conventional cement block making machine satisfying SLS 855 requirements

It can be seen that the mix with bottom ash only (1:7) gives very high water absorption. It can alkottie seent that, only to the placing paraothetettom ash with quarry dust, it was possible to reduce the water absorption to an acceptable level. Therefore, coarse aggregate (5-10mm) was considered in the mix proportions. Mix proportions which gave satisfactory strength and water absorption are shown in Table 4-16, and all these mix proportions contain crushed rock aggregate (5-10mm). The mix proportions which were not satisfactory with respect to strength and water absorption are given in Table 4-17. Table 4-18 gives mix proportions satisfying the strength and water absorption requirements specified in SLS 855-1:1989.

Water content was altered to get the required consistency of the mix. If the water content is insufficient, then the compaction was difficult and if greater than the required value, then the water leaked out from the mould.

Bottom ash used in the trials were with following conditions,

- a) Saturated Surface Dry condition
- b) Sieved with 4 mm sieve
- c) Without any unburnt coal

Mix	Mix proportion by volume						Properties		
No.	Cement	River sand	Quarry dust	Bottom ash	Crushed rock aggregate (5-10mm graded)	Water	Density (kg/m ³)	Water absorption (kg/m ³)	Compressive strength at 28 days (N/mm ²)
QB 1	1	0	3	3	0	1.17	1501	290	4.1
QB 2	1	0	3	4	0	2.8	1636	-	3.9
B 1	1	0	0	7	0	3.0	1127	350	1.2
BC 2	1	0	0	12	8	5.0	2049	181	1.5
QB 2	1	0	5	4	0	1.9	1501	306	3.5
BC 3	1	0	0	7	3	1.2	1499	298	2.3
BC 4	1	0	0	14	6	4.0	1385	327	1.0
BC 5	1	0	0	9	4	1.7	-	-	1.6
QBC 4	1	0	2	6	2	2.0	1442	298	2.0
QBC 5	1	0	4	12	4	4.0	1435	298	0.8

Table 4-17: Bottom ash mixes with unsatisfactory strength and water absorption

University of Moratuwa, Sri Lanka.

Table 4-18 Mix proportion satisfying the strength Sand Water Sabsorption requirements specified in SLS 855-1:1289.

Property	Specified Value	Mix
Compressive	$\geq 1.2 \text{ N/mm}^2$	RQ 1, QB 1, RQC 1, QBC 1, BC 1, QC 1, QB
strength		2, QBC 2, B 1, QBC 3, QC 2, BC 2, RQ 2, QB
		3, BC 3, BC 5, QBC 4, BC 6
Water	$\leq 240 \text{ kg/m}^3$	RQ 1, RQC 1, QBC 1, BC 1, QBC 2, QBC 3,
absorption		QC 2, BC 2, RQ 2, BC 6

Even though the minimum strength specified in SLS 855 is 1.2 N/mm², the minimum strength specified in BS 6073-1:1981 is 2.8 N/mm². When BS strength limit is considered, only the mixes given in Table 4-16 satisfy the required strength and water absorption. Mix BC 6 is marginally satisfying the strength requirement.

According to BS EN 206-1, the density limit for light weight concrete should be in the range of 800-2000 kg/m³. All the mixes given in Table 4-16 satisfy this density limit for light weight concrete. The mix BC 6 gave the lowest density with satisfactory strength and water absorption.

4.3.2 Thermal cconductivity of bottom ash blocks

The thermal conductivity of bottom ash blocks made with the mix proportion 1:5 cement : bottom ash by volume was measured using hot-wire method and result is presented in Table 4-19.

Mix by volume (cement: bottom ash)	Thermal conductivity W/m.K
1:5	0.54

Table 4-19: Measured thermal conductivity of bottom ash blocks

Thermal conductivity of locally available good quality clay bricks and common cement blocks were tested using hot-wire method and results are presented in Table 4-20.

Table 4-20: Measured thermal conductivity of clay bricks and cement blocks

Туре	Thermal conductivity W/m.K
Clay bricks	0.6-1.0
Cement blocksive	rsity of Moratuwa, ₁ Şri Lanka.
Electro	onic Theses & Dissertations

It can be seen that, Wottom ash blocks have better thermal properties when compared with good quality building blocks in the market.

4.3.3 Drying shrinkage and wetting expansion of blocks

Drying shrinkage and wetting expansion of bottom ash blocks were tested in NBRO laboratories as per SLS 855 and the results are presented in Table 4-21:

Table 4-21: Test results of drying shrinkage and wetting expansion

Mix by volume	Drying shrinkage (%)	Wetting expansion (%)
1:3	0.05	0.07
1:6	0.04	0.03

SLS 855 specifies limits for drying shrinkage and wetting expansion as 0.06% and 0.03% respectively. Good quality cement blocks tested in the laboratory had drying shrinkage of 0.04% and wetting expansion of 0.07%.

Therefore, blocks with bottom ash satisfy the drying shrinkage requirement but wetting expansion is marginally higher for the 1:3 mix proportions.

4.4 Radiological Significance of Bottom Ash Building Blocks for Construction of Dwellings

4.4.1 Activity concentration

The activity concentrations (in Bq kg⁻¹) of 226 Ra, 232 Th and 40 K in the bottom ash, and the bottom ash and river sand blocks analyzed in this study are given in Table 4-23. The typical world averages for 226 Ra, 232 Th and 40 K are 50 Bq kg⁻¹, 50 Bq kg⁻¹ and 500 Bq kg⁻¹ respectively (*NEA-OECD*, 1979). Therefore obtained values of each sample are below the world average values. Table 4-22 compares activity concentration of each sample tested.

Table 4-22: Comparison of activity concentrations of each sample

Sample	²²⁶ Ra Bq kg ⁻¹	²³² ThBq kg ⁻¹	⁴⁰ K Bq kg ⁻¹
Typical world	50	50	500
average [niversity of Mor	atuwa Sri Lanka	
Bottom Ash	29 ± 2	& Dissertations	98±7
Bottom Ash Block	128 ± 2	37±3	92±6
River Sand Block	ww.mgatt.ac.ik	33±2	159±9

It can be concluded from the overall results in this study that, bottom ash blocks for building construction do not pose a radiological hazard.

CHAPTER 5

5. COST ANALYSIS OF PRODUCTION OF BOTTOMASH BLOCKS USING CONVENTIONAL CEMENT BLOCK MAKING MACHINE

To calculate production cost of cement-bottom ash blocks, the mix proportion of QBC 1, BC 1, QBC 2, QBC 3 and BC 6 were selected, since most of these mixes are used by cement block manufacturers with quarry dust instead of bottom ash. These mixes satisfied all the required properties as per SLS 855-1:1989.

Table 5-1 gives summary of cost analysis of satisfactory mixes. Details of cost analysis are given in Annexure 3.

Mix	Material	Quantity	Other	Cost per		
			indirect	block		
	Cement	Quarry	Bottom	Crushed rock	cost such	including
	(No. of	Univer	sityashf N	laggregatel (510mm)	kas water	profit
	(50kg)	(Cube)rc	n(Gube)e	ses graded)s(Gube) ion	is and	(Rs)
	bags)	www.1	ih mrt a	112	electric it y	
QBC 1	33	1	10.1111.av	1.5	Rs.2.50	60.5
BC 1	33	-	2	1.5	per block	52.0
QBC 2	41	0.6	1.8	0.9		59.0
QBC 3	36	0.52	1.9	0.52		52.0
BC 6	24	-	2.2	1.5		44.0

Table 5-1: Summary	of cost analysis	of satisfactory	bottom ash blocks
--------------------	------------------	-----------------	-------------------

Cost analysis was done by using the information given by more than 5 medium and 2 large scale manufacturers. As per the questionnaire survey, medium scale block producers expect a profit of Rs.5/= per block and the current market price of a normal cement block is in the range of Rs. 55 to 75 per block. According to the calculated cost of bottom ash blocks (in the range of Rs. 44 to 60), the bottom ash blocks can be marketed at lower price (about 20%) than conventional blocks available in the market.

CHAPTER 6

6. CONCLUSIONS AND RECOMMENDATIONS

- Properties of Bottom ash from Nuraicholai Power Plant is having useful physical properties which made it amenable to produce light weight blocks with low thermal conductivity.
- Although some harmful chemicals and heavy metals were present, there was no health risk involved in its use provided that block manufacture is carried out with appropriate safety arrangement. Radioactivity of bottom ash is found to be in the range of normal river sand block and satisfied the OECD requirement.
- Available test results on the properties of blocks indicate that bottom ash could provide an effective solution to the scarcity of river sand required for the production of cement blocks.
- 4. Research results indicate that the production and use of bottom ash blocks lead to the following benefits to the industry sertations

a: Cost reflective production 1 It was found that the cost of solid block can be reduced by 20% when sand/ quarry dust replaced with bottom ash.

- b. Weight of bottom ash solid block is 12.5% to 25% less than conventional block of same size.
- c. Thermal conductivity of bottom ash mix of 1:5 was found to be 0.54 W/(m.K) which is about 45% of the conventional cement sand blocks.
- d. Thermal comfort can be achieved due to reduction in thermal conductivity of bottom ash blocks.
- e. Ease of production and construction techniques and machinery used in the production of conventional cement blocks could be adopted in the production of bottom ash blocks as well.

WAY FORWARD AND APPLICATIONS

- 1. The promising results given in laboratory trials suggest the need for performing field trials in production and use of bottom ash blocks with suitable industrial collaboration.
- 2. There is a possibility of further improving the properties of bottom ash blocks by adding suitable doses of mineral additives (such as fly ash) and chemical admixtures to the cement-bottom ash mix used in production. Trials should be carried out to examine the cost effectiveness of such production.
- 3. In view of the low particle density (light weight properties) and thermal properties of bottom ash, there is a possibility of producing many innovative and useful building materials such as light weight wall panels or blocks or roofing panels with low thermal conductivity.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

REFERENCES

Baba, A. & Kaya, A., 2004 'Leaching characteristics of solid wastes from thermal power plants of western Turkey and comparison of toxicity methodologies', *Journal of Environment Management*, V73, pp. 199-207.

Bai, Y. & Basheer, P. 2001, 'Influence of Furnace Bottom Ash on Workability, Compressive Strength, and Durability of Concrete', *Seventh Can met/ACI*, pp. 157-173.

Beretka, J. & Mathew, P. J., 1985, 'Industrial wastes and by products', *Natural radioactivity of Australian building materials*. Health Phys, pp. 48,87.

Environment, Nuclear Safety and Civil Protection 1999, *Radiological Protection Principles concerning the Natural Radioactivity of Building Materials European Commission, 1999* (Radiation Protection 112). <https://ec.europa.eu/energy/sites/ener/files/documents/112.pdf>. [Accessed 25 August 2015]

Environment Protection Agency 2012, *Environmental Protection Agency, US, 2012*. http://www.epa.gov [Accessed 2013].

EPA, 2012. www.epa.gov. [Online]. http://www2.epa.gov/coalash [Accessed 2014].

Geetha, S. & Ramamuthy, Ri, V2011, Properties of Sintered low calcium bottom ash aggregate and biotets, Constructions and Building Materials India', pp. 2002-2013.

Hewamanna, R., Sumithrarachchi, R., Mahawatte, P., Nanayakkara, H. L.C., & Ratnayake, H., C., 1999, '*Natural radioactivity and gamma dose from Sri Lankan clay bricks used in building construction', Journal of Applied Radiation and Isotopes*, Elsevier, V 54, pp. 365-369[23 June 2014].

Hochstein, D. P., 2013, *Thermal Conductivity of Fiber-Reinforced Lightweight Cement Composites* (Doctoral dissertation, Columbia University)

Institution of Engineers Sri Lanka 2013, Coal, http://iesl.lk/page-1668325. [Accessed 5 July 2014]

Jayaranjan, M. L. D., Eric D. van Hullebusch & Annachhatre, A. P., 2014, '*Reuse options for coal fired power plant bottom ash and fly ash*', Springer Science.V 13, pp. 467-486[23 June 2014]

Keller, G., 1990, Radiation Exposure and Occupational Risks, 'Natural radiation exposure'. Berlin Springer. pp. 1-24

Kim, H. & Lee, H. 2011, 'Use of power plant bottom ash as fine and coarse aggregates in high-strength concrete', *Journal of Construction and Building Materials*, pp. 1115–1122.

Lee Taeyon, 2011, 'Leaching characteristics of bottom ash from coal fired electric generating plants and waste tire; individually and mixtures when used as construction site fill materials', Science Direct, Waste Management, pp. 246-252[23 June 2014].

Lev Eppelbaum, Izzy Kutasov & Arkady Pilchin Applied geothermics, "Thermal conductivity of rocks and density of fluids" Springer Berlin Heidelberg, 2014

Malhotra , V. & Ramezanianpour, A., 1994, Physical, Chemical, and Mineralogical Properties of Fly Ash. *CANMET*, V 2, pp. 7-18.

NEA-OECD, 1979, *Exposure to radiation from natural radioactivity in building materials*, OECD Paris: NEA Group of Experts OECD.

Nisnevich , M. & Eshel , Y., 2001, Using High-Volume Fly Ash in Lightweight Concrete with Bottom Ash as Aggregate, *Seventh Canmet/ACI*, V 1, pp. 99–114.

Prabhath W.A.C, Parththeeban M, Perera U.N.D & Nanayakkara S.M,A, 2014, *Experimental Investigation on Thermal Properties of Concrete*, 5th International Conference on Structural Engineering and Construction Management, Kandy, Sri Lanka Electronic Theses & Dissertations

Pavlenco, Malyshkin, MbI.mitkachehko, V. V., 2001, Aspects of Technology for Cementless Mortar from Wastes of the Abakan TPP Seventh Canmet/ACI. *CANMET*, V 7, pp. 815–834.

Quindos, L. S., Fernandez, P. L., Rodenas, C., Gomez –Arozemena, J., and Arteche, J., 2004, *Conversion factors for external gamma dose derived from natural radionuclides in soils*, Environ. Radioact.

Recycled Materials Resource Centre Madison, US, 2012, *Coal Bottom Ash/ Boiler Slag- Material Description*, 2012, http://rmrc.wisc.edu/ug-mat-coal-bottom-ashboiler-slag/. [25.08.2015].

Sandra G. Lingbawan, 2009, *Thermal Properties of Fly Ash Bricks*. ADFA Journal of Undergraduate Engineering Research, V 2, No 1 [23.08.2014].

Savitha, R. & Ranatunge, N., 2010, A Study on Types and Quality of Aggregates Used in Building Construction, Annual Research Symposium, NBRO, Colombo.

Singh, S., Rani, A. & Maharaj, R. K., 2004, '226Ra, 232Th and 40 K analysis in soil samples from some areas of Punjab and Himachal Pradesh, India using gamma ray spectrometry'. Sciencedirect, V 39, pp 431-439 [Accessed 2014].

AS 1774.24:1997, Refractories - Refractory materials physical test methods - Resistace to thermal shock, Standards Australia 1997, Australia.

ASTMD 3987:2006: Standard test method for shake extraction of solid waste with water, Standards America 2006, ASTM International, US.

ASTM C618:2012a: Standard specification for coal fly ash and raw or calcined natural pozzalon for use in concrete, Standards America 2012, ASTM International, US.

ASTM C87/C87M:2010: Standard test method for effect of organic impurities in fine aggregate on strength of mortar, Standards America, 2010, ASTM International, US.

BS 812-102:1989: Testing Aggregates:Part 102: Methods for sampling, British Standards Institution, London

BS EN 933-1:1997: Tests for geometrical properties of aggregates:Part 1: Determination of particle size distribution- Sieving method, British Standards Institution, London

BS EN 932-1:1997: Tests for general properties of aggregates: Part 1: Methods for sampling, British Standards Institution, London University of Moratuwa, Sri Lanka.

BS EN 10973 1998 Testsofoic mechanica Kandi Strystedi Properties of aggregates: Part 3: Determination of loosen bulk density and voids, British Standards Institution, London.

BS EN 932-2:1999: Tests for general properties of aggregates: Part 2: Methods for reducing laboratory sample, British Standards Institution, London.

BS EN197-1:2000: Cement- Part 1: Composition, specifications and conformity criteria for common cements, Incorporating Amendment No.1, British Standard Institution, London.

BS EN 1097-6:2002: Tests for mechanical and physical properties of aggregates: Part 6: Determination of particle density and water absorption, British Standards Institution, London.

BS EN13055-1:2002: Lightweight aggregates: Part 1: Lightweight aggregates for concrete, mortar and grout, British Standards Institution, London.

BS EN 12620:2002: Aggregates for concrete, British Standards Institution, London. BS EN13055-1:2002: Lightweight aggregates: Part 1: Lightweight aggregates for concrete, mortar and grout, British Standard Institution, London. SLS 855-1:1989: Specification for cement blocks: Part 1: Requirements, Sri Lanka Standards Institution, Colombo.

SLS 855-2:1989: Specification for cement blocks: Part 2: Test Methods, Sri Lanka Standards Institution, Colombo.

SLS 107-2:2008: Specification for ordinary Portland cement:Part 2: Test Methods, Sri Lanka Standards Institution, Colombo.

SLS 515:2003: Specification for masonry cement, Sri Lanka Standards Institution, Colombo.

SLS 1382-1:2009: Specification for compressed stabilized earth blocks: Part 1: Requirements, Sri Lanka Standards Institution, Colombo.

SLS 1382-1:2009: Specification for compressed stabilized earth blocks: Part 2: Test Methods, Sri Lanka Standards Institution, Colombo.

Thomas, M. 2007, Optimizing the use of fly ash in concrete, Google scholar, Washington, Google scholar books [21 August 2015] http://www.cement.org/docs/default-source/fc_concrete_technology/is548-optimizing-the-use-of-fly-ash-concrete.pdf.

Umar, A., Onimisi, M., & Jonah, S., 2012, Baseline Measurement of Natural Radioactivity in Soil, Vegetation and Water in the Industrial District of the Federal Capital Territory (FCT) Abuga, Nigeria British Journal of Applied Science & Technology, V2, pp.264-2.145. mrt. ac.lk

UNSCEAR, 1993, United Nations Scientific Committee on the Effects of Atomic Radiation, Exposure from Natural Sources of Radiation.

UNSCEAR, 2000, Exposure from natural radiation sources
ANNEXURE:

Annexure 1: Detail test results of sieve analysis of bottom ash samples

Oven dry weight= 597.0 g Weight after washing = 549.3g

Sieve size	Mass retained	Cumulative mass	% mass passing	Value specified in BS
(mm)	(g)	retained (g)		EN 12390 for fine agg.
				D≤4mm and d=0
16	0	0	100	
10	0	0	100	
14	20.48	20.48	96.6	
10	21.02	52.44	01.0	
10	31.93	52.41	91.2	
8	60.46	112.87	81.1	100
5	50.45	163.32 ity of Moratuw	72.6 a Sri Lanka	95-100
4	25.48ctro	nic These & Di	sserta68041s	85-99
	🦉 www.lil	o.mrt.ac.lk		
2.8	52.18	240.98	59.6	
2	50.13	291.11	51.2	
_			0112	
1	64.32	355.43	40.5	
0.5	37.08	392 51	34.3	5-45
0.5	57.00	572.51	54.5	5-45
0.3	30.94	423.45	29.1	
0.15	72.01	196.36	16.0	
0.15	12.71	470.30	10.7	
0.063	49.72	546.08	8.5	0-3
	50.02	507.00	0	
Pan	50.92	597.00	U	

Oven dry weight	= 484.1 g
Weight after washing	= 436.4 g

Table A1-2: Sieve analysis of bottom ash Sample No. 1 after removing over 8mm particles

Sieve size	Mass retained	Cumulative	% mass	Value
(mm)	(g)	mass retained	passing	specified in
		(g)		BS EN 12390
				for fine agg.
				D≤4mm and
				d=0
8	0	0	100.0	100
5	50.45	50.45	89.6	95-100
4	25.48	75.93	84.3	85-99
2.8	52.18	128.11	73.5	
2	Uni <u>50</u> ersity o Electronic T	f Mq r 8124wa, S heses & Disse	sri Laggg. ertations	
1	ww64.490.mr	t.ac.b42.73	49.9	
0.5	36.91	279.64	42.2	5-45
0.3	30.94	310.58	35.8	
0.15	72.91	383.49	20.8	
0.063	49.72	433.21	10.5	0-3
Pan	50.89	484.10	0.0	

Oven dry weight	= 843.0 g
Weight after washing	= 828.5 g

Sieve size	Mass retained	Cumulative	% mass	Value
(mm)	(g)	mass retained	passing	specified in
		(g)		BS EN 12390
				for fine agg.
				D≤4mm and
				d=0
8	23.0	23.0	97.3	100
5	28.0	51.0	94.0	95-100
4	22.5	73.5	91.3	85-99
2.8	48.5	122.0	85.5	
the second se	University o	f Moratuwa, S	Sri Lanka.	
2	Electronic T	hesed & Disso	ertati 848	
0.5	<u>www.lib.mr</u> 117.0	277.5	67.1	55-100
0.3	64.5	342.0	59.4	
0.063	486.5	828.5	1.7	0-3
Pan	14.5	843.0	0.0	

Table A1-3: Sieve analysis of bottom ash Sample No. 2

Oven dry weight	= 800.0 g
Weight after washing	= 623.5 g

Sieve size	Mass retained	Cumulative	% mass	Value specified
(mm)	(g)	mass retained	passing	in BS EN
		(g)		12390 for fine
				agg. D≤4mm
				and d=0
8	0.0	0.0	100.0	100
5	8.1	8.1	99.0	95-100
4	4.5	12.6	98.4	85-99
2.8	14.0	26.6	96.7	
	University of Electronic The	Morat50, ta, Sri eses & Disserta	Lank ^{23.7}	
1	www.fib.mrt.a	e.lk ^{96.1}	84.6	
0.5	87.1	137.2	82.9	55-100
0.3	42.1	179.3	77.6	
0.15	250.0	429.3	31.1	
0.063	435.8	615.1	23.1	0-3
Pan	184.9	800.0	0.0	

Table A1-4: Sieve analysis of bottom ash Sample No. 3

Oven dry weight	= 1000.5 g
Weight after washing	= 837.1

Sieve size	Mass	Cumulative	% mass	Value specified
(mm)	retained (g)	mass retained	passing	in BS EN 12390
		(g)		for fine agg.
				$D \leq 4mm$ and $d=0$
Q	43.0	12.0	05.7	100
0	43.0	45.0	75.1	100
5	17.1	60.1	94.0	95-100
4	49.4	109.5	89.1	85-99
2	50.6	160.1	84.0	
1	108.2	268.3	73.2	
0.5	Uzgiyersit) Electroni	y of 339.5atuv c Theses & D	va, Sgi Lanka Dissertations	55-100
0.3	wr43wr.lib.	mrt. #0.1.4	58.9	
0.063	425.6	837.0	16.3	0-3
Pan	163.5	1000.5	0.0	

Table A1-5: Sieve analysis of bottom ash Sample No. 4

Annexure 2: Detail test results of physical properties and comparison of test results (Blocks produced with conventional cement block making machine)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure Load	Strength
				(kN)	(N/mm^2)
1	390	100	192	201.2	5.2
2	390	100	193	237.6	6.1
3	390	100	194	207.8	5.3
4	390	100	193	232.3	6.0
			A	verage	5.6

Table A2-1: Compressive strength test results of solid blocks made with Cement: River sand: Quarry dust = 1:3:3 mix proportion (RQ 1)

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations

Table A2-2 Compressive visiting thirtest desults of solid blocks made with Cement: Quarry dust : Bottom ash = 1:3:3 mix proportion (QB 1)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure Load	Strength
				(kN)	(N/mm^2)
1	390	100	194	170.6	4.4
2	390	100	194	180.5	4.6
3	390	100	198	183.2	4.7
4	390	100	198	106.6	2.7
			A	verage	4.1
			Standar	rd deviation	0.9

Table	A2-3:	T-Analysis	of Con	npressive	strength	test	results	of	solid	blocks	made
with C	Cement:	River sand:	Quarry	dust = 1	1:3:3 and	Cen	nent: Qu	uarry	y dust	: Bottor	n ash:
=1:3:3	Mix p	roportion									

Source of	Compress	Compressive strength		t-value	t-value at 0.05
Variation	(N/mm2)		freedom	computed	level of
	Average	Standard Deviation			significance
RQ 1	5.6	0.5			
QB 1	4.1	0.9	6	1.174	2.447

Comment: Based on Student T-distribution there is no significant difference at 95% confident level in between compressive strength of blocks produced with mix Cement: River sand: Quarry dust = 1:3:3 and Cement: Quarry dust: Bottom ash: =1:3:3 Mix proportion iversity of Moratuwa, Sri Lanka.

(()) Electronic Theses & Dissertations

Table A2-4	ensity_test_results	of solid blocks	made with	Cement: R	iver sand:
Quarry dust=	1:3:3 mix proport	ion (RQ 1)			
	<u>^</u>				

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	14922	14259	15848	8328	1896
2	14999	14224	15817	8316	1896
3	15241	14441	15981	8443	1916
4	15204	14669	16054	8513	1945
			Ave	rage	1913
			Standard	deviation	23.2

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
	12022	10000	10156	55.40	1.150
1	12023	10993	13176	5743	1479
2	12139	11009	13167	5768	1488
_		11009	10107	0,000	1.00
3	12671	11529	13708	6155	1526
4	12266	11250	13380	5930	1510
			Ave	rage	1501
			Standard	deviation	21.5

Table A2-5: Density test results of solid blocks made with Cement: Quarry dust: Bottom ash = 1:3:3 mix proportion (QB 1)

Table A2-6: T-Analysis of density test results of solid blocks made with Cement: River sand: Quarry dust = 1:3:3 and Cement: Quarry dust: Bottom ash: =1:3:3 Mix proportion University of Moratuwa, Sri Lanka,

proportion "	L UIII	orbity of the	ioraiana,	on Luma.	
Source of) Densit	vokg/m3Thes	esDegreeis	sertations	t-value at
Variation	www	lib.mrt.ac	.lk of	computed	0.05 level of
	Average	Standard Deviation	freedom		significance
RQ 1	1913.4	23.2			
QB 1	1500.8	21.5	6	57.427	2.447

Comment: Based on Student T-distribution there is a significant difference at 95% confident level in between density of blocks produced with Cement: River sand: Quarry dust = 1:3:3 and Cement: Quarry dust: Bottom ash: =1:3:3 Mix proportion

The density of blocks made with cement, bottom ash and quarry dust is 78% of blocks made with cement, river sand and quarry dust.

Ser. No	Normal	Oven Dry	Wet	Weight in	Water
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	14922	14259	15848	8328	211
2	14999	14224	15817	8316	212
3	15241	14441	15981	8443	204
4	15204	14669	16054	8513	184
			Ave	rage	203
			Standard	deviation	13.3

Table A2-7: Water absorption results of solid blocks made with Cement: River sand: Quarry dust= 1:3:3 mix proportion (RQ 1)

Table A2-8: Water absorption of solid blocks made with Cement: Quarry dust: Bottom ash 1:3:3 toix proportion (QB) bratuwa. Sri Lanka.

	VIIIIV	JUDILY UX SVI	<u>oautumu, oa</u>	I Juillill,	
Ser. No	Normal	ronien Pryse	es & Wetsser	tations in	Water
	Weight (g)W	1Weight(g).	KWeight (g)	water (g)	absorption
					kg/m ³
1	12023	10993	13176	5743	294
2	12139	11009	13167	5768	292
3	12671	11529	13708	6155	288
4	12266	11250	13380	5930	286
			Ave	erage	290
			Standard	deviation	3.4

Table A2-9: T-Analysis of water absorption test results of solid blocks made with Cement: River sand: Quarry dust = 1:3:3 and Cement: Quarry dust: Bottom ash: =1:3:3 Mix proportion

Source of	Water a	absorption	Degree of	t-value	t-value at
Variation	kg/m ³		freedom	computed	0.05 level of
	Average	Standard Deviation			significance
RQ 1	202.9	13.3			
QB 1	289.9	3.4	6	-18.362	2.447

Comment: There is a significant difference at 95% confident level in between water absorption of blocks produced with Cement: River sand: Quarry dust = 1:3:3 and Cement: Quarry dust: Bottom ash: =1:3:3 Mix proportion. The water absorption of blocks made with cement, bottom ash and quarry dust is 143% of blocks made with cement, river sand and quarry dust and it exceeded the limit specified in SLS 855.

University of Moratuwa, Sri Lanka.

Table A2	10. Compressi	renstrength des	its results to fscol	lid blocks mad	e with Cement:
River sand	Quarry_dust;	Crushed rock a	aggregate = 1:	2:2:3 mix prop	portion (RQC 1)
Serial No.	Length	Width	Height	Maximum	Compressive

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	192	297.1	7.6
2	390	100	193	390.5	10.0
3	390	100	194	340.5	8.7
4	390	100	193	338.2	8.7
			Ave	rage	8.8
			Standard	deviation	1.0

Table A2-11: Compressive strength test results of solid blocks made with Cement: Quarry dust: Bottom ash: Crushed rock aggregate= 1:2:2:3 mix proportion (QBC 1)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	225.7	5.8
2	390	100	190	270.2	6.9
3	390	100	190	260.6	6.7
4	390	100	190	245.3	6.3
			Ave	rage	6.4
			Standard	deviation	0.5

Table A2-12: T-Analysis of Compressive strength test results of solid blocks made with Cement River sand: Quarry dust: Crushed rock aggregate= 1:2:2:3 and Cement: Quarry dust: Bottom ash: Crushed rock aggregate 1:2:2:3 Mix proportion

Source of	Water absorption akg/h³ Average Standard Deviation		Degree of freedom	t-value computed	t-value at 0.05 level of significance
RQC 1 QBC 1	8.8 6.4	0.5	6	1.744	2.447

Comment: There is no significance difference at 95% confident level in between compressive strength of blocks produced with mix Cement: River sand: Quarry dust: Crushed rock aggregate= 1:2:2:3 and Cement: Quarry dust: Bottom ash: Crushed rock aggregate 1:2:2:3 Mix proportion.

Ser. No	Normal	Oven Dry	Wet Weight in		Density	
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³	
1	17316	17245	17916	10143	2219	
2	17008	16917	17604	9947	2209	
3	17023	16932	17620 9962		2211	
4	17300	17232	17902	10129	2217	
			Aver	age	2214	
			Standard	deviation	4.5	

Table A2-13: Density test results of solid blocks made with Cement: River Sand: Quarry Dust: Crushed rock aggregate= 1:2:2:3 mix proportion (RQC 1)

Table A2-14 Density test results of solid blocks made with Gement: Quarry Dust: Bottom Astr Grushed rock aggregate = 1:2:23 mix proportion (QBC 1)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
and the second se	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	14929	14652	15797	8258	1943
2	15256	14992	16010	8411	1973
3	15245	14980	16001	8400	1971
4	14940	14664	15806	8269	1946
			Ave	rage	1958
			Standard	deviation	15.8

Table A2-15: T-Analysis of density test results of solid blocks made with Cement: River sand: Quarry dust: Crushed rock aggregate= 1:2:2:3 and Cement: Quarry dust: Bottom ash: Crushed rock aggregate 1:2:2:3 Mix proportion

Source of	Dens	ity kg/m ³	Degree of	t-value	t-value at	
Variation	Average	Standard Deviation	freedom	computed	0.05 level of significance	
RQC 1	2214.0	4.5				
QBC 1	1958.2	15.8	6	49.387	2.447	

Comment: There is a significant difference at 95% confident level in between density of blocks produced with mix Cement: River sand: Quarry dust: Crushed rock aggregate= 1:2:2:3 and Cement: Quarry dust: Bottom ash: Crushed rock aggregate 1:2:2:3 Mix proportion

The density of blocks made with cement, quarry dust, bottom ash, and Crushed rock aggregate is 88% of blocks made with cement, river sand, quarry dust and Crushed University of Moratuwa, Sri Lanka.

Electronic Theses & Dissertations

rock aggregate.

www.lib.mrt.ac.lk

Table A2-16: Water absorption results of solid blocks made with Cement: River Sand: Quarry Dust: Crushed rock aggregate= 1:2:2:3 mix proportion (RQC 1)

		00 0		r r	
Ser. No	Normal	Oven Dry	Wet	Weight in	Water absorption
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	17316	17245	17916	10143	86
2	17008	16917	17604	9947	90
3	17023	16932	17620	9962	90
4	17300	17232	17902	10129	86
			Ave	rage	88
			Standard	deviation	2.0
			1		

Douoni Asii.	Bottom Ash. Crushed Tock aggregate – 1.2.2.5 mix proportion (QBC 1)								
Ser. No	Normal	Oven Dry	Wet	Weight in	Water				
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption				
					kg/m ³				
1	14929	14652	15797	8258	152				
2	15256	14992	16010	8411	134				
3	15245	14980	16001	8400	134				
4	14940	14664	15806	8269	152				
			Ave	erage	143				
			Standard	deviation	10.1				

Table A2-17: Water absorption of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:2:2:3 mix proportion (QBC 1)

Table A2-18 T-Analysis of water absorption test results of solid blocks made with Cement: River sand: Quarry dust: Crushed rock aggregater 1:2:2:3 and Cement: Quarry dust: Bottom ash: Crushed rock aggregate 1:2:2:3 Mix proportion

Source of	Water absorption kg/m ³		Degree of	t-value	t-value at		
Variation	Average Standard Deviation		freedom	computed	0.05 level of significance		
RQC 1	88.0	2.0					
QBC 1	142.9	10.1	6	-13.361	2.447		

Comment: There is a significant difference at 95% confident level in between water absorption of blocks produced with Cement: River sand: Quarry dust: Crushed rock aggregate= 1:2:2:3 and Cement: Quarry dust: Bottom ash: Crushed rock aggregate 1:2:2:3 Mix proportion. The water absorption of blocks made with cement, bottom ash and quarry dust is 143% of blocks made with cement, river sand and quarry dust and it exceeded the limit specified in SLS 855.

Table A2-19: Compressive strength test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate= 1:4:3 mix proportion (BC 1)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	
1	390	100	190	156.1	4.0
2	390	100	190	204.1	5.2
3	390	100	190	173.2	4.4
4	390	100	190	186.1	4.8
			Ave	rage	4.6
			Standard	deviation	0.5

Table A2-20: Compressive strength test results of solid blocks made with Cement: Ouarry Dust Crushed not a solid block and the comparison of the company of

Quality Dusta inside idea aggregate - 144.5 mining di oportion (QC 1)							
Serial No.	Lengthect	ronWidthese	es &Heightser	taMaximum	Compressive		
	🏂 (m m) WW	.lib.(mm).ac.	lk (mm)	Failure	Strength		
				Load (kN)	(N/mm^2)		
1	390	100	190	311.6	8.0		
2	390	100	190	401.8	10.3		
3	390	100	190	242.2	6.2		
4	390	100	190	456.8	11.7		
			Ave	erage	9.1		
			Standard	deviation	2.4		

Table A2-21: T-Analysis of Compressive strength test results of solid blocks made with Cement: Quarry Dust: Crushed rock aggregate= 1:4:3 and Cement: Quarry Dust: Crushed rock aggregate= 1:4:3 Mix proportion

Source of	Compres	ssive strength	Degree of	t-value	t-value at
Variation	(N/mm2)		freedom	computed	0.05 level of
	A	Ctau da ud			significance
	Average	Standard			
		Deviation			
BC 1	4.6	0.5			
QC 1	9.1	2.4	6	2.201	2.447

Comment: There is no significant difference at 95% confident level in between compressive strength of blocks produced with mix Cement: Bottom Ash: Crushed rock aggregate= 1:4:3 and Cement: Quarry Dust: Crushed rock aggregate= 1:4:3 Mix proportion.

Table A2-22 Density test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate ct 19131 mix proportion (Beservations

Ser. No 🦉	3 Normal W	lioven Day.	k Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	13237	13001	14183	6635	1722
2	13124	12906	14093	6500	1700
3	13025	12730	14026	6541	1701
4	12843	12714	14100	6531	1680
			Ave	rage	1701
			Standard	deviation	17.4

Table A2-1	3: Water a	absorption	test resu	lts of soli	d blocks	made	with	Cement:
Bottom Asl	n: Crushed	rock aggr	regate= 1	:4:3 mix	proportio	on (BC	21)	

		00 0	I	()	
Ser. No	Normal	Oven Dry	Wet	Weight in	Water
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	13237	13001	14183	6635	157
2	13124	12906	14093	6500	156
3	13025	12730	14026	6541	173
4	12843	12714	14100	6531	183
			Ave	erage	167
			Standard	deviation	13.2

Comment: The density and water absorption of blocks made with cement, bottom ash and Crushed rock aggregate are given above. Comparison was not carried out, since same pattern of earlier results continued. Sri Lanka.

Table A2-24 compressive strength test results of solid blocks made with Cement: Quarry dust. Bottom Ash = 14.3 mix proportion (QB 1)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm ²)
1	390	100	190	153.4	3.9
2	390	100	190	150.4	3.9
3	390	100	190	150.2	3.9
4	390	100	190	154.1	4.0
			Ave	orage	3.9
			Standard	deviation	0.1

Table A2-25: Density test results of solid blocks made with Cement: Quarry dust: Bottom Ash = 1:4:3 mix proportion (QB 1)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	12241	11766	12870	5590	1616
2	12540	12053	12900	5620	1656
3	12320	11839	12680	5401	1626
4	12187	11789	12799	5631	1645
			Ave	rage	1636
			Standard	deviation	17.7

Table A2-26: Water absorption test results of solid blocks made with Cement: Quarry dust: Bottom Ash = 1:4:3 mix proportion (QB 1)

		<u>1</u>		/	
Ser. No	Normal	Oven Dry	Wet	Weight in	Water
1.50	Weight (g)	ersity of M	orateighta(g)S1	i Lankag)	absorption
the second	Elect	romic These	es & Dissei	tations	kg/m ³
	🥔 www	.mo.mit.ac.	IK		
1	12241	11766	12870	5590	152
2	12540	12053	12900	5620	116
3	12320	11839	12680	5401	116
4	12187	11789	12799	5631	141
			Ave	erage	131
			Standard	deviation	18.1

Comment: The density and water absorption of blocks made with cement, bottom ash and Crushed rock aggregate are given above. Comparison was not carried out, since the same pattern of earlier results continued.

Table A2-27: Compressive strength test results of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:3:1:1.5 mix proportion (QBC 2)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm ²)
1	390	100	190	224.7	5.8
2	390	100	190	181.0	4.6
3	390	100	190	200.8	5.1
4	390	100	190	200.4	5.1
			Ave	rage	5.2
			Standard	deviation	0.5

Table A2-28: Density test results of solid blocks made with Cement: Quarry Dust: Bottom Ash, Crushed rock aggregate = 1:3:1:1.5 mix proportion (QBC 2)

Dottoin 1 of	Crushed rock	19910 Bull			<i>C 2)</i>
Ser. No 🔇	Normal	Oven 10	Wet Weight	Weight in	Density kg/m ³
	Weight (g)	.11b.mrt.a	IC.IK (g)	water (g)	
	0	Weight			
		weight			
		(g)			
1	13310	13146	14251	6971	1806
2	13095	12992	14077	6894	1809
3	13290	13120	14239	6960	1802
4	13320	13164	14260	6988	1810
			Aver	rage	1807
			Standard	deviation	3.4

Table A2-29	: Water a	bsorption	of solid	blocks	made	with	Cement:	Quarry	Dust:
Bottom Ash:	Crushed	rock aggr	egate=	1:3:1:1.5	5 mix	prop	ortion (C	(BC 2)	

		60 0	F F		- /
Ser. No	Normal	Oven Dry	Wet	Weight in	Water
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	13310	13146	14251	6971	152
2	13095	12992	14077	6894	151
3	13290	13120	14239	6960	154
4	13320	13164	14260	6988	151
			Ave	rage	152

Standard deviation

1.3

Comment: Control mix was not prepared to this mix proportion. Compressive strength and water absorption are within the limit specified in SLS 855.Density results satisfied the limit specified in SLS 855. Comments on light weight property cannot be nade for this mix, since a control mix was not prepared.

Electronic Theses & Dissertations

Table A2-3 Compressive strength test results of solid blocks made with Cement: Bottom Ash= 1:7 mix proportion (B1)

Serial No.	Length	Width	Height (mm)	Maximum	Compressive
	(mm)	(mm)		Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	41.5	1.1
2	390	100	190	48.5	1.2
3	390	100	190	44.8	1.1
4	390	100	190	45.2	1.2
			Aver	rage	1.2
			Standard	deviation	0.1

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	8443	7766	10315	3310	1109
2	8703	7950	10285	3338	1144
3	8603	7850	10180	3218	1128
4	8547	7860	10408	3430	1126
			Ave	rage	1127
			Standard	deviation	14.6

Table A2-4: Density test results of solid blocks made with Cement: Bottom Ash = 1:7 mix proportion (B1)

Table A2-52: Water absorption of solid blocks made with Cement: Bottom Ash= 1:7 mix proportion (B1)

Ser. No	Normal	Oven Dry	Wet	Weight in	Water
1.50	Weight (g)	ersity of M	orweighta(g)St	i Lankag)	absorption
A. A. A.	Elect	lib mrt ac	es & Disser	tations	kg/m ³
			IK		
1	8443	7766	10315	3310	364
2	8703	7950	10285	3338	336
3	8603	7850	10180	3218	335
4	8547	7860	10408	3430	365
			Ave	rage	350
			Standard	deviation	16.8

Comment: Control mix was not prepared to this mix proportion. Compressive strength was within the limit specified in SLS 855. Water absorption exceeded the limit specified in SLS 855. Density results satisfied the limit specified in SLS 855.

Comments cannot be made on light weight property of this mix, since a control mix was not prepared.

Serial No	Lenoth	Width	Height (mm)	Maximum	Compressive
Benar 100.	Longui	VV Kitili		wantani	compressive
	(mm)	(mm)		Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	166.5	4.3
2	390	100	190	160.5	4.1
3	390	100	190	163.5	4.2
4	390	100	190	162.5	4.2
	1		Ave	rage	4.2

Table A2-63: Compressive strength test results of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:3.5:2:1 mix proportion(QBC 3)

University of Moratuwa, Sri Lanka. Standard deviation Electronic Theses & Dissertations

Table A2-74: Density test results of solid blocks made with Cement: Bottom Ash: Quarry Dust: Crushed rock aggregate= 1:3.5:2:1 mix proportion (QBC 3)

Qualify Bush Crushed room affieldate There and the proportion (QBC D)							
Ser. No	Normal	Oven Dry	Wet	Weight in	Density		
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³		
1	13287	12569	13310	6265	1784		
2	13159	12424	13266	6250	1771		
3	13205	12470	13306	6301	1780		
4	13230	12471	13302	6273	1774		
	·		Ave	rage	1777		
			Standard	deviation	5.9		

Table A2-35	: Water absorption	of solid blocks	made with	1 Cement:	Bottom	Ash:
Quarry Dust:	: Crushed rock agg	gregate= 1:3.5:2	:1 mix pro	portion (Q	(BC 3)	

Ser. No	Normal	Oven Dry	Wet	Weight in	Water		
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption		
					kg/m ³		
1	13287	12569	13310	6265	105		
2	13159	12424	13266	6250	120		
3	13205	12470	13306	6301	119		
4	13230	12471	13302	6273	118		
			Ave	rage	116		
			Standard	deviation	7.0		

Comment: Compressive strength, density and water absorption were within the limits specified in SLS 855. Comments on light weight property cannot be made, since a control mix was not prepared of Moratuwa, Sri Lanka.

Table A2-8: compressive strength test results of solid blocks made with Cement: Quarry Dust-Crushed rock aggregate = 1.12:8 mix proportion (QC 2)

Serial No.	Length	Width	Height	Maximum	Compressive			
	(mm)	(mm)	(mm)	Failure	Strength			
				Load (kN)	(N/mm^2)			
1	390	100	194	49.5	1.3			
2	390	100	194	47.5	1.2			
3	390	100	198	49.0	1.3			
4	390	100	198	48.0	1.2			
			Ave	rage	1.2			
			Standard	deviation	0.0			

Table A2-37: Compressive strength test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate = 1:12:8 mix proportion (BC 2)

Carriel No.	Lonoth	Width	Haight	Movimum	Commerciaire
Serial No.	Lengin	wiath	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	192	58.6	1.5
2	390	100	193	59.6	1.5
3	390	100	194	59.0	1.5
4	390	100	193	59.2	1.5
			Ave	rage	1.5
			Standard	deviation	0.0

Table A2-38: T-Analysis of Compressive strength test results of solid blocks made with Cement: Quarry Duste Crushed rock aggregate, S11:12:80463. Cement: Bottom Ash: Crushed rock aggregate 11:12:80463. ptoportion relations

Source of	Compressive strength		Degree of	t-value	t-value at
Variation	(N	[/mm2)	freedom	computed	0.05 level of
					significance
	Average	Standard			
		Deviation			
QC 2	1.2	0.0			
DCA	1.5	0.0		1 221	0.447
BC 2	1.5	0.0	6	1.321	2.447

Comment: Based on Student T-distribution there is no significant difference at 95% confident level in between compressive strength of blocks produced with mix Cement: Bottom Ash: Crushed rock aggregate = 1:12:8 and Cement: Quarry Dust: Crushed rock aggregate =1:12:8.

Table A2-39: Density test results of solid blocks made with Cement: Quarry Dust: Crushed rock aggregate = 1:12:8 mix proportion (QC 2)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	15638	15000	16292	8981	2052
2	15817	15235	16560	9130	2050
3	15730	15100	16390	9095	2070
4	15631	15076	16454	9029	2030
			Ave	rage	2051
			Standard	deviation	16.1

Table A2-40 Density test results of solid blocks made with Genent: Bottom Ash: Crushed rock aggregate = 112.8 mix proportion (BC 2) at one

Ser. No	Normal	Oven Dry	Wet Wet	Weight in	Density
(Manif	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	15771	15214	16550	9130	2050
2	15518	14941	16280	8980	2047
3	15674	15116	16453	9034	2037
4	15617	15080	16385	9074	2063
			Ave	rage	2049
			Standard	deviation	10.4

Table A2-41: T-Analysis of density test results of solid blocks made with Cement: Quarry Dust: Crushed rock aggregate = 1:12:8 and Cement: Bottom Ash: Crushed rock aggregate = 1:12:8 mix proportion

Source of	Dens	ity kg/m ³	Degree of	t-value	t-value at
Variation	Average	Standard Deviation	freedom	computed	0.05 level of significance
QC 2	2050.6	16.1			
BC 2	2049.3	10.4	6	-0.236	2.447

Comment: Based on Student T-distribution there is no significant difference at 95% confident level in between density of blocks produced with mix Cement: Quarry Dust: Crushed rock aggregate = 1:12:8 and Cement: Bottom Ash: Crushed rock aggregate = 1:12:8 mix proportion.

Table A2-92: Water absorption of solid blocks made Cement: Quarry Dust: Crushed rock aggregate = 1:12:8 mix proportion (QC 2)

Ser No	Northecti	THESE	s & Dissert	attopisht in	Water
SCI. 110	1 Official	lib mrt og l		vv eight in	vv ater
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	15638	15000	16292	8981	177
2	15817	15235	16560	9130	178
3	15730	15100	16390	9095	177
4	15631	15076	16454	9029	186
			Ave	rage	179
			Standard	deviation	4.2

Table A2-103: Water absorption results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate = 1:12:8 mix proportion (BC 2)

Ser. No	Normal	Oven Dry	Wet	Weight in	Water
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	15771	15214	16550	9130	180
2	15518	14941	16280	8980	183
3	15674	15116	16453	9034	180
4	15617	15080	16385	9074	178
			Ave	rage	181
			Standard	deviation	2.1

Table A2-44-7-Analysis of water absorption test results of solid blocks made with Cement: Quary Dust: Crushed rock aggregate = 1.12.8 and Cement: Bottom Ash: Crushed rock aggregatev=1.12.8 mix apportion

Source of	Water absorption kg/m ³		Degree of	t-value	t-value at
Variation	Average	Standard Deviation	freedom	computed	0.05 level of significance
Mix 1	179.4	4.2			
Mix2	180.5	2.1	6	0.426	2.447

Comment: Based on Student T-distribution there is no significant difference at 95% confident level in between water absorption of blocks produced with mix Cement: Quarry Dust: Crushed rock aggregate = 1:12:8 and Cement: Bottom Ash: Crushed rock aggregate = 1:12:8 mix proportion

Table A2-45: Compressive strength test results of solid blocks made with Cement: River sand: Quarry dust = 1:4:5 mix proportion (RQ 2)

Serial No.	Length	Width	Height	Maximum	Compressive		
	(mm)	(mm)	(mm)	Failure	Strength		
			Load (kN)		Load (kN) (N/z		(N/mm^2)
1	390	100	192	180.0	4.6		
2	390	100	193	195.0	5.0		
3	390	100	194	144.0	3.7		
4	390	100	193	135.0	3.5		
			Average		4.2		
			Standard	deviation	0.7		

University of Moratuwa, Sri Lanka. Table A2-46T Compressive strength test results of solid blocks made with Cement: Quarry dust: Bortom ash= 1.4:5 mix proportion (QB 2)

Serial No.	Length W	.110 Width ac.	IK Height	Maximum	Compressive
	(mm)	(mm)	(mm)	(mm) Failure	
				Load (kN)	(N/mm ²)
1	390	100	194	135.3	3.5
2	390	100	194	134.0	3.4
3	390	100	198	134.2	3.4
4	390	100	198	142.0	3.6
			Average		3.5
			Standard	deviation	0.1

Table A2-47: T-Analysis of Compressive	strength test results of solid blocks made
with Cement: River Sand: Quarry Dust =	1:4:5 and Cement: Quarry dust: Bottom
ash= 1:4:5 Mix proportion	

Source of	Compres	ssive strength	Degree of	t-value	t-value at
Variation	(N/mm2)		freedom	computed	0.05 level of
	Average	Standard			significance
		Deviation			
RQ 2	4.2	0.7			
QB 2	3.5	0.1	6	0.633	2.447

Comment: Based on Student T-distribution there is no significant difference at 95% confident level in between compressive strength of blocks produced with mix with Cement: River Sand: Quarry Dust = 1:4:5 and Cement: Quarry dust: Bottom ash= 1:4:5 Mix proportion

University of Moratuwa, Sri Lanka.

Table A2 48. Density heat results of some block block brater with Comment: River sand: Quarry dust = 1:4:5 mix propertion (RQ P)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	15803	15012	16455	8740	1946
2	16018	15182	16622	8875	1960
3	15910	15116	16560	8860	1963
4	15913	15083	15083 16512 8756		1945
			Average		1953
			Standard	9.4	

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	12574	11085	13335	5965	1504
2	12595	11054	13305	5930	1499
3	12506	10956	13216	5853	1488
4	12653	11132	13398	6050	1515
			Average		1501
			Standard	deviation	11.2

Table A2-49: Density test results of solid blocks made with Cement: Quarry dust: Bottom ash= 1:4:5 mix proportion (QB 2)

Table A2-120: T-Analysis of density, test results of solid blocks made with Cement: River Sand Quarry Dust = 1:4:5 and Cement: Quarry dust: Bottom ash= 1:4:5 Mix proportion Electronic Theses & Dissertations

Source of	wwwDensitynkg/m2.1k		Degree of	t-value	t-value at
Variation	Average	Standard Deviation	freedom	computed	0.05 level of significance
RQ 2	1953.3	9.4			
QB 2	1501.5	11.2	6	92.322	2.447

Comment: Based on Student T-distribution there is a significant difference at 95% confident level in between density of blocks produced with Cement: River Sand: Quarry Dust = 1:4:5 and Cement: Quarry dust: Bottom ash= 1:4:5 Mix proportion. The density of blocks made with cement, bottom ash and quarry dust was 77% of blocks made with cement, river sand and quarry dust.

Sand. Quarty Dast- 1.4.5 mix proportion (RQ 2)					
Ser. No	Normal Oven Dry		Wet	Weight in	Water
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	15803	15012	16455	8740	187
2	16018	15182	16622	8875	186
3	15910	15116	16560	8860	188
4	15913	15083	16512	8756	184
			Average		186
			Standard	deviation	1.5

Table A2-131: Water absorption results of solid blocks made with Cement: River Sand: Quarry Dust= 1:4:5 mix proportion (RQ 2)

Table A2-142: Water absorption of solid blocks made with Cement: Quarry dust: Bottom ash-145 mix proportion OB 2 ratuwa, Sri Lanka.

Douoin asi	PIC IIIX PIC	portion (QD 2)	,		
Ser. No	NormatCti	Oloven Dese	s & Wessert	atweight in	Water
	Weight (g)	likeght. ag. 1	k Weight (g)	water (g)	absorption
					kg/m ³
1	12574	11085	13335	5965	305
2	12595	11054	13305	5930	305
3	12506	10956	13216	5853	307
4	12653	11132	13398	6050	308
			Ave	rage	306
			Standard	deviation	1.5

Table A2-153: T-Analysis of water absorption test results of solid blocks made with Cement: River Sand: Quarry Dust = 1:4:5 and Cement: Quarry Dust: Bottom Ash = 1:4:5 Mix proportion

Source of	Water abs	sorption kg/m ³	Degree of	t-value	t-value at
Variation	Average	Average Standard Deviation		computed	0.05 level of significance
RQ 2	186.2	1.5			
QB 2	306.5	1.5	6	-64.950	2.447

Comment: Based on Student T-distribution there is a significant difference at 95% confident level in between water absorption of blocks produced with mix Cement: River Sand: Quarry Dust = 1:4:5 and Cement: Quarry Dust: Bottom Ash = 1:4:5 Mix proportion. The water absorption of blocks made with cement, bottom ash and quarry dust is 165% of blocks made with cement, river sand and quarry dust and it exceeded the limit specified in SLS 855.

University of Moratuwa, Sri Lanka.

Table A2-164 compressive strength test results of solid blocks made with Cement: Bottom Ash, Crushed rock aggregate = 9,43 mix proportion (BC 3)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	90	2.3
2	390	100	190	101	2.6
3	390	100	190	84	2.2
4	390	100	190	89	2.3
			Average		2.3
			Standard	deviation	0.2

Table A2-55:	Density to	est results	of solid	blocks	made	with	Cement:	Bottom	Ash:
Crushed rock	aggregate	= 1:7:3 m	iix propo	ortion (1	BC 3)				

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	12433	11263	13515	5968	1492
2	12686	10970	13175	5940	1516
3	12767	11226	13400	5930	1503
4	11884	10862	13030	5710	1484
			Ave	rage	1499
			Standard	deviation	14.0

Table A2-56: Water absorption of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate = 1:7:3; mix proportion (BC 3); I control

Ser. No	Normal	Oven Dry	Wet Wet	Weight in	Water
and the second se	Weight (g)	Weight (g) 1 110.1111.ac.1	$k^{\text{Weight (g)}}$	water (g)	absorption
					kg/m ³
1	12433	11263	13515	5968	298
2	12686	10970	13175	5940	305
3	12767	11226	13400	5930	291
4	11884	10862	13030	5710	296
			Ave	rage	298
			Standard	deviation	5.7

Comment: Control mix was not prepared to this mix proportion. Compressive strength results satisfied the limit specified in SLS 855.

Comments cannot be made on light weight property of this mix, since a control mix was not prepared. Water absorption of this mix exceeded the limit specified in SLS.

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	40	1.0
1	570	100	170		1.0
2	390	100	190	39	1.0
3	390	100	190	34	0.9
4	390	100	190	39	1.0
			Average		1.0

Table A2-5717: Compressive strength test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate= 1:14:6 mix proportion (BC 4)

University of Moratuwa, Srf Latika. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

Table A2-5818: Density test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate= 1:14:6 mix proportion (BC 4)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	11002	9623	11955	4910	1366
2	10337	9553	11870	4900	1371
3	11201	10022	12380	5180	1392
4	10997	10254	12562	5300	1412
			Ave	rage	1385
			Standard	deviation	21.2

Crushed fock aggregate- 1.14.0 flix proportion (BC 4)						
Ser. No	Normal	Oven Dry	Wet	Weight in	Water	
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption	
					kg/m ³	
1	11002	9623	11955	4910	331	
2	10337	9553	11870	4900	332	
3	11201	10022	12380	5180	328	
4	10997	10254	12562	5300	318	
			Ave	rage	327	
			Standard	deviation	6.6	

Table A2-59: Water absorption of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate = 1.14.6 mix proportion (BC 4)

Comment: Control mix was not prepared to this mix proportion. Compressive strength results do not satisfy the limit specified in SLS 855. Comments cannot be made on light weight property of this mix, since a control mix was not prepared. University of Moratuwa, Sri Lanka. Water absorption of this mix exceeded the limit specified in SLS.

www.lib.mrt.ac.lk

Table A2-60: Compressive strength test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate = 1.9.4 mix proportion (BC 5)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	51	1.3
2	390	100	190	51	1.3
3	390	100	190	62	1.6
4	390	100	190	78	2.0
			Ave	rage	1.6
			Standard	deviation	0.3

Comment: Control mix was not prepared to this mix proportion. Compressive strength results satisfy the limit specified in SLS 855. Water absorption and density were not tested.

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
1	390	100	190	81	2.1
2	390	100	190	79	2.0
3	390	100	190	82	2.1
4	390	100	190	70	1.8
			Ave	rage	2.0

Table A2-191: Compressive strength test results of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:2:6:2 mix proportion (QBC 4)

University of Morat Standa Strideviation. Electronic Theses & Dissertations

www.lib.mrt.ac.lk

Table A2-202: Density test results of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:2:6:2 mix proportion (QBC 4)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	11405	10769	12853	5450	1455
2	11307	10650	12850	5499	1449
3	11135	10675	12997	5496	1423
4	11300	10632	12842	5469	1442
			Ave	rage	1442
			Standard	deviation	13.7
Table A2-213: Water absorption of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:2:6:2 mix proportion (QBC 4)

Ser. No	Normal	Oven Dry	Wet	Weight in	Water
	Weight (g)	Weight (g)	Weight (g)	water (g)	absorption
					kg/m ³
1	11405	10769	12853	5450	282
2	11307	10650	12850	5499	299
3	11135	10675	12997	5496	310
4	11300	10632	12842	5469	300
			Ave	rage	298
			Standard	deviation	11.7

Standard deviation

Comment: Control mix was not prepared to this mix proportion. Compressive strength satisfied the limit specified in SLS 855.Water absorption exceeded the limits specified in SLS 855. Comments cannot be made on light weight property of this mix, since a control mix was not prepared.

Electronic Theses & Dissertations

Table A2-224 Compressive strength test results of solid blocks made with Cement: **Ouarry** Dust: Bottom Ash: Crushed rock aggregate=1:4:12:4 mix proportion(OBC 5)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm ²)
1	390	100	190	31	0.8
2	390	100	190	30	0.8
3	390	100	190	23	0.6
4	390	100	190	35	0.9
			Ave	rage	0.8
			Standard	deviation	0.1

Table A2-65: Density test results of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:4:12:4 mix proportion (QBC 5)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	11162	10694	12887	5427	1434
2	11268	10839	12946	5479	1452
3	11250	10729	12995	5438	1420
4	11254	10804	12963	5434	1435
			Ave	rage	1435
			Standard	deviation	13.0

Table A2-66: Water absorption of solid blocks made with Cement: Quarry Dust: Bottom Ash: Crushed rock aggregate= 1:4:12:4 mix proportion (QBC 5)

Ser. No 🔰	Nothalive	rsQyenDlyIc	ratuWet, Sri	LWeight in	Water
	weight logt	owieighthese	s Welghissgrt	atioater (g)	absorption
	🧉 www.	lib.mrt.ac.l	k		kg/m ³
1	11405	10769	12853	5450	282
2	11307	10650	12850	5499	299
3	11135	10675	12997	5496	310
4	11300	10632	12842	5469	300
			Ave	rage	298
			Standard	deviation	11.7

Comment: Control mix was not prepared to this mix proportion. Compressive strength and water absorption do not satisfy the limits specified in SLS 855.Comments cannot be made on light weight property of this mix, since a control mix was not prepared.

Table A2-67: Compressive strength test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate= 1:6:4 mix proportion (BC 6)

Serial No.	Length	Width	Height	Maximum	Compressive
	(mm)	(mm)	(mm)	Failure	Strength
				Load (kN)	(N/mm^2)
		100	100	0.4.0	
1	390	100	190	94.0	2.4
2	390	100	190	119.0	3.1
3	390	100	190	103.0	2.6
4	390	100	190	95.0	2.4
5	390	100	190	88.5	2.3
6	390	100	190	118.0	3.0
7	390	100	190	89.5	2.3
8	390	100	190	136.0	3.5
9	390	100	190	100.5	2.6
10	390	100	190	81.0	2.1
11	³⁹⁰ nive	rsity of Mo	ratuwa, Sri	92.0 Lanka.	2.4
12	³ ² lectr	onic ¹⁹⁹ hese	s & DPssert	atio101.5	2.6
13	390ww.	lib.n100.ac.1	k 190	114.0	2.9
14	390	100	190	116.0	3.0
15	390	100	190	90.5	2.3
16	390	100	190	122.0	3.1
17	390	100	190	96.0	2.5
18	390	100	190	115.0	2.9
19	390	100	190	117.0	3.0
20	390	100	190	115.0	2.9
			Ave	rage	2.7
			Mini	mum	2.1
			Std.	dev.	0.4
			Characteris	tic strength	2.04

Table A2-68: Density test results of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate= 1:6:4 mix proportion (BC 6)

Ser. No	Normal	Oven Dry	Wet	Weight in	Density
	Weight (g)	Weight (g)	Weight (g)	water (g)	kg/m ³
1	12498	11490	12680	5800	1670
2	12440	11446	12690	5900	1686
3	12498	11496	12736	5896	1681
4	12456	11458	12680	5880	1685
			Ave	rage	1680
			Standard	deviation	7.2

Table A2-69: Water absorption of solid blocks made with Cement: Bottom Ash: Crushed rock aggregate= 1:6:4 mix proportion (BC 6)

Ser. No 🔰	Normalive	rsQyenDlyIc	ratuWet, Sri	LWeight in	Water
	Weightlegt	owicighthese	s Welghis (g)rt	atiwater (g)	absorption
	S www.	lib.mrt.ac.l	k		kg/m ³
1	12498	11490	12680	5800	173
2	12440	11446	12690	5900	183
3	12498	11496	12736	5896	181
4	12456	11458	12680	5880	180
			Ave	rage	179
			Standard	deviation	4.5

Comment: This mix is recommended as a proper mix to use in production, since it satisfies the requirement specified in SLS 855 for compressive strength and water absorption.

Density is relatively low when compared with mix with traditional fine aggregates.

Annexure 3: Details of cost analysis

In the laboratory trial, to produce 20 blocks, 220 liters of total solid material was used.

Loose bulk densities of all raw materials were determined using the measuring boxes or cylinders.

QBC 1

1 cement: 2 quarry dust: 2 bottom ash: 3 crushed rock aggregate

To produce 1 block, the following quantities are required.

$= 220/20 \times 2/0 = 2.75$	$20 \times 2/0 = 2.751$

www.lib.mrt.ac.lk

Therefore, to produce 1000 blocks, materials requirement is as follows:

Cement	= 220/20 x 1/8 x 1000 = 1,375 l=1,650kg=33 bags
Quarry dust	$= 220/20 \text{ x } 2/8 \text{x} 1000 = 2,750 = 97 \text{ft}^3 = 1 \text{cube}$
Bottom Ash	$= 220/20 \text{ x } 2/8 \text{x} 1000 = 2,750 = 97 \text{ft}^3 = 1 \text{cube}$
Crushed rock aggregate	$= 220/20 \text{ x } 3/8 \text{x} 1000 = 4,125 \models 146 \text{ft}^3 \Rightarrow 1.5 \text{cube}$

Material cost to produce 1000 Nos of QBC 1 mix is analysed in Table A3-1.

			Transport	Total Cost
Material	Quantity	Unit Cost(Rs)	Cost (Rs)	(Rs)
Cement	33bags	880.00/bag	1,000.00	30,040.00
Quarry dust	1cube	7,600.00/cube	1,000.00	8,600.00
Bottom Ash	1 cube	-	2,000.00*	2,000.00
Crushed rock aggregate (5-10mm)	1.5cube	7,600.00/cube	1,000.00	12,400.00
				53.040.00

Table A3-1: Material cost to produce 1000blocks of QBC 1

Material cost per block = Rs. 53.04

* Assumed production plant is within 20km distance from the power plant

Production cost in medium scale

Electricity, labor, waten and other overbeads#Rs.5a009.00Lanka. Considering production entrois 2,0001616668 cpe Diasertations Total Cost=Rs.(2000/x/53/04/2-5,000)= Ks. 111,080.00

Then, cost per block= Rs.55.54

Add Rs.5/= per block as profit**, cost per block is Rs. 60.54

** As per the questionnaire survey medium scale block producers expect a profit of Rs.5/= per block

Normal cost in the market Rs. 55 to 75 per block

BC 1

1 cement: 4 bottom ash: 3 crushed rock aggregate

To produce 1 block, the following quantities are required.

Cement	= 220/20 x 1/8	= 1.375 1
Bottom Ash	= 220/20 x 4/8	= 5.5 1
Crushed rock aggregate	= 220/20 x 3/8	= 4.125 1

Therefore, to produce 1000 blocks, materials requirement is as follows:

Cement	$= 220/20 \text{ x} 1/8 \text{ x} 1000 = 1,375 \models 1,650 \text{ kg} = 33 \text{ bags}$
Bottom Ash	= 220/20 x 4/8x1000= 5,500 \models 194ft ³ \Rightarrow 2cube
Crushed rock aggregate	$= 220/20 \times 3/8 \times 1000 = 4,125 = 146 \text{ft}^3 = 1.5 \text{cube}$
Material cost to produce 200 www.li	hospf BC 2 and is analysed in Table A3-2. b.mrt.ac.lk

Material	Quantity	Unit Cost(Rs)	Transport Cost (Rs)	Total Cost (Rs)
Cement	33bags	880.00/bag	1,000.00	30,040.00
Bottom Ash	2cube	-	2,000.00*	2,000.00
Crushed rock aggregate (5-10mm)	1.5cube	7,600.00/cube	1,000.00	12,400.00
				44,440.00

Table A3-2: Material cost to produce 1000blocks of BC 1

Material cost per block = Rs. 44.44

* Assumed production plant is within 20km distance from the power plant

Production cost in medium scale

Electricity, labor, water and other overheads=Rs.5,000.00

Considering production rate is 2,000 blocks per day University of Moratuwa, Sri Lanka. Total Cost=Rs(2000 x 44,44 + 5,000) = Rs. 23,880.00 tations Then, cost per block Rs. 46.94 mrt. ac.lk

Add Rs.5/= per block as profit**, cost per block is Rs. 51.94

** As per the questionnaire survey medium scale block producers expect a profit of

Rs.5/= per block

Normal cost in the market Rs. 55 to 75 per block

QBC 2

1 cement: 1 quarry dust: 3 bottom ash: 1.5 crushed rock aggregate

To produce 1 block, the following quantities are required.

Cement	= 220/20 x 1/6.5	= 1.7 1
Quarry dust	= 220/20 x 1/6.5	= 1.7 l
Bottom Ash	= 220/20 x 3/6.5	= 5.1 l
Crushed rock aggregate	= 220/20 x 1.5/6.5	= 2.54 1

Therefore, to produce 1000 blocks, materials requirement is as follows:

Cement	= 220/20 x 1/6.5x 1000	= 1,693 1=2032kg=41 bags
Quarry dust	= 220/20 x 1/6.5x 1000	$=$ 1,693 \models 60ft ³ \Rightarrow 0.6cube
Bottom Ast	University of Moratuwa, EFE2202792 3/658290& Dis	Sri Lanka. sētādīofīs ^{179ft³} ⊐ 1.8cube
Crushed rock aggre	$\begin{array}{ll} \text{www.lib.mrt.ac.lk} \\ \text{egate} &= 220/20 \text{ x } 1.5/6.5 \text{ x10} \end{array}$	000= 2,538 ⊨ 89.6ft ³ ⊐ 0.9cube

Material cost to produce 1000 Nos of QBC 1 mix is analysed in Table A3-3.

Material	Quantity	Unit Cost(Rs)	Transport Cost (Rs)	Total Cost (Rs)
Cement	41bags	880.00/bag	1,000.00	37,080.00
Quarry dust	0.6cube	7,600.00/cube	1,000.00	5,560.00
Bottom Ash	1.8cube	-	2,000.00*	2,000.00
Crushed rock aggregate (5-10mm)	0.9cube	7,600.00/cube	1,000.00	7,840.00
				52,480.00

Table A3-3: Material cost to produce 1000blocks of QBC 1

Material cost per block = Rs. 52.48

* Assumed production plant is within 20km distance from the power plant

Production cost in medium scale

Electricity, labor, water and stiler overheads Rs.5,000100Lanka. Considering production rate is 2,000 blocks per day Total Cost=Rs.(2000 x 52.48 + 5,000) = Rs. 109,960.00

Then, cost per block= Rs.54.98

Add Rs.5/= per block as profit**, cost per block is Rs. 58.98

** As per the questionnaire survey medium scale block producers expect a profit of

Rs.5/= per block

Normal cost in the market Rs. 55 to 75 per block

QBC 3

1 cement: 2 quarry dust: 3.5 bottom ash: 1 crushed rock aggregate

To produce 1 block, the following quantities are required.

Cement	= 220/20 x 1/7.5	= 1.5 1
Quarry dust	= 220/20 x 2/7.5	= 3 1
Bottom Ash	= 220/20 x 3.5/7.5	= 5.2 1
Crushed rock aggregate	= 220/20 x 1/7.5	= 1.5 1

Therefore, to produce 1000 blocks, materials requirement is as follows:

Cement	= 220/20 x 1/7.5x 1000	= 1,467 1=1760kg=36 bags
Quarry dust	= 220/20 x 1/7.5x 1000	= 1,467 \models 52ft ³ = 0.52cube
Bottom Ash	= 220/20 x 3.5/7.5x1000	= 5,133 ⊨ 181ft ³ = 1.9cube Sri Lanka
Crushed rock aggre	etfectromi220/20ses/25209	Sertat6715 52ft ³ ⇒ 0.52cube
Material cost to pro	www.lib.mrt.ac.lk duce 1000 Nos of QBC 1 mix is	analysed in Table A3-4.

Material	Quantity	Unit Cost(Rs)	Transport Cost (Rs)	Total Cost (Rs)
Cement	36bags	880.00/bag	1,000.00	32,680.00
Quarry dust	0.52cube	7,600.00/cube	1,000.00	4,952.00
Bottom Ash	1.9cube	-	2,000.00*	2,000.00
Crushed rock aggregate (5-10mm)	0.52cube	7,600.00/cube	1,000.00	4,952.00
				44,584.00

Table A3-4: Material cost to produce 1000blocks of QBC 1

Material cost per block = Rs. 44.59

* Assumed production plant is within 20km distance from the power plant

Production cost in medium scale

Electricity, labor, water and stiller overheads R8.5,000100 Lanka. Considering production rate is 2,000 blocks per day Total Cost=Rs.(2000 x 44.59 + 5,000) = Rs. 94,180.00

Then, cost per block= Rs.47.09

Add Rs.5/= per block as profit**, cost per block is Rs.52.09

** As per the questionnaire survey medium scale block producers expect a profit of

Rs.5/= per block

Normal cost in the market Rs.55 to 75 per block

BC 6

1 cement: 6 bottom ash: 4 crushed rock aggregate

To produce 1 block, the following quantities are required.

Cement	= 220/20 x 1/11	= 11
Bottom Ash	= 220/20 x 6/11	= 61
Crushed rock aggregate	= 220/20 x 4/11	= 41

Therefore, to produce 1000 blocks, materials requirement is as follows:

Cement	= 220/20 x 1/11x 1000= 1,000 = 1,200kg=24 bags
Bottom Ash	= 220/20 x 6/11x1000= 6,000 l= 212ft ³ $=$ 2.2cube
Crushed rock aggregate Univer Material	= $220/20 \times 4/11 \times 1000 = 4,000 = 142 \text{ft}^3 = 1.5 \text{cube}$ sity of Moratuwa, Sri Lanka.
www.li	ib.mrt.ac.lk

Table A3-5: Material	cost to produce	1000blocks	of BC 1
----------------------	-----------------	------------	---------

Material	Quantity	Unit Cost(Rs)	Transport Cost (Rs)	Total Cost (Rs)
Cement	24bags	880.00/bag	1,000.00	22,120.00
Bottom Ash	2.2cube	-	2,000.00*	2,000.00
Crushed rock aggregate (5-10mm)	1.5cube	7,600.00/cube	1,000.00	12,400.00
	·			36,520.00

Material cost per block = Rs. 36.52

* Assumed production plant is within 20km distance from the power plant

Production cost in medium scale

Electricity, labor, water and other overheads=Rs.5,000.00

Considering production rate is 2,000 blocks per day

Total Cost=Rs.(2000 x 36.52 + 5,000) = Rs.78,040.00

Then, cost per block= Rs.39.02

Add Rs.5/= per block as profit**, cost per block is Rs.44.02

** As per the questionnaire survey medium scale block producers expect a profit of

Rs.5/= per block

Normal cost in the market Rs.55 to 75 per block

Large Scale production

Number of picks shall be produced per day (single and double sizes) Electronic Theses & Dissertations

Table A3-6: Cost on Basis Output of 25MT Bottom Ash from plant per day

Mix	Requirement o	f coal ash to	No. of blocks
	produce	I block	from 25 tons of
			bottom ash
	Bulk volume (1)	Weight (kg)	
QBC 1	2.75	2.1	11905
BC 1	5.5	4.125	6060
QBC 2	5.1	3.825	6535
QBC 3	5.2	3.9	6410
BC 6	6	4.5	5555