DEVELOPMENT OF A HIGH THERMAL SHOCK RESISTANT CERAMIC BODY SUITABLE FOR COOKWARE

Pusse Pitiye Sandyani Saroja Pussepitiya

(10/8311)

Degree of Master of Science

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

January 2014

DEVELOPMENT OF A HIGH THERMAL SHOCK RESISTANT CERAMIC BODY SUITABLE FOR COOKWARE

Pusse Pitiye Sandyani Saroja Pussepitiya

(10/8311)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Materials Science and Engineering

Department of Materials Science and Engineering

University of Moratuwa Sri Lanka

January 2014

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters thesis under my supervision.

Signature of the supervisor:

Date:

DEDICATION

I dedicate this work to my parents and family because of all the wonderful things they do for me and supporting me all the way.

ACKNOWLEDGMENTS

I would like to show my greatest gratitude to my supervisor, Dr. S.U. Adikary, senior lecturer at the Department of Materials Science and Engineering whose guidance and support from the initial to the final level enabled me to develop the research.

Then I would like to express my sincere gratitude Mr. U. Gunawardana, Managing Director of Ceracraft (Pvt) Ltd for all of his guidance, encouragement and instructions for this research.

In addition to that I would like to express my thanks all the staff members at Department of Materials Science and Engineering, University of Moratuwa for their guidance and supports during the completion of the project.

P.P.S.S. Pussepitiya 10/10/2013

ABSTRACT

Development of a ceramic based cookware body with adequate thermal shock resistance was successfully developed using low cost raw materials. The objective of this work was to determine the composition and thermal shock resistance of a ceramic body suitable for a direct flame cookware. To achieve this objective cookware body should have low thermal expansion coefficient, high strength, low water absorption and high thermal shock resistance. In this study ball clay, talc, alumina and zirconium silicate were used as starting raw materials and twenty five samples were investigated with different compositions. All samples were wet-mixed, shaped by slip casting, dried and fired to temperature 1250^oC in an electric furnace. Modulus of Rupture (MOR) was tested by the three point bending method; the thermal conductivity of each body was measured with Lee's disk method and the Coefficient of Thermal expansion (CTE) was measured by thermo mechanical analyzer. The thermal shock resistance of each sample was calculated with Kingery's formula.

Optimum thermal shock resistance of 74 KJm⁻¹s⁻¹was achieved for a body composition of 45% of clay, 15% of talc, 15% of alumina and 25% of zirconium silicate which was fired to 1250° C. Further modulus of rupture and coefficients of thermal expansion of the ceramic body were 74 MPa and 30.2×10^{-7} /⁰C respectively. These results suggest that the ceramic body is suitable to be used in cookware applications.

Key words: cookware, modulus of rupture, thermal shock resistance, coefficients of thermal expansion

TABLE OF CONTENT

Decla	ration			i
Ackn	owled	gement		ii
Abstr	Abstract			iii
Dedic	ation			iv
Conte	ent			v
List o	f Figu	res and T	Fables	viii
List of terms, abbreviations and symbols			ix	
1.	Intro	oduction		1
	1.1	Back	ground Research	1
	1.2	Obje	ctives	3
	1.5	Struc	ture of the thesis	4
2.	Lite	rature Re	eview	5
	2.1	Cerai	mic article	5
	2.2	Cook	ware Materials	5
	2.3	Cera	mic Cookware	8
	2.4	Prope	erties of cookware	9
	2.5	Ther	mal Properties of Cookware	9
		2.5.1	Specific Heat Capacity	9
		2.5.2	Thermal Expansion	10
		2.5.3	Thermal Conductivity	10
		2.5.4	Thermal Shock Resistance	11
	2.6	Cerar	nic fabrication techniques	13
		2.6.1	Slip casting	14
		2.6.2	Moulding	14
		2.6.3	Drying	15
		2.6.4	Firing	15
		2.6.5	Characteristics of casting slip	15

Research Methodology			17	
	3.1	Selection of Raw Materials		17
3.2 Fal		Fabric	ication procedure of test sample	
	3.3 Slip preparation		reparation	18
		3.3.1	Moisture content of the raw materials	18
		3.3.2	Density of the slip	19
		3.3.3	Fluidity and thixotropy of the slip	19
		3.3.4	Particle size distribution	19
	3.4	Sample preparation		20
	3.5	Laboratory test during fabrication		20
		3.5.1	Wet to dry and dry to fired shrinkage	20
		3.5.2	Green Strength and Fired Strength	21
		3.5.3	Thermal conductivity measurements	21
		3.5.4	Modulus of elasticity measurements	23
		3.5.5	Thermal shock resistance calculations	24
		3.5.6	Thermal shock resistance of the product	24
		3.5.7	Direct heating test on gas cooker	25
	Dogu	lts and F	Nicouccion	26
	4.1	Result		26 28
	4.2	1 6 1		28
	4.3	1	rties of body composition	28
		4.4 Thermal shock resistance of body4.5 Gross firing cycle in electric furnace		29 20
				30
	4.6		cated products	31
	4.7		hal shock resistance of the products	31
	4.8 Direct heating test on the gas cooker4.9 Calculation of trial production cost			32
				33

3.

4.

5.	Conclusion and Suggestions for future work		34
	5.1	Conclusions	34
	5.2	Recommendations	34
References List		35	
Appendices			37

Appendix A:	Drawings of the cookware	37
Appendix B:	Trial production cost of the cookware	38
Appendix C:	Technical data sheets of the raw materials	39

LIST OF FIGURES

		Page
Figure 3.1	Fabrication procedure of test sample	18
Figure 3.1	Three point bending tester	21
Figure 3.2	Test sample of thermal conductivity measurement	21
Figure 3.3	Lee's disk apparatus	22
Figure 3.4	Direct heating test on gas cooker	25
Figure 4.1	Particle size distributions of casting slip	28
Figure 4.2	Firing cycle on electric furnace	30
Figure 4.3	Fabricated cookware samples (small)	31
Figure 5.4	Actual size cookware samples	31
Figure 4.5	Direct heating test on gas cooker	33

LIST OF TABLES

7 Table 2.1 Advantages and disadvantages of cookware Table 2.2 Importance of various properties of white ware products 12 20 Table 3.1 The composition of raw materials used for prepared body Table 4.1 Modulus of rupture (MOR) values of ceramic bodies fired to 1250°C 27 Table 4.2 Coefficient of thermal expansion of ceramic bodies fired to 1250^oC 27 Table 4.3 Experiment results of the thermal shock resistance of the 29 ceramic bodies Table 4.4 Thermal and Mechanical properties of most suitable body for cookware 29 Shrinkage of the most suitable ceramic body composition Table 4.5 30 32 Table 4.6 Results of thermal shock resistance of final product

Page

LIST OF TERMS, ABBREVIATIONS AND SYMBOLS

Abbreviation	Description
ρ	Modulus of rupture
α	Coefficient of thermal expansion
υ	Poison's ratio
b	Width of the specimen
C_p	Heat capacity
d	Thickness of the specimen
DTA	Differential Thermal Analysis
Ε	Modulus of elasticity
F	Applied force
Κ	Thermal conductivity
l	Span length
m	Mass of the sample
Т	Temperature
ΔQ	Amount of heat
ΔT	Temperature different