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Abstract

The notion of Deniable Encryption is a cryptographic primitive, which

enables legitimate users to face coercion by dynamic adversaries without

revealing true secret internals of the cryptosystem. Deniable Encryption

provides a way to generate fake internals that correctly explain the cipher text.

When considering existing deniable schemes, two major variations can be

found; schemes based on the concept of Deniable crypto-systems introduced by

R. Canetti et al. and plausible deniable schemes. The schemes based on plausible

deniability are not always depending on cryptographic systems, but rather use

different approaches such as steganography or hardware level hidden volumes.

With the objective of cryptanalysis, this research has been focused on deniable

crypto-systems.

The existing deniable encryption schemes proposed provide different levels

and types of deniability, which makes it difficult to find a common model for the

cryptanalysis. Therefore, This research has narrowed down the cryptanalysis to

full-sender-deniable encryption, which is the strongest notion in sender

deniability.

In order to evaluate the real world implementation of full-sender-deniable

encryption, this research has implemented a crypto-system using sparse-set. This

research has also introduced a new type of sparse-set generation, which provides

better performance compared to the two sparse-set generation methods proposed

by Canetti et al.

Based on the common model of full-sender-deniable encryption, our

cryptanalysis has been focused on three main areas; deniability limitation

already given by Canetti et al., statistical cryptanalysis and cryptanalysis based

on faking algorithm. Since the encryption function of full-sender-deniable

encryption is a public parameter, the adversary can coerce the sender to generate

randomness by further faking and have additional data to detect the original

faking. This is a new scenario that has been considered in this research, where it

can be applicable in situation like rubber hose cryptanalysis.

Keywords: Deniable encryption, Cryptanalysis
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1 INTRODUCTION

1.1 Background

1.1.1 Violation of semantic security and coercion

The notion of semantic security is based on the limitations of the adversary’s

capability to interfere the communication between the sender and the receiver. The

confidentiality of the encryption depends on the secrete keys/randomness owned by

the legitimate parties involved in the communication where the adversary does not

have access to the private internals of the sender and/or the receiver. If the

keys/randomness is compromised, the security of the communication will also get

compromised. Hence, the legitimate parties are responsible for keeping the private

keys/randomness without exposing to untrusted parties.

However, this is not a valid assumption in current practice. In scenarios like rubber

hose cryptanalysis, the adversary is capable for extracting private internals directly

from the sender and/or the receiver by coercion. Moreover, one of the key

characteristics of the semantic security is the committing nature with the internals of

encryption/decryption where legitimate parties are bound to the keys been used. This

committing nature of encryption/decryption is problematic in situation like

e-voting/e-auction systems when an adversary is capable in forcing the legitimate

parties to reveal their internals.

Deniable encryption is a strong notion, which enables the legitimate parties to provide

fake internals to preserve the confidentiality of the communication. The main

objective of the deniable encryption is to survive at coercion by exposing fake

internals with a valid explanation for the cipher text generated.
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1.1.2 Deniable encryption in practice

Consider the scenario where Alice is a secret government agent who has an alliance

with a terrorist named Bob. Alice was working on a mission to arrest terrorist leader

Carl and was using Bob’s support to retrieve the evidence against Carl. The

communication between Alice and Bob was done via encrypted channels over the

agency network where all the communication logs including encrypted data were

stored securely in agency storage. The mission was successfully completed and the

terrorist leader has been taken into the custody. However, Alice had agreed with Bob

that she would not reveal the secrete alliance. After few years, Carl was released from

the prison and becomes the minister of the same government agency. Now Carl is

capable of coercing Alice to reveal the internals of the encryption to retrieve the

Bob’s identity from the stored cipher.

Deniable encryption is one of the strong notions of cryptographic security that can be

used in above situation where Alice or/and Bob can give fake internals to generate

fake messages for the adversary.

1.2 Research Problem

In the last few decades, number of deniable encryption schemes have been introduced

and cryptanalysis of those schemes was considered by practitioners as an interesting

research problem. Based on a wide ranging literature survey done, it appears that a

comprehensive cryptanalysis has not been carried out on the existing deniable

encryption schemes.

1.3 Objectives and Scope of the Research

The main objective of the research is to put forward the cryptanalysis on full sender

deniable encryption. To accomplish the main objective, following steps were

completed at the initial stage of the research.

• Studying and analyzing the existing deniable encryption schemes

2



• Studying on cryptanalysis

• Identifying the similar properties to derive higher-level abstraction that will be a

general model of full sender deniable encryption schemes

• Identifying possible cryptanalysis on the common model of sender deniable

encryption

With the knowledge gained at initial stage, it was realized that though there are

number of schemes proposed, complete practical implementation of

full-sender-deniable encryption has not been proposed. Therefore, rest of the research

was completed with below objectives,

• Providing full-sender-deniable encryption implementation based on the parity

based scheme proposed by Canetti et al. [1]

• Evaluating the implementation to achieve further cryptanalysis

1.4 Research Contribution

This research work presented in this thesis has successfully crypt-analysed the full

sender deniable encryption introduced by Canetti et al. [1].
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2 LITERATURE REVIEW

2.1 Evolution of Deniable Encryption

The notion of deniable encryption was first explored in detail by Ran Canetti, Cynthia

Dwork, Moni Naor, and Rafail Ostrovsky in 1996 [1]. The authors have introduced

different notions of deniable encryption including sender deniability, receiver

deniability and bi-deniability. They have proposed a mechanism to transform a sender

deniable scheme into a receiver deniable scheme and vice versa. They have also

proposed a method to transform a sender/receiver deniable scheme to a bi-deniable

scheme.

M. Dürmuth and D. M. Freeman have proposed a method to obtain a deniable

encryption scheme using samplable encryption [2], in 2011. They have constructed

two encryption schemes based on quadratic residuosity and trapdoor permutation.

Based on samplable encryption [2], another deniable encryption scheme [3] was

proposed by B. M. David and A. C. A. Nascimento in 2011. The scheme is based on

McEliese cryptosystem.

A. O’Neill, C. Peikert and B. Waters have proposed a bi-deniable encryption scheme

[4] which provides security against coercing of both sender and receiver,

simultaneously. The constructed scheme is non-interactive and does not require any

third party involvement.

M. H. Ibrahim has introduced another sender deniable encryption scheme [5] based

on quadratic residuosity of two primes in 2008. He has also proposed a new approach

to derive a sender deniable public key encryption scheme from any trapdoor

permutation.

Another receiver deniable encryption scheme [6] based on mediated RSA [7] and
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oblivious transfer [8] was proposed by M. H. Ibrahim. This is an interactive

construction where a separate entity called a security mediator should be present.

In 2013, A. Sahai and B. Waters have derived a deniable encryption [9] using

punctured programs which is based on indistinguishability obfuscation. Using the

concept of punctured programs [9], the proposed scheme provides full sender

deniability. They also have introduced two new notions of deniability called publicly

deniable encryption and universal deniable encryption.

2.2 Review on Deniable Encryption

In the current context of deniable schemes, two main variations can be identified as

the schemes based only on cryptographic primitives and the schemes that provide

plausible deniability derived from non-cryptographic primitives.

The notion of cryptographic deniable encryption that was introduced by Canetti et al.

[1] is based on providing fake internals to prevent further coercion. The sender

generates cipher text C from the plaintext M using public key Kpk and randomness

Rs. The receiver derives the M using the secret key Ksk and Rr. The underlying goal

of the deniability encryption is to generate fake Ms’(at sender) and Mr’(at receiver)

that can be opened with same cipher text C while using fake keys R’s and K’sk. When

considering sender deniable encryption, only M’s and R’s are used for the faking. In

receiver deniable encryption schemes, only M’r and K’sk are used for the faking. In

bi-deniable encryption schemes, M’s, R’s, M’r and K’sk are used for faking. If the

coercer is capable to force the sender and the receiver simultaneously, it should be

possible to produce same fake message (i.e. M’s =M’r) at both ends.

One of the fundamentals requirement of deniable encryption is that the coercible

parties should be able to generate fake messages (Ms and/or Mr) with the content of

limited number of variations. In practical context, the fake messages should be

meaningful text that will satisfy the coercer. If the fake messages are dummy
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messages with no meaning related to the situation/application, the coercer does not

have any means to believe the coercible party. This can be considered as the basic

proof for the coercer to ensure the thrust worthiness of the coercible parties.

Another property involves with deniable encryption is that when is it possible to

generate the fake messages and keys. The best option is to generate the fake messages

at the point of coercion where the coercible parties have the control over the faking

based on the present situation. However, some of particular deniable encryption

allows the coercible parties to generate the fake message only at initial stage.

Generating fake messages and keys at the initial stage of encryption is known as

plan-ahead deniability. Though this is a weaker notion of deniability, in practical

applications like e-voting, where number of possible or required plain text messages

are limited, it provides adequate security against coercion.

Another key discussion area of deniable encryption is that what parameters can be

changed at faking. The best option is changing only the keys/randomness. If we

consider a sender (same for the receiver as well) with the encryption algorithm E and

cipher text C generated as C = E(M, Kpk, Rs), fake M’s and R’s should be generated

such that C = F(M’s, Kpk, R’s). Though one can simply change two parameters Ms

and Rs to achieve the same C, he/she do not have complete flexibility to generate M’s.

As discussed above, Ms’ has limited number of options or is a constant value

depending on the application scenario to satisfy the adversary. The deniability

achieved only by changing the key/randomness is known as fully deniability and

construction is significantly difficult than multi-distributional deniability. With

multi-distributional deniability, separate fakable algorithm E’ is used. The obvious

question is that why adversary believes that coercible parties have used non-fakable

encryption. Thereby in practice, the adversary should not be aware of the fakable

encryption to defend the coercion successfully. With this setup, coercible parties can

use fakable algorithm E’ for the encryption/decryption, while presenting non-fakable

algorithm E for the adversary with a fake message and a fake keys.
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Another variation of multi-distributional deniable encryption is that hiding the real

values inside the fake plain text presented to the adversary. The simple example for

this kind of encryption scheme is having double encryption/decryption. Another

example can be demonstrated using El-Gammal [10] PKE. The cipher text of

El-Gammal has two parts: gr and m.yr (where g is the generator, m is the message, r

is a random value and y is the public key). Deniable encryption proposed by Marek et

al. [11], the real message is hidden inside the gr instead of m using symmetric key

algorithm such as AES and the fake message is used as the m. At a coercion, the

receiver can reveal key related to El-Gammal encryption while preserving the privacy.

However, if the adversary is capable of knowing the real internal implementation of

encryption/decryption, the scheme does not provide deniability.

When considering plausible deniability, two variations can be identified. In first

variation, the deniability is achieved by hiding the real data inside the dummy data.

This is used in practical deniable storage and file system. One example is TrueCrypt

[12], which is an on-the-fly disk encryption tool for Window, Mac and Linux.

However, this provides weaker deniability as if the coercer knows the implementation

of the system, the coercion will be continued until adversary gets the real messages

and keys. The second method is the use of cryptographic primitives to provide the

plausible deniability. In this case, coercible parties provide a proof for the adversary

that they do not have any secret information (although they have the secrets) other

than what has been revealed. Therefore, it is possible to convince the adversary that

further coercion will not provide any additional information.

Most of the existing deniable schemes proposed are based on single bit encryption

(bit-by-bit encryption). Thereby, we only have to focus on two plain texts values(i.e.

1 or 0) that will be used to generate any real/fake message. However, most of the

attacks including statistical attacks are based on encryption of multiple bits.

Another concern with deniable encryption is the efficiency of the encryption and

decryption. The efficiency can be given as lengthiness of cipher text, time taken for
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encryption/decryption and processing of the schemes. In addition to that, analyzing

these parameters leads to attacks like side channel attacks [13] that will compromise

the security provided by the deniable encryption scheme. This is an important

concern in multi-distributional deniable encryption, because by analyzing the

system/device specific parameters like power consumption or processor/memory

usages, adversary may be able to separate fakable algorithm from non-fakable

algorithm.

When considering proposed deniable encryption schemes in current context, most of

them are based on public key infrastructure. This may be due to the inherent

advantages, like simplicity of key distribution, provided by PKE than symmetric key

encryption schemes. However, symmetric key deniable encryption schemes are more

useful in practical applications like deniable storage systems or files systems, because

of the inherent efficiency of encryption and decryption.

Rikke et al. [14] have given lower and upper bounds for different notions of deniable

encryption. There, the security of the deniable encryption was defined as the

infeasibility of separating real encryption from fakable encryption. Two security

levels has been proposed: polynomial security and negligible security. With

polynomial security, the security is given as 1/p where p is the polynomial of security

parameter such as key length. In contrast to polynomial security, negligible security

does not depend on security parameter, where it provides stronger deniability.

According to Rikke et al. [2], security of any non-interactive receiver deniable

encryption scheme is bounded to polynomial security. Depending on that, it was

deducted that any non-interactive bi-deniable encryption which is better than

polynomial security, is impossible to construct. For receiver deniable encryption and

bi-deniable encryption, the lower and upper bounds were defined using key length

and for sender deniable encryption only upper bound was provided. If same length of

secrete key and public key are considered, bi-deniable schemes have lowest upper

bound and sender deniable schemes have highest upper bound.

8



Figure 2.1: Types of deniable encryption

2.2.1 Shared key deniable encryption

A deniable encryption scheme is a shared key δ(n)-sender-deniable encryption[1], if

the scheme has below three properties with the inherent characteristics of shared key

encryption. Here, n is the security parameter.

• Correctness - The message sent by the sender and the message retrieved by the

receiver differ with negligible probability.

• Security - The communication (between the sender and the receiver) of two

messages m1 and m2 computationally indistinguishable. This can be given as

com(m1) : com(m2).

• Deniability - The adversary’s view of honest encryption/decryption and the

adversary’s view of fake encryption/decryption are differed with δ(n)

probability.
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2.2.2 Public key deniable encryption

A deniable encryption scheme is a shared key δ(n)-sender-deniable encryption[1], if

the scheme has below three properties with the inherent characteristics of PKE. Here,

n is the security parameter.

• Correctness - The message sent by the sender and the message retrieved by the

receiver differ with negligible probability. This can be given as D(E(m)) = m +

δ where δ is negligible.

• Security - The communication (between the sender and the receiver) of two

messages m1 and m2 computationally indistinguishable. This can be given as

com(m1) ≈ com(m2).

• Deniability - The adversary’s view of honest encryption/decryption and the

adversary’s view of fake encryption/decryption should be differed with δ(n)

probability.

2.2.3 Sender deniable encryption

With sender deniable encryption, the sender can provide fake encryption

keys/randomness that explains the cipher text for the adversary. In particular, the

adversary is capable only to coerce the sender. With public key sender deniability,

only randomness can be faked at encryption where encryption key is a public

parameter.

2.2.4 Receiver deniable encryption

With receiver deniable encryption, the receiver can provide fake keys/randomness that

explains the transferred cipher. In contrast with public key sender deniable encryption,

the public key receiver deniable encryption allows the receiver to fake the secret key

in addition to randomness used.
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2.2.5 Bi-deniable encryption

Bi-deniable encryption can be used in situation where both sender and the receiver

are susceptible to coercion. Both the sender and the receiver will be able to fake their

internal states against the coercion. In the case of simultaneous or coordinated

coercion, the sender and the receiver should be capable of revealing same fake

messages in a coordinated manner.

2.2.6 Multi-distribution deniable encryption

With multi-distribution deniable encryption[1], if the sender/receiver expects to fake

the messages upon the coercion, he/she should use the fakable algorithm. If faking is

not required, they can use non-fakable algorithm. The question raised with this

scenario is why adversary believes that sender/receiver has used non-fakable

algorithm. Thereby in practice, though a fakable encryption is used for the

encryption/decryption, the sender/receiver always reveals non-fakable algorithm with

fake/non-fake internals and the adversary should not be aware about fakable

algorithm. For deniability, Ef should generate a cipher-texts such that Ef(m) = E(mf)

where m is the real message and mf is the fake message.

2.2.7 Fully-deniable encryption

In contrast to multi-distributional deniability, fully-deniable encryption[1] does not use

two separate algorithms. Since revealing internals to the adversary does not provide

additional knowledge, full-deniability is the ideal solution for deniability applications.

2.2.8 Plan-ahead deniable encryption

With plan-ahead deniable encryption[1], the fake messages and the relevant fake keys

will be generated at the initial stage of encryption. It is considered as a weaker notion

of deniable encryption. Though plan-ahead deniable encryption has this limitation, it

provides sufficient security for the applications like e-voting systems where number of

possible (or required) messages is limited in number.
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2.2.9 Plausible deniability

In this notion of deniability, the sender or/and the receiver deny the fact of having

knowledge of additional secret information. The coercible party gives a proof to the

adversary that he/she does not have hidden internals which, provides additional

advantage to break the security of the cryptographic system. Therefore, further

coercion is not useful.

2.2.10 Publicly deniable encryption

With the general construction of deniable encryption, the sender is supposed to

remember the true randomness to generate fake randomness. However with publicly

deniable encryption, the sender do not have to remember the true randomness used to

generate cipher text. This notion of publicly deniable encryption was introduced by

Amit Sahai and Brent Waters [9]. According to the definition [9] of publicly deniable

encryption, it implies another strong characteristic. With publicly deniable

encryption, any party who has the cipher text and the public parameters, can generate

a randomness that satisfy the encryption of selected message.

2.2.11 Universal deniable encryption

Universal-deniable [9] schemes use the existing public key infrastructure without

asking to re-obtain the keys that are already taken by the parties involved with the

communication. The most of the deniable encryptions proposed are based on existing

public key infrastructure such as RSA. Therefore, this is a strong notion that enhances

the usability in the practical implementations.

2.2.12 Non-committing encryption

Non-committing encryption [15] is another related notion of deniable encryption with

the common objective of providing security against adaptive adversaries. However,

compared to bi-deniable encryption, it is considered to be a weaker notion of

deniability [1, 2].
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With traditional encryption schemes, the sender/receiver is not able to fake the

encrypted data from the transmitted data over the non-secure channel. The main goal

of the non-committing encryption is to remove the inherent committing characteristic

of the traditional encryption schemes.

In non-committing cryptosystem, the entity called simulator is capable of generating

dummy cipher text that is indistinguishable (to the adversary) from the real cipher

text. The dummy cipher text can be opened as a fake message. In contrast to the

deniable encryption, only the simulator can generate the dummy cipher text and it is

not a must to open the dummy cipher text as a meaningful plaintext. However, a

primary objective of deniable encryption scheme is to generate meaningful fake

messages from the cipher text.

2.3 Applications of Deniable Encryption

One of the main applications of deniable encryption is e-voting systems [16]. In

non-electronic voting, the voting booth provides the privacy by the physical

arrangements and the voting does not generate receipts. However, in electronic voting

schemes, there are number of tracing mechanisms inherently possible due to the

nature of IT based implementations. Thereby, the possibility of making successful

coercion is significantly higher in e-voting system compared to non-electronic voting

system. In this case, coercion can be occurred in one or both of two steps: forcing

before the voting and forcing after the voting to provide the proof of loyalty. Deniable

encryption can provide strong solution against the second scenario of coercion in

e-voting systems.

Another application of deniable encryption is e-auctioning [16], which is considered

to be sealed-auction. In contrast to e-voting, a receipt should be generated where the

receipt have to be present as the proof of the bid. Though e-auctioning and e-voting

have different encryption requirement, both have same deniability requirements.
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Common scenario in e-voting (or in e-auctioning) is vote selling where the voters are

agreed/committed to vote for a particular entity. However, the voter may not adhere

the commitment and may vote differently. After the voting, the adversary may

request/acquire proof of the voting. For an example, adversary can collect encrypted

ciphers by eavesdropping and asks the voters to give explanation of the cipher. On the

other hand, the adversary may be able to force the voting authority directly to collect

voting receipts. To prevent coercion [16] the implementation of e-voting (or

e-auctioning) should provide three main notions; secure booth, un-tappable channel

and security against colluded voting authority. Similar to the physical booth, the

logical booth in e-voting system provides the privacy for the voter to cast their voting

without the adversary’s observation and the encryption schemes like receipt free

encryption and anonymous encryption provide the security against the colluded

voting authority. The un-tappable channel provides the security against having

accesses to communication between the sender (the voter) and the receiver (the

central authority who processing the votes). Achieving un-tappable channel is

difficult. However, the deniable encryption can be used to achieve same security

requirement. With deniable encryption, even adversary have access to the

communication channel, the coercer cannot gain additional advantage for the vote

verification.

Deniable encryption also provides a strong solution for preserving privacy of storage

systems. In some countries, different policies are maintained for privacy of storage

systems. Therefore, the level of security/privacy is based on the Key Disclosure

Law(i.e - Mandatory Key Disclosure[17]) of the country. With this, any person is

legally bound to reveal the keys/internals to low enforcement authority. Most

importantly, the law is based on countries general law and differs from country to

country. Therefore, one may have to reveal all the content in his/her hard disk at the

airport when entering/leaving a country. In these situations, storing data encrypted

with deniable encryption scheme may preserve the confidentiality of the data in the

storage system.
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Another application area of deniable encryption is cloud based storages. The cloud

environments is getting increasingly popular where it provides storage, processing

and bandwidth with a low cost. The encryption of transferred date is vital factor to

preserve the security of the data in cloud environment. However, the encrypted data

in the cloud is readily available for the cloud provider and multiple parties can access

the same data. Therefore the possibility of coercion is high compared to an

environment with dedicated resources. For example, instead of searching individual

data storages, a legal authority can coerce the cloud provider to provide bulk data and

access each individual. Therefore, deniable encryption can be used to provide strong

security for the cloud based transactions and storages. To cater this requirement,

Gasti et al. [18] have proposed a deniable encryption scheme which is optimized for

the cloud storage.

The publicly deniable encryption [9] can also be a strong notion in case of losing the

randomness/keys/message used for the encryption. With standard public key

encryption schemes, if the sender has lost the random values used at the encryption,

he/she cannot regenerate same cipher text. The sender even cannot provide the true

message/randomness he/she used. With publicly deniable encryption, the sender can

generate the same cipher text without remembering the real randomness/message

used at the encryption.

2.4 Public Key Deniable Encryption Schemes

Considering the existing PKE deniable encryption schemes, they are based on

different cryptographic primitives such as sparse set, samplable encryption and

oblivious transfer. Scheme one, two and three that described below are based on

sparse set. The concept of sparse set is based on trapdoor permutation. The scheme

four, five, six and seven are based on samplable encryption. Dürmuth Markus and

Freeman David Mandell have derived a deniable encryption scheme based on any

samplable encryption scheme. One important observation of deniable encryption

schemes based on samplable encryption schemes is that the correctness is less than
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100%. Thereby, the probability of varying the sender’s input (real plaintext) from

receiver’s output is negligible in single communication. The communication should

be repeated multiple times to achieve the higher correctness at the receiver.

Canetti et al. [1] have introduced five deniable encryption schemes, three PKE

deniable scheme based on trapdoor one-way permutation and two based on shared

key encryption. In public key encryption, the sender and the receiver do not have

shared information while in shared key encryption, two parties share a secret where

adversaries do not have any prior knowledge. In addition, the paper defines simple

mechanism to convert sender deniable encryption scheme to receiver deniable

encryption scheme and vice versa.

2.4.1 Schemes based on sparse set

The public key encryption introduced by Canetti et al. [1] is based on sparse set.

Sparse set [1]

There exists S ⊂ {1,0}t and trapdoor function d such that,

|S| < 2t-k, where k is significantly large and less than t (bit length of S).

x ∈ S can be easily generated without trapdoor information

If d is given, it is easy to decide whether x ∈ S or not. If d is not given, it is

infeasible to decide whether x ∈ S or not.

Two sparse set constructions were proposed by Canetti et al. [1].

1. Construction 1

Select xi = {0,1}s s.t B(f -1(xi)) = 0 where f is a trapdoor permutation and

function B:{0,1}s � {0,1}

Construct x = x1....xk.

Define S = {x ∈ {0,1}t | ∀ i = 1....k, B(f -1(xi)) = 0 where t = s*k

Here, |S| = 2(s-1)k = 2(t-k )
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2. Construction 2

Select x0 = {0,1}s

Construct x = x0b1....bk s.t bi = B(f-i(x)) where f is a trapdoor

permutation and function B:{0,1}s � {0,1}

Define S = {x ∈ {0,1}t | ∀ i = 1....k, B(f -i(x0)) = bi where t = s + k

Here, |S| = 2(s) = 2(t-k )

• Scheme 1 : Basic scheme based on sparse set

To encrypt 1 ,x is selected as x ∈ S and a random x ∈ {1, 0}t is used to encrypt

0. To decrypt the cipher text, the receiver detects S element using trapdoor and

considers S elements as 1. Others will be detected as 0. To open honestly, true

random choices used for the encryption can be revealed. To open dishonestly, if

1 was encrypted, the sender can claim x ∈ S as x ∈ {1,0}t and can fake

successfully. However, to give 0 as 1, the sender has to give a random value as a

S element. But, x ∈ S is happened only with negligible probability of 2-k .

Therefore, if 0 was encrypted, lying is not feasible.

• Scheme 2: Parity based scheme based on sparse set

The vector V is defined as V ∈ {S, R}n, where S and R are two sets with bit

length of t (S is an element of the sparse set and R is a random where selected

R is in the sparse set with negligible probability). To create the vector V, the

sender selects a random V’ ∈ {1,0}n. If the jth element of V’ is 1, the sender

uses a random S element and if the jth element of V’ is 0, then use a random

element R. To encrypt 0, a random even i is selected and the sender sends a V

with i number of S elements. To encrypt 1, random odd i is selected and a V

with i number of S elements will be sent to the receiver. For decryption, the

receiver obtains the parity of the number of S elements in the encrypted text.

For honest decryption, the sender can reveal the true random choices used to

generate V and the true random values used to generate S elements. For faking,

the sender is able to claim the selected i as (i - 1) by giving any S element as R

element and is able to open the cipher text as any fake plain text. For encryption

of 1, the true distribution of r = i is 1,3,5,...,n and the fake r = i-1 distribution
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is 0,2,4,..., n-1. Therefore, opening 1 as 0 is undetectable. For an encryption of

0, the true distribution of r = i is 0,2,4,...,n-1 and the fake r = i-1 distribution

is -1,1,3,...,n-2. Thereby, opening 0 as 1 is feasible for all but not with i =

0. In this scheme, i = 0 happens only with 1/n probability and the security of

the encryption depends on n, number of S/R elements used to generate cipher

text V. Therefore, the scheme is given as (1/n)-deniable encryption and it only

provides polynomial security.

• Scheme 3: Undetectable parity scheme based on sparse set

By defining this scheme, Canetti et al. [1] have introduced the notion of

deniability called multi-distribution deniability. As mentioned above,

multi-distribution deniable encryption schemes use a separate algorithm to

generate fakable encryption. According to the scheme, four distributions are

defined,

T0 = {R, R}, T1 = C1 = {R, S}, C0 = {S, S}

Here, S is an element of the sparse set and R is a random element which can be

a member of the sparse set with negligible probability.

– Encryption :

* Non-fakable encryption: Select an element from T0 to encrypt 0 and

select an element T1 to encrypt 1

* Fakable encryption: Select element from C0 to encrypt 0 and select an

element C1 to encrypt 1

– Decryption:

By getting the parity of the number of elements in sparse set(S), one can

find the plain text message.

– Deniability

* Honest way: The sender can reveal the true random choices used in

the sparse set.
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* Dishonest way: If the true value is from C0, the sender can claim that

it is from T1(inverse of the true value) or from T0 (same as the true

value). If the true value is from C1, the sender can claim it is from T0

(inverse of the true value) or from T1 (same as the true value).

2.4.2 Schemes based on samplable encryption

Samplable encryption

With samplable encryption scheme [2], there are three algorithms defined:

RandomCT(s), SampleEncRand(sk,c) and SampleCTRand(pk,c).

RandomCT: The function takes a random value and the public key as the inputs

and generates the output that will be indistinguishable from cipher text generated by

encrypting any other message.

SampleEncRand: The function takes cipher text and relevant secret key as the

inputs and generates output of fake randomness that will be indistinguishable from

the real randomness use for the encryption.

SampleCTRand: The function takes the public key and the cipher text c as the

input and generates a random element s. s will be statistically indistinguishable from

input of RandomCT that will generate the same cipher text c.

Key Generation: The receiver generates 4n + 1 number of public and secret key pairs

and sends the public keys to the sender.

Encryption: To encrypt bit b, the sender has to choose 4n +1 indexes and group them

into three sets A, B, C such that,

A = n + 1 number of indexes selected randomly

B = n number of indexes selected randomly

C = 2n number of indexes selected randomly

Using the key generation of the underlying standard public key encryption scheme

(the samplable semantically secure encryption scheme used to derive the deniable
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encryption scheme), 4n + 1 key pairs of public and secrete keys will be generated.

Then the sender generates n + 1 number of encryptions of message b using public

keys relevant to indexes in A and n number of encryptions of message 1 - b using

public keys relevant to indexes in B. Using RandomCT, the sender generates random

cipher text and map them to the indexes of C. Finally, all encryptions(related to A, B

and C indexes) are sent to the receiver.

Decryption: Each cipher text will be decrypted using the secrete keys and the receiver

retrieves the majority of the decrypted message. Dürmuth Markus and Freeman

David Mandell [2] have proved the correctness of the decryption is greater than (1/2

+ 1/(5√n)). To achieve higher accuracy, the encryption/decryption should be repeated

for single bit transfer.

Deniability: After decrypting each message, the receiver selects n/2 number of pairs

of indexes such that each index pair is mapped with opposite messages. These pairs

of indexes are sent back to the sender. The sender selects one pair of index(out of n/2

pairs), such that one index in A and other in C. If such a pair is not found, the sender

and the receiver have to repeat the above initial steps. However, the probability of not

finding such a pair is negligible. The sender sends the selected index pair to the

receiver and the receiver sends corresponding shared keys to the sender.

By using cipher text of the index in A as the input to SampleCTRand, the sender

generates random element s1. By using the cipher text of the index in C as the input to

SampleEncRand, the sender generates randomness r1.

Upon coercion, the sender can reveal real A indexes as fake B indexes and real B

indexes as fake A indexes to fake the message b. To have the additional index that

should be given in fake A, the sender can use the randomness r1 that has derived

above. r1 will generate same cipher text in real encryption. To remove the additional

index in fake B (real A), the index relevant to s1 is mapped to fake C.
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While introducing the above basic scheme, two initiations [2] have also been

proposed where one is based on quadratic residuosity and other is based on trapdoor

permutation.

• Scheme 4: Scheme based on samplable encryption derived by quadratic

residuosity [2]

Quadratic residuosity: Let an integer N = pq where p and q are two odd primes

and select two sets J(N) and Q(N) s.t,

J(N) = {x ∈ Z*N : ( x
N )=1}

Q(N) = {x = a2 : x, a ∈ Z*N}

P(N) = J(N)/Q(N)

According to Quadratic residuosity assumption, without the knowledge of p or

q, Q(N) and P(N) are computationally indistinguishable.

– Key Generation :

Select integer N s.t. N = pq where p and q are n bit primes

Select g s.t. g ∈ Q

Public Key pk = (N, g)

Secrete Key sk = p

– Encryption :

Select r randomly form Z*N

Cipher text c = gbr2(mod N)

– Decryption :

If (c/p) = 1→ b’ = 1

Else b’ = 0

– RandomCT

Find x s.t. (x/N) = 1 where x is select randomly from Z*N

– SampleEncRand

If b’ = 0→ X2 = c (mod N)

If b’ = 1→ X2 = c/g (mod N)
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– SampleCTRand

Select random elements xi randomly from Z*N.

Find L smallest index of i s.t. (xL/N) = 1

Give output, a sequence of randomness (x1,..., xL-1)

• Scheme 5: Scheme based on samplable encryption derived by trapdoor

permutation [2]

The trapdoor consists of an algorithm Samp that extracts an element randomly

and uniformly from a given domain.

– Key Generation: Function f is sampled from a family of trapdoor

permutations with canonical domain sampling [19].

f :R → R

Define H:R → {1,0}

g = f -1

Public key pk = (f, H)

Secrete key sk = g

– Encryption

Select r randomly from R using Samp

Cipher text c = (f (r),H(r) � b) ∈ R ×{1, 0}

– Decryption

Find y and z s.t. c = (y, z) ∈ R ×{0, 1}

b’= H(g(y))

– RandomCT

Using Samp, Select s randomly from R

Find b randomly from {1,0}

Output (s, b)

– SampleEncRand

Find y s.t. c = (y, z)

Output g(y)
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– SampleCTRand

Find y and z s.t. c = (y, z)

Output (y, z)

• Scheme 6: Encryption scheme based on samplable encryption derived by

McElese assumption [3]

Using the concept of deriving deniable encryption scheme form samplable

encryption [2], B.M. David and A.C.A. Noscimento have proposed a new

scheme that is based on McElece assumption [3].

2.4.3 Schemes based on mediated RSA

A different approach for creating receiver deniable scheme was introduced by M. H.

Ibrahim [6] and the scheme is based on mediated RSA and oblivious transfer.

Mediated RSA

This is an extension of RSA where separate entity called SEM (SEcurity Mediator)

involves with the communication.

Key Generation : Certificate authority generates the modulus N and a key pair e

(public key) and d (privet key). In contrast to general RSA, d is segmented into two

components.

d = (s + r) mod(ϕ(N)) where ϕ(N) is the Euler totient of N

Keys will be distributed as e to sender, s to SEM and r to receiver.

Encryption :

The sender generates cipher text c = me mod(N) where m is the message

Decryption :

Receiver sends the c to SEM.

SEM generates, ms = cs mod(N)

SEM sends ms to receiver
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Receiver retrieves the message as,

mr = cr mod(N)

m = msmr mod(N)

Oblivious transfer

Oblivious transfer [8] is a primitive of cryptographic security where the sender

communicates one of the message from possible set of message to the receiver

obliviously. The sender does not know that which message was communicated to the

receiver.

Correctness: The message communicated to the receiver should be valid data of the

sender. This means, the message should be one of possible messages in the sender’s

domain.

Chooser’s privacy: The sender or third party should not get any information about the

message captured by the receiver.

Sender’s privacy: The receiver should not get any information about the messages

that he/she did not captured.

• Scheme 7: Receiver deniable encryption scheme based on mediated RSA

Key Generation - Key generation is same as mediated RSA scheme.

Encryption :

The sender selects a random number R s.t R ∈ ZN where

R = r0...rn-1 is the binary representation of R where n = ln(N)

Select random integer i such that ri = b where b is the message bit.

Generate cipher texts,

Ci = ie mod(N)

CR = Re mod(N)

Sends Ci and CR to the receiver.

Decryption :

Receiver calculates,
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Ti = Ci
d mod(N)

TR = CR
d mod(N)

Sends TR to SEM

Receiver derive i = TiSi mod(N)

SEM calculates,

Si = Ci
s mod(N)

SR = CR
s mod(N)

Sends Si to the Receiver

SEM derive R = TRSR mod(N)

By oblivious transfer between the receiver and the SEM, the receiver

retrieves the relevant value of R related to index i.

Deniability :

If the communication between SEM and the receiver is secure and cannot be

intercepted by the attacker, above scheme provides the receiver deniability.

Upon coercion, the receiver can reveal his key d and any value as i. The

adversary does not have a way to validate fake i value revealed.

2.4.4 Scheme based on simulatable encryption

Invertible sampling [20]:

If a function F is invertible sampling, then there is an efficient inverting algorithm I

which provides indistinguishability of below two experiments.

Experiment 1:

y ← F(x , r), here F’s random coins are r explicit

Return (x, y, r)

Experiment 2:

y ← F(x, r), here F’s random coins are r explicit

r’← I(x, y)
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Return (x, y, r’ )

Simulatable public key encryption [20]:

With simulatable public key encryption [4], one can obliviously sample a public key

without having the secret key and obliviously sample the encryption of a random

message without having the message. There are three algorithms defined for a

simulatable public key encryption. First one is the standard public key encryption that

contains key-generation Gen, encryption Enc and Decryption Dec. Second is the

oblivious key-generation algorithm OGen which can generate public key opk as the

output. The function OGen should support invertible sampling IOG where IOG can

generate a secrete key from opk. The third algorithm considered is the oblivious

encryption algorithm OEnc which takes any public key as the input and generates

ciphertext oc. The function OEnc should support invertible sampling IOE where IOE

can generate a message from oc and public key used for OEnc.

The security of sumulatable encryption has following properties.

1. The encryption scheme should satisfy semantic security that is IND-CPA secure.

2. The public key generated by Gen and the public key generated obliviously by

OGen should be computationally indistinguishable.

3. The distribution of the output of Enc and the relevant receiver randomness

should be computationally indistinguishable from the distribution of the output

of OEnc used and the relevant receiver randomness.

• Scheme 8 : Bi-deniable encryption scheme based on simulatable encryption

– Non fakable encryption

Key generation : The receiver selects indexes of n size subset R randomly

from 5n size domain and generates public keys for all 5n indexes.

However, keys are generated only of the indexes of selected subset R of

size n. For the reset, public keys are generated obviously. All of 5n public

keys is distributed.
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Encryption : The sender selects n size subset S randomly from 5n size

domain and generates n number of ciphertext of the real message (the

length of the message is one bit) for the subset S. The sender also

generates 4n number of ciphertext obliviously.

Decryption : The receiver selects ciphertext related to the indexes of R,

decrypts using the security keys generated at the key generation and takes

the majority to derive the decrypted message. According Ivan et al. [20],

the decryption gives correct message with high probability due to

significant overlapping of indexes in S and R.

– Fakable encryption

The Key generation : Instead of generating secrete keys only for selected

index of subset S, both public keys and secrete keys are generated for all

index of 5n by the receiver.

Encryption: By selecting three n size subsets of indexes S0, S1 and Y

from 5n size domain, the sender generates encryption of zero for the

indexes in S0, the encryption of one for the indexes in S1 and the

encryption of message m (one bit message) for the indexes in Y. For the

reset of 2n indexes, the sender generates ciphertext obliviously.

Decryption: Decryption is same as the non-fakable encryption. Because Y

makes the majority of decryption as message m, it is possible to achieve

the accuracy of decryption with high probability.

– Deniability: The proposed method is based on multi-distributional

deniable encryption. Therefore, the adversary’s knowledge should be

limited to non-faking encryption given above and should not aware on the
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fakable encryption/decryption. When adversary coerces the sender to

reveal the internals, the senders can simply give S0/S1 as S in non-fakable

encryption. The reset can be given as obliviously generated ciphertext.

When coercing the receiver, the receiver can select n number of indexes

that generates the fake message according the majority setting. The

receiver can give those selected indexes as R in non-fakable encryption

and the relevant secrete keys of the selected indexes to the adversary. The

public keys relevant to rest of the indexes can be given as obliviously

generated.

This scheme uses coordinated faking where the faking message should be

known by both parties based on prior agreement. The sender can generate

fake S from S0, S1 and Y subset indexes without depending on the

receiver. But the receiver has to depend on the senders choice. The paper

proposed to do this communication "in-band" using another instance of

the same simulatable-cryptosystem.

2.4.5 Scheme based on indistinguishability obfuscation

The formal study of program obfuscation was started by Barak et al. [21, 22] in

2001. They focused on virtual black-box obfuscation where the obfuscated

program is equivalent to black-box that does not give information of it’s

internals. They have shown that the notion of virtual black-box obfuscation can

provide significant result in cryptography including converting shared key

encryption into public key encryption. But they have also shown that it is not

possible to achieve a general purpose virtual black-box obfuscation.

They also introduced a second notion called indistinguishability obfuscation

[22]. In contrast to virtual black-box, indistinguishability obfuscation has

possible implementations of general programs. The obfuscations of two distinct
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programs with identical functionalities are indistinguishability obfuscated, if

two programs are computationally indistinguishable from each other. The first

construction of indistinguishability obfuscation for general programs was given

by Barak et al. [23] and the authors proposed a mechanism to apply

indistinguishability obfuscation to achieve functional encryption for general

circuits.

Definition: If obfuscation of F1(i.e O(F1)) and obfuscation of F2(i.e. O(F2))

are indistinguishability obfuscated, function F1 and F2 should satisfy below.

O(F1) ≈ O(F2) where F1(x) = F2(x) for any input x

Punctured programs

Based on indistinguishability obfuscation, new technique called punctured

program was introduced by Amit Sahai and Brent Waters [9]. With punctured

programs, one can remove the key elements of a program without changing the

functionality of the program and generate different functions that are

indistinguishability obfuscated. However, the punctured location should not be

functionally accessible by the program. Amit Sahai and Brent Waters have

proposed applications of punctured programs [9] including deriving public key

encryption scheme form shared key encryption scheme and achieving deniable

encryption.

• Scheme 9 : Deniable encryption based on punctured programs

The Sender of the proposed deniable encryption scheme has two obfuscated

programs: the function Encrypt which encrypt the message and the function

Explain that provides the deniability by giving explanation to the adversary.

The obfuscated program Encrypt takes a message m and a random u as the

input and produces output cipher c. The encryption uses a standard public key

encryption scheme for the general encryption. However, before the encryption,

it checks whether u has special arrangement called hidden sparse triggers. If u
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is an encoding (i.e. u = Enc(c, m)) of a cipher text c and the message m, it

gives c as the output cipher. If u is not an encoding of a cipher text c and m, it

encrypts m using standard PKE and r. The random u consists of two parts u1

and u2 that are equivalent to α and β of the output of Explain program.

The hidden sparse triggers should have special set of properties that includes

sparseness, possibility of having oblivious-sampling, indistinguishability under

malleability attacks and possibility of having publicly-generated-triggers. To

achieve the correctness, hidden sparse set should be in a sparse subset of a large

set where sparseness is achieved. With oblivious sampling, one can derive a

sample from full set obliviously. For a third property, it is hard to distinguish a

real random value from a hidden sparse trigger value. Having the last property,

it is possible to generate a hidden sparse trigger by anyone.

If u1 = PRF2(K 2,(m, c, r)) and PRF3((K 3, u1) � u2) = (m, c, r)

Output Cipher = c

Else

x = PRF1(K 1, (m, u))

Output Cipher = EncryptPKE(PK, m; x)

The program Explain which is also obfuscated, encodes given message mf

using cipher text c and some randomness r. It simply outputs the encoding of

mf and c without considering context of c and provides fake randomness to

explain any fake message mf. The output encoding e of Explain is generated

as below. PRF2 is an injective-puncturable PRF and PRF3 is a puncturable PRF.

Set α = PRF2(K 2, (m, c, PRG(r)))

Set β = PRF3(K 3, α) � (m, c, PRG(r))

Output encoding e = (α, β)

The sender encrypts the message using Encrypt and sends the cipher to the

receiver. Because possibility of having hidden sparse triggers is negligible, the

sender is using standard PKE to encrypt the message and the receiver can
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correctly decrypt the message using standard PKE with high probability. In

case of coercion the sender, the sender can generate encoding e as the fake

randomness using Explain program. Since the Encrypt is obfuscated, the

adversary cannot learn the internals. To validate the given randomness, the

adversary only can give fake message mf and e (as the randomness) to Explain

program as the inputs and compare the output cipher c with stored cipher of

real encryption. However, when processing fake message mf and fake

randomness e, the Encrypt will detect hidden sparse triggers and give c as the

output instead of standard PKE encryption. Therefore, the adversary cannot

detect the faking.

The construction of deniable encryption by Amit Sahai and Brent Waters is

given as publicly deniable encryption [9] where the sender does not require to

remember the true randomness to generate the fake randomness. The sender

can generate fake randomness using fake message mf, cipher c and some

randomness r. In addition, anyone that have access to the cipher text c can do

the same.

The security of the publicly deniable encryption consists of two separate areas.

First is Indistinguishability under Chosen Plaintext Attack (IND-CPA) which is

same as the security requirement of standard public key encryption. The second

security requirement is the Indistinguishability of explanation, which provides

the deniability. This implies that the randomness used to encrypt the real

message and the random given by the Explain program should

indistinguishable from each other.

The core concept of this deniable encryption is based on achieving the

Indistinguishability Obfuscation by puncturing. The puncturing provides

computational indistinguishability of what publicly available for encryption and

what really implemented.
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Amit Sahai and Brent Waters have also introduced an extension [9] of above

implementation that supports universal deniable encryption. With universal

deniable encryption, one can use existing public key infrastructure without

re-keying for the deniable encryption. For an example, in above mentioned

scenario, there will be same PKC implementation and changes are not required

to support deniability. With overwhelming probability (when not selecting

hidden sparse set element as a random element), the sender is also using

standard PKC implementation for encryption and public key encryption system

can be defined as a parameter of the obfuscated programs.

2.4.6 Transforming sender deniable encryption to receiver deniable encryption or vice

versa

According to the given scheme [1, 6], a sender-deniable-encryption can be

transformed to receiver-deniable-encryption with additional number of transactions.

With this scheme, the receiver initiates the transaction. The receiver selects random

number r and sends it to the sender using the sender-deniable-encryption scheme.

The sender retrieves the r value and derives (m � r), where m is the message. The

generated cipher m�r is sent to the receiver. Upon coercion, the receiver is able to

preserve the confidentiality using the faking capabilities provided by original sender

deniable encryption[1] which was used to communicate the random r.

A sender deniable scheme can be derived from a receiver deniable scheme via the

inverse of above methodology.

2.4.7 Transforming a sender/receiver deniable encryption to bi-deniable encryption

By having number of intermediaries, a sender/receiver deniable encryption scheme

can be transformed into a bi-deniable encryption scheme [1]. To send bit b, n number

of bits are generated such that �bi = b and each bi is sent to an intermediary (n

number of intermediaries are involved) using a sender deniable encryption scheme.

Each intermediary sends bi to the receiver using a receiver deniable encryption

scheme. The receiver deniable encryption can be derived by the sender deniable
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encryption and vice versa. The receiver can derive the b using �bi = b.

If least one of the intermediaries is not coercible or corruptible, the scheme still

resilient against the coercion. When the coercer is able to do the simultaneous

coercion, additional coordination is required between coercible parties to preserve the

privacy of the communication.

2.5 Shared Key Deniable Encryption Schemes

• Scheme 10 : Scheme based on one-time-pad

In this scheme [1], the message m is encrypted with key k and is produced the

cipher text c = m � k. To give the fake message m1, k 1 is generated such that

k 1 = m1 � c. However, the keys will be equal to the length of the message.

Thereby, the scheme may not be used in practical applications.

• Scheme 11 : Scheme based on pseudo random generator [1]

Encryption:

In addition to real message (m1) and the real key (k 1), the sender selects (t -1)

number of fake messages (m2...m t) and keys(k 2...k t). Each message is

segmented into blocks with n bits.

m1 = m1
1, m1

2, ...

m2 = m2
1, m2

2, ...

...

mt = m t
1, m t

2, ...

Using pseudorandom generator, a and b pairs are generated as in figure 2.2.

The sender finds the Qj polynomial equations s.t Qj satisfies condition mi
j =

Qj(ai
j) - bi

j and derives Cj(coefficient of Qj). The figure 2.3 elaborates the Qj

and Cj generation.

Decryption:

The receiver can generate same pseudorandom output using given k value and

generates the message as mi
j = Qj(ai

j) - bi
j. To retrieve the real message m1, k1
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Figure 2.2: Pseudorandom number generation

can be used and the rest of the keys decrypt the cipher text into different fake

messages.

Deniability:

Upon coercion, the sender/receiver can select any of the key values and relevant

fake messages. However, the scheme provides plan-ahead deniability where the

cipher text can be only opened as (t - 1) number of fake messages that are

decided at initial stage.

Table 2.1: Summary of the existing deniable encryption

schemes

Scheme
PKE/ Shared

Key
Type of Deniability Implementation

Scheme 1 PKE Sender/Full Deniable Using Sparse Set
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Scheme 2 PKE Sender/Full Deniable Using Sparse Set

Scheme 3 PKE
Sender/Multi-Distributional

Deniable
Using Sparse Set

Scheme 4 PKE
Sender/Full Deniable/Interactive

Construction

Based on Samplable

Encryption

Scheme 5 PKE
Sender/Full Deniable/Interactive

Construction

Based on Samplable

Encryption

Scheme 6 PKE
Sender/Full Deniable/Interactive

Construction

Based on Samplable

Encryption

Scheme 7 PKE
Receiver/Multi-Distributional

Deniable

Based on MediatedRSA

and Oblivious Transfer

Scheme 8 PKE Bi/Multi-Distributional Deniable
Based on Simulatable

Encryption

Scheme 9 PKE Sender/Full Deniable
Based on Simulatable

Encryption

Scheme 10 Shared Key Full Deniable Using One time padding

Scheme 11 Shared Key Full Deniable
Using pseudo random

generators

2.6 Cryptanalysis

2.6.1 Ciphertext indistinguishability

Indistinguishability is a main security notion of encryption which can be further

described based on below types. In each of below definitions, the challenger

generates keys and sends the public key to the adversary. The adversary can

experiment with any number of encryptions before receiving challenge message mb

where b ϵ 0,1.

• IND-CPA (Indistinguishability under chosen-plaintext attack): If an adversary is

given message m0, m1 and the cipher text C = E(mb), the probability of finding

correct mb from m0 and m1 should be 1
2 + ϵ where b ϵ {0,1} and ϵ is negligible.
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Figure 2.3: Encryption of shared key deniable encryption using pseudorandom
generation

• IND-CCA1 (Indistinguishability under chosen-cipher text attack): If an

adversary is given the cipher text C = E(mb) of plaintext messages m0 or m1,

the probability of finding correct mb from m0 and m1 should be 1/2 + ϵ where ϵ

is negligible. Same as IND-CPA, the adversary can do any number of

polynomial bound encryptions. In addition to that, the adversary can request

any number of decryption (from decryption oracle) of arbitrary cipher texts

before deriving the message mb.

• IND-CCA2 (Indistinguishability under adaptive chosen-cipher text attack): If an

adversary is given the cipher text C = E(mb) of plaintext messages m0 or m1, the

probability of finding correct mb from m0 and m1 should be 1/2 + ϵ where ϵ is

negligible. Same as IND-CCA1 the adversary can use any number of polynomial

bound encryptions and can request any number of decryption (from decryption

oracle) for arbitrary cipher texts before receiving cipher text C. In contrast to

IND-CCA1, the adversary can access decryption oracle even after the receiving

the challenge cipher text C. However, the adversary is not allowed to pass cipher

text C to decryption oracle.
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• Indistinguishability from random noise: This is the Indistinguishability of

cipher-text against the true random value generated with same length. This is

not a critical requirement of encryption in semantic security. However, this is

critical factor for steganographic schemes and the notion of plausible

deniability where adversary should not be able to detect the existence of

message in the given cipher text.

2.6.2 Deterministic encryption vs probabilistic encryption

Deterministic encryptions always generate same cipher text for a given plaintext in

any repetition with same key and cipher text does not depend on any random value.

With Deterministic encryption, if an adversary able to recover any message with

existing cipher, he/she will have additional advantage for detecting the plaintext of

future encryptions. For example, the adversary can encrypt known possible messages

using the public key and can do an statistical check on cipher text to find occurrences

of know messages.

In contrast to deterministic encryption, probabilistic encryption uses additional

randomness r to generated e ← (m, k, r). Therefore, the cipher text for given message

and a public key is mapped to number of possibilities based on the randomness r.

Therefore, it is infeasible to launch a statistical attack using past history of cipher to

message mapping.

2.6.3 Malleability of encryption

With malleable encryption, one can generate a ciphertext c2 by transforming a

ciphertext c1 which is the encryption of know message m2 (knowledge of m2 can be

partial). If the encryption is malleable, the adversary can generate ciphers that will

decrypt to plaintext with known characteristics.

2.6.4 Methods of cryptanalysis

• Statistical cryptanalysis
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– Frequency analysis : The elements such as letters of the plain text

alphabet do not have same probabilistic distribution of occurrence in

specific usage. The variation of the probability depends on the language

characteristics. For example, the letter E in English language has high

probability of occurrence compare to letter Z. Same as letters,

combinations of letter also have different probability distribution. In

substitution ciphers, this probabilistic distribution can be used to identify

the occurrences of particular element of the alphabet. Since the frequency

of each element in ciphertext reflects the plain text element that was

substituted, one can break the cipher by observing the frequency

distribution of elements such as letters and combinations.

– Linear cryptanalysis : Linear cryptanalysis is one of the commonly used

cryptanalysis method that is based on finding linear approximations to

relate the ciphertext, the plaintext and the key. In the first step of linear

cryptanalysis, one has to deduct linear equation to relate the elements of

key to plain-texts and the relevant cipher-texts. To derive the linear

equation, he/she can use the cipher text of known plain texts and known

keys. Then the equation can be used to find the real key and break the

encryption of specific communication.

– Differential cryptanalysis : Differential cryptanalysis is a statistical

analysis method that is based on the possibility of deriving high

probability function that relates input plaintext differences to the relevant

output differences of the cryptosystem. This was first introduced by Eli

Biham and Adi Shamir in 1990. Though differential cryptanalysis is

primarily applicable for block ciphers using chosen plaintext attack, it can

be used to break stream cipher as well. In basic differential cryptanalysis,

the attacker selects pair of plaintext with constant differences and finds the

relevant differences in the outputs. The attacker analyses the result

distribution to find any statistical patterns and uses them to recover the

key. With the basic key recovery, large number of plaintext pairs may be
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needed. But by evaluating the stages of encryption algorithm, the plaintext

pairs can be selected for successful attack with lesser number of plaintext

pairs.

• Rubber hose cryptanalysis : Rubber hose cryptanalysis is based on

coercion/torturing to reveal the secret internals of the cryptosystem instead of

using cryptographic methods. The retrieved data can be used for further

cryptanalysis. Though the name indicates physical torturing, any coercion

using physiological/legal factors is also considered as rubber hose

cryptanalysis.
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3 IMPLEMENTATION OF FULL SENDER DENIABLE

ENCRYPTION

3.1 Implementaion

In this research, a full-sender-deniable encryption has been implemented using the

parity based scheme introduced by Canetti et al. [1]. The implementation consists of

four main modules : Keygen, Sender, Receiver and Adversary.

3.1.1 Keygen

Keygen is to generate PKC keys (for an example, RSA) for sparse set generation. For

RSA as PKC, it provides public key (e with N) and private key (d with N) as the

outputs. The user has to provide the bit length as the security parameter input.

3.1.2 Sender

Sender module has four distinct functions: Sparse set generation, deniable

encryption, providing non-fake randomness used for encryption and providing fake

randomness that produce the given fake message. Sparse set can be generated based

on three algorithms. Two of them are based on the schemes proposed by Canetti et al.

[1] and one is a new construction proposed in this research.

1. Sparse set generation.

In each implementation, H1 is an array of random numbers which is supposed

to be given to the adversary at the coercion.

a) Implementation 1: This is based on the schemes proposed by Canetti et al.

[1] and the sparse set values are generated as below. The function Parity (x)

returns the parity of x. Sparse set is generated using RSA as the trapdoor.

Function SparseSetGen

Do i = 1 to k

Select x = Random(bit length = s)
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Do while Parity(x) <> 1

Select x = Random(bit length = s)

End do

S1 = EncryptRSA(x)

Store H1[i] = x

S = Concatenate(S , S1)

End do

b) Implementation 2: This is also based on the schemes proposed by Canetti et

al. [1]. The sparse set is generated using RSA as the trapdoor. The function

Parity(x) simply returns the parity of x and S values are generated as

below.

Function SparseSetGen

Select x = Random(bit length = s)

Store H1 = x

e = x

Do i = 1 to k

e = EncryptRSA(e)

S1 = Parity(e)

S = Concatenate(S, S1)

End do

S = Concatenate(e, S)

c) Implementation 3: This is a new construction proposed in this research.

The construction does not directly satisfy the first point of sparse set

definition as we are not using k. However, the first point of the definition

is to satisfy the accuracy at decryption and deniability for the sender.

Below construction satisfies both requirements and the detailed analysis is

given in section 3.2. The sparse set is generated using RSA as the

trapdoor. K is a constant value.

Function SparseSetGen

Select x = Random(bit length = s)
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Store H1[next] = x

x2 = (x + K) mod(2s)

S1 = EncryptRSA(x)

S2 = EncryptRSA(x2)

S = Concatenate(S1, S2)

2. Encryption:

H2 is an array of random numbers which is supposed to be given to the

adversary at the coercion.

Function DeniableEncryption

B[] = BitRepresentation(m)

For i = 1 to B.length

Select x = Random(bit length = p)

Do while Parity(x[]) = B[i]

Select x[] = Random(bit length = p)

End do

Store H2[i] = x[]

For j = 1 to p

If x[j] = 1

Get e = SparseSetGen()

Else

If implementation = 1: e = Random(length = s*k)

If implementation = 2: e = Random(length = s + k)

If implementation = 3: e = Random(length = 2s)

c = concatenate(c, e)

End For

End For

3. Providing non-fake randomness:

Function GiveNonFakeRnd

Give H1 and H2
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4. Provide fake randomness:

Function GiveFakeRnd

Get fakeMessage and realMessage

B[] = BitRepresentation(realMessage)

B2[] = BitRepresentation(fakeMessage)

For i = 0 to B.length

F1 = H1

If B[i] = B2[i]

F2[i] = H2[i]

Else

Select r = Random(1 to p)

Do while H2[i].BitAt(r) <> 1

Select r = Random(1 to p)

End do

F2[i] = H2[i]

F2[i].BitAt(r) = 0

F1[H2.numberOfOnesUpto(position = i*p + r)] = null

End if

End For

F1.removeNullElements

Give F1 and F2

3.1.3 Receiver

Receiver has one main function that can be divided into two main sub-functions based

on the level of decryption. They are (1) decryption of deniable encryption and (2)

sparse set elements detection using a common PKC (here we are using RSA).

1. Detecting sparse set elements

a) Implementation 1

Function DetectingSparseSetElement

C[] = segment(c, length = s)
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For i = 0 to k

D = DecryptRSA(C[i])

If (Parity(D) = 0)

Break and Return False

End If

End For

Return True

b) Implementation 2

Function DetectingSparseSetElement

X = c.firstBits(length = s)

e[] = c.lastBits(length = k)

For i = k to 0

X = DecryptRSA(X)

If(Parity(X) <> e[k ])

Break and Return False

End if

End For

Return True

c) Implementation 3

Function DetectingSparseSetElement

X1 = c.firstBits(length = s)

S1 = DecryptRSA(X1)

X2 = c.lastBits(length = S)

S2 = DecryptRSA(X2)

If (X2 - X1 = K)

Return True

Else

Return False

2. Decryption of deniable encryption

Function DecryptionDeniable
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S[] = C.segment(length = s)

For i = 0 To S[].length

If DetectingSparseSetElement(S[i]) = True

B[i] = 1

Else

B[i] = 0

End For

For i = 0 To B[].length

M[i] = Parity(B[i*p] to B[i*(p + 1) -1])

End For

m =M[].ConvertToString()

return m

3.1.4 Adversary

The implementation of an adversary consists of below functions

1. Validation - Here the adversary validates the given fake/non-fake random values

against the cipher text captured. For faking, the sender passes F1[] and F2[] as

T1[] and T2[]. For non faking, the sender passes H1[] and H2[] as T1[] and

T2[].

a) Implementation 1

Function GetSparseSet(j)

Do i = 0 to k

Select x = T1[j*k + i]

S1 = EncryptRSA(x)

S = Concatenate(S , S1)

End do

Return S

b) Implementation 2

Function GetSparseSet(j)

Select x = T1[j]
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e = x

Do i = 1 to k

e = EncryptRSA(e)

S1 = Parity(e)

S = Concatenate(S , S1)

End do

S = Concatenate(e, S)

Return S

c) Implementation 3

Function GetSparseSet(i)

Select x = F1[i]

x2 = (x + K) mod( 2s)

S1 = EncryptRSA(x)

S2 = EncryptRSA(x2)

S = Concatenate(S1, S2)

Return S

d) Validation by the adversary

Function Validate

C1[] = C.segment(length = s*k)

For i = 0 to T2.length

If T2[i] = 1

S[i] = GetSparseSet(i)

If S[i] <> C1[i]

Return "Faking Detected"

End if

Else

R[i] = C1[i]

End if

End for

Return "No Faking Detected"
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2. Analysis 1 - With this analysis, adversary simply checks whether the given F2[]

has all ones (i.e. {1}t ) random blocks. If any value detected, the adversary can

fully trust on the sender on those values. Based on those value, one can reduce

the possible message space of the real message.

3. Analysis 2 - Assuming that the standard public key encryption used for the

trapdoor permutation is plaintext aware, the adversary uses given S values and

compares it with given R values to find any possible faking. For this purpose,

he compares S[] and R[] arrays generated at validation to find common

occurrences. However, the detection of duplication does not directly imply the

faking as S is a subset of R. To detect the faking, the frequency of duplication

should be compared against the accuracy of each implementation (i.e. 1/2k,

1/2k and 1/2s for each implementation respectively).

4. Analysis 3 - This analysis provides the number of standard public key

encryptions required to generate the cipher text from a given message. This can

be used as a tool for a side channel attack. Since only S elements are given as R

elements, the estimated number of required encryptions will be always less than

the number of standard public key encryptions in real encryption.

5. Analysis 4 - The adversary derives the inverse of the bit of the given plain

text(fake/non-fake) by the sender. However, if the derived inverse is directly

converted to plaintext, it will be outside the considered alphabet (for an

example, here we consider English letters/numbers). Therefore, before

converting to plain text, the inverse should be rearranged to support the

alphabet in use.

6. Attack using Analysis 4 - The adversary uses the message generated in analysis

4 and asks the sender to generate fake randomness F2[]. Then the adversary

can calculate the bitwise xor of T2[] of the sender given as true message and

F2[] for the generated fake message. The result will be the real value of the

communication.
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3.2 Sparse Set Generation using Probabilistic Encryption

The sparse set generation explained by Canetti et al. [1] is based on deterministic

encryption. Therefore, the detection (by adversary) of S elements generated by

repeating the underlying public key encryption of the same random number is a main

consideration. This is explained in below S element generation with deterministic

encryption.

Occurrence 1

Select x1 as the random number

Generate S1 using EncPKC(x1)

Give S1 as Sparse Set Element

Adversary store x1

Occurrence 2

Select x1 as the random number

S1 = EncPKC(x1)

Give S1 as random number R1 at faking

In occurrence two, the adversary with previous knowledge can detect

faking. Therefore, when using deterministic encryption as the trapdoor, the value k

and t should satisfy two conditions.

• For the accuracy, |S| < 2t-k where k should be significantly large (but k < t ).

With implementation 3, probability of selecting S element as R element can be

given as 1/2s. Therefore, even with small k, by increasing the length s, higher

accuracy can be achieved.

• To prevent above statistical attack, the bit length of the random number t /k also

should be large. However, with probabilistic encryption, the adversary can not

detect x1 from S1. Therefore, above statistical analysis is not possible. The S

element generation can be as simple as S = EncPKC(X) where X is a constant
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public value.

Since implementation 3 satisfies the above two condition, it provide the same security

as implementation 1 and implementation 2.

3.3 Performance Comparison of the Implementations

In addition to the security of a crypto-system, the performance parameters are

important in practical applications. The performance of a crypto-system at encryption

and decryption can be evaluated with three main parameters: correctness, throughput

and execution speed. The correctness of a crypto-system yields the accuracy of

retrieving same message at the decryption by the receiver. The throughput is given as

ratio of the cipher-text to plain-text and this effects the bandwidth/storage

requirement of the particular implementation. The execution speed is given as the

time taken for encryption/decryption in practice. Because all three implementations

use the same algorithm except for the way of S element generation/detection, the

execution speed can be directly mapped into the number of standard PKC

encryptions/decryptions required.

3.3.1 Encryption

The performance of the throughput at the encryption is evaluated based on the

cipher-text to plain text ratio. The execution speed of the encryption is evaluated

based on the number of PKC encryptions. Since the length of the random V is the

main security parameter of the implementation, it is considered as the x-axis for all

three comparisons. The bit length is kept as constant (k = 16). The performance

comparison is given in Fig 3.1 and Fig 3.2.

3.3.2 Decryption

The performance of the decryption is given based on the number of PKC decryptions

required. The performance comparison is given in Fig 3.3.
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Figure 3.1: Number of PKC encryption for 1 bit of deniable encryption vs bit length
of random V

Figure 3.2: Message length /Cipher-text ratio vs bit length of V
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Figure 3.3: Number of PKC decryption for 1 bit of deniable encryption vs bit length
of random V
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4 CRYPTANALYSIS

With the objective of crypt-analyzing full-sender deniable encryption, this research has

defined a common model based on two full-sender deniable encryption schemes: the

parity based scheme [1] and the scheme based on samplable encryption [2].

4.1 Common Model for Full-Sender Deniable Encryption

1. Three main entities involve with the communication: the sender encrypts the

message, the receiver decrypts the message and the adversary who is able to

coerce the sender to reveal internals. The standard PKC key generation is

considered as an integral part to the receiver.

2. Threat Model:

a) The adversary does not have access to the internal execution of the

encryption where partial calculation is not possible to break the

encryption. Therefore, by monitoring the encryption, the adversary cannot

gain an additional advantage to validate the information revealed by the

sender.

b) The adversary does not have access to the internal execution of the

decryption where partial calculation is not possible to break the

decryption. Therefore, by monitoring the decryption, the adversary cannot

gain an additional advantage to validate the information revealed by the

receiver.

c) The communication channel between the sender and the receiver is not

secure. Hence, the adversary has access to the cipher text which was

transmitted.

d) The coercible party does not erase the plaintext messages or the coercer

does not have any confirmation on the such a deletion.
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3. Encryption: The Encryption can be explained in four steps. The third and

fourth steps provide the deniability while the steps one and two are to provide

encoding/encryption requirements using one-to-one/one-to-many substitutions

without collusions.

a) Step 1: All the given encryptions are bitwise encryptions. Thereby, the first

step of the encryption is to convert the plain text message into bits.

b) Step 2: Substituting each bit with a random value based on a given

criteria. With the parity based scheme, this is the step equivalent to

selecting a random V while with the scheme based on Samplable

encryption, this step is equivalent to selecting random indexes for A, B

and C.

c) Step 3: Substituting each bit with a cipher value generated using a

standard public key encryption. In parity scheme, each 1 is replaced with

S element generated using PKC as the trapdoor and 0 is replaced with a

random element. In the scheme based on samplable encryption, each bit is

encrypted by selected public key value.

d) Step 4: This step consists of the communication with the receiver. The

parity scheme uses single one way communication. The scheme based on

samplable encryption uses interactive method that uses multiple

communications between the sender and the receiver.

4. Two main views are considered as given in Figure 4.1.

a) The sender’s view of encryption: Use real message m, randomness Rs,

public key Kpk and proceed above 4 steps.

b) The adversary’s view of encryption (Validation): Use message m’,

randomness R’s, public key Kpk and proceed above 4 steps.
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Figure 4.1: Sender’s view vs adversary’s view of the encryption

5. Possible analysis/attacking points

a) Analysis at Step 1 and 2: Faking of full sender deniable public key

encryption can be elaborated as a shared key encryption with one time pad

(i.e. the secret key) as given in Figure 4.2. Therefore, one can try with the

shared key based analysis at this steps.

b) Analysis at Step 3: As given above the standard PKC is used in this step.

Therefore, any attack based on vulnerabilities/limitations of standard PKC

can be considered. Also the notion of collusion and correctness should be

considered at this step.

c) Analysis at Step 4: Analysis based on interactions between the sender and

the receiver is considered at Step 4. The possible scenarios including

collecting public parameters, the coercion of the sender and any access to

the receiver (without coercion) can be considered.
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Figure 4.2: Sender faking as shared key encryption

For the detail cryptanalysis, this research has selected the parity based scheme [1]

proposed by Canetti et al. In first part of crypt-analysis, the analysis based on the

limitation given by Canetti et al. [1] has been reevaluated. In second part, this

research has given possible attacks using statistical methods and finally, possible

attacks proposed based on the faking algorithm.

4.2 Cryptanalysis Based on 1/n-deniability

The main limitation of the parity scheme is that any bit can be faked only with 1/2n

probability where n is the bit length of a random value V. When encrypting 0, if the

sender selects (randomly) V = 0 as the random, it is not possible to generate a fake

randomness (by flipping one 1 coin as 0 coin) as S element are not included in the

original random V. In this case, one can suggest not to use V = 0 as the parity value

at the real encryption. However, because this is full deniable encryption, not using V

= 0 is also know factor for the adversary. Therefore, when giving V = 0 at faking, the

adversary can detect the faking. Moreover, the probability of un-deniability will

increase to n/2n , because the probability of having V = 1 in encryption is n/2n.

On the other hand, if the adversary is given all one as the random value V, there

couldn’t be any faking possibility and the adversary can fully trust the sender on those

values. If the message length is m, then expected number of guaranteed true bits is

55



(m/2n). This means, if small n is used to encrypt significantly long message, the

advisory can find significant number of guaranteed bits as true value. The adversary

can detect those all one occurrences and gains the advantage of having narrowed

message space compared to the original possible message space of 2m. The expected

sized of the possible message space will be 2(m(1-1/2n))

4.3 Cryptanalysis Based on Statistics

As given above, the parity based encryption can be considered as an encryption with

two substitutions. If the true message is m = B1...Bn where B is {0, 1}, the two

substitutions can be given as below,

1. Each Bi is substituted with a random number Vi where Bi = Parity(Vi)

2. Each one in Vi is substituted with S element and each zero in Pi is substituted

with R element

The adversary’s view of encryption also can be explained as two substitutions. If

the fake message given is m’ = B’ 1...B’n, the two substitutions can be given as below,

1. Each Bi’ is substituted with random number Pi’ where Bi’ = Parity(Vi’)

2. Each one in V’i is substituted with S element and each zero in V’i is substituted

with R element

Therefore, we can consider faking as a symmetric encryption that encrypt true

random values(V1...Vn) to fake random values(V1’...Vn’) using single step of

substitution. The key of the encryption can be considered as one time pad and it is

generated based on the sender’s choice (i.e. faking or not faking of each bit).

With this new idea, one may suppose to continue the cryptanalysis of the deniable

encryption based on known methods used to break substitution cipher. However, the

alphabet of the plaintext/ciphertext of encryption considered does not have

characteristics of natural language. The characteristics of the alphabet mainly depend

on the random number generator.
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Figure 4.3: Faking against random number generator

First, we assume of having a perfect random number generator. In faking, the sender

is giving one S element as R in V. Therefore, the probability distribution of fake V is

expected to deviate from the probability distribution of true V. However, each random

V has uniform probability distribution and for fake detection, the sample size has to

be significant. With given parity based deniable encryption, probability of having i

number of 1s in V is nCi/2n where maximum probability is at i = n/2. If the faking

happens, the probability distribution will be deviated from probability distribution of

true randomness same as above. But, this is detectable with a smaller sample size

compared to detecting deviation in the distribution V.

If the faking is done with Pf, then the expected probability distribution of 1s in V can

be given as [(1 - Pf) * nCi + Pf * nCi + 1 ] / 2n . According to the equation, faking

distributions should be moved to the left from the real random distribution graph. The

detection is significant when the n is small. The figure 4.3 shows the distribution with

n= 16.

Moreover, if a given deniable encryption uses a non-perfect random number
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generator, the adversary may have additional advantage based on the known

characteristics of the generator.

The probability of S element given as R element is 1/2k which is considered to be

negligible value. But when the sender is giving multiple fake messages, the adversary

can collect S values and checks them against the given R value. Because at faking, it

is always gives S values as R values and not in other way, the adversary may be able

to detect probability of S elements given as R element is more than 1/2k and detect

the sender’s faking.

However, the above statistical attack is only possible, if the underlying public key

encryption(for an example, RSA) is deterministic where the sender generates same

cipher for a plain text message every time. But if the underlying public key

encryption is probabilistic (CPA secure), it is infeasible for the adversary to collect

the data on cipher text space by comparison.

4.4 Cryptanalysis Based on Faking Algorithm

According to the faking algorithm, the sender gives S elements as R elements only,

but not R element as S elements. Therefore, the adversary can trust on all the values

given as S elements and need to work only on random R elements.

4.4.1 Coercing faking algorithm

If the sender is generating number of fake message on same ciphertext, the adversary

can collect all those random S values and can generate the true message by

considering all S values in different fake messages cumulatively. But one can argue if

the sender is generating fake messages for same cipher, the adversary can already

detect the faking. Therefore, the sender should have to generate only one fake

message in particular instants of coercion.

But above argument is not true with full deniable encryption. The internal
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implementation of the sender’s encryption is considered to be public parameter and

the adversary already knows the possibility of faking by the sender. Thereby, the

adversary can ask/coerce the sender to generate fake messages for the encryption

(fake or non-fake) and collect fake messages. In this case, the sender has to generate

fake messages without resistance.

4.4.2 Detecting faking

The adversary can ask to generate fake randomness for any message other than the

given for the adversary at initial faking. The sender’s faking is based on the original

message and the sender provides randomness as V’f = {S2, R}n where S2 is a subset of

S. The randomness given by the sender at initial faking is V’ = {S1,R}n where S1 is a

subset of S. If the true randomness is given, S2 should be a subset of S1 (S2 ⊂ S1). Any

s element in S2 that is not in S1 implies the faking and the faking can be detectable.

This can be further explaining by considering the above idea of faking as a shared

key encryption. In non-faking, the plain text (the real random V used for the

encryption) and the cipher-text (the V’ given to the adversary) should be equal where

all the bits of one-time pad k should be 0.

V’= V � k

V’f = V � kf

V’ � V’f = k � kf

k = V’ � V’f � kf

The adversary can derive k using known values of Vf, V’f and kf. if any k does not

equal to all zero indicates the faking. The time complexity of detection is O(n) for all

three implementations where n is the bit length of the plaintext message.

4.4.3 Deriving true randomness

Assume the sender gives randomness V’ for the adversary. The adversary calculates

the inverse of given bit values b...bn by flipping each bit and generates the message

ma. The message ma is given to the sender and asks to generate fake randomness Vf

that explains the same cipher text and ma. The adversary can derive the true message
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by finding the union of the S values given in V’ and the S values in Vf. The

explanation of the derivation is given below.

Consider b, bg and brg are original message bit of the encryption, message bit given to

the adversary at initial coercion and the message bit generated by adversary to request

the fake randomness respectively. The true random value, the value given at initial

coercion and the value generated by sender for the adversary’s faking request are V,

V’ and Vf respectively.

If the sender has done faking,

bg = (1 - b)

V’ → One of the S element in V is given as R element

brg = b

Vf → same as V

If the sender has not done faking,

bg = b

V’ → same as V

brg = (1 - b)

Vf → One of the S element in V is given as R

In this case, adversary does not know whether sender has faked or not faked. But the

adversary can derive original r value by getting union of S value given for V’ and Vf.

Then the true message bit b can be derived using r.

One possible solution to prevent above detection is, generating the further faking

messages based on initial faking randomness given to the coercer. The faking

algorithm has to store the fake randomness V’ at the initial coercion. When the

adversary requests randomness by further faking, only S elements in the V’ should be

given as R. Then S2 will be always a subset of S1 and faking will not be detected.

However, considering the encryption is full deniable, the adversary may also know

the internal implementation at faking. Therefore, the adversary may ask to flush the
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memory by coercion or the adversary can check the status of the memory using same

detection explained above. Therefore, storing initial fake message is only useful when

faking with multi-distributional characteristics.

4.5 Side Channel Attacks

Above cryptanalysis is based on the given common model where the adversary does

not have access to the internal execution of encryption and decryption. But in this

section we assumed that the adversary has access to monitor the execution of

encryption and decryption. Consider a faking includes x number of flipping of fake

bits, where x number of S elements are given as R elements and the total resource

utilization is U. The resource utilization relates to generate S element is denoted by Ps

and the resource utilization relates to generate R element is denote by Pr. The

resource can be time, processor or memory usage. The resource utilization for fake

message encryption will be Uf = U - x * (Ps - Pr). In general, because of the PKC

encryption, Ps and Pr will have significant differences. Therefore, faking can be

detectable and detectability increases with x.
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5 Conclusion

Deniable encryption introduced by Canetti et al. [1] is a strong cryptographic notion

that provides a way to remove the committing nature of legitimate parties to the

internals of encryption/decryption. In deniable encryption, the sender and/or the

receiver can generate fake internals to satisfy the security verification against the

original ciphertext.

This research has introduced a common model for existing full sender deniable

encryption scheme. By introducing the common model, this research has defined a

threat model for the common model of a full sender deniable encryption scheme. The

encryption was explained in four steps and the possible analysis points were defined

based on those four steps. For the common model, two main views were defined as

the sender’s view of encryption and the adversary’s view of encryption. Based on the

views defined, an elaboration was done where the full sender deniable encryption

scheme is considered as a shared key encryption that encrypt true plain text message

of sender’s view into fake plain text message of adversary’s view. The fake plain text

is generated as the ciphertext of the shared key encryption. This research has showed

that breaking deniability of the original encryption is equivalent to breaking a shared

key encryption which has a key length equals to message length.

Initial cryptanalysis was based on the common model and further analysis was carried

out on a real implementation. The implementation is based on the parity based full

sender deniable encryption scheme proposed by Canetti et al. [1] and RSA has been

as the trapdoor to generate the sparse set. Three types of sparse set generation were

implemented. Two of them were based on the deniable encryption schemes

introduced by Canetti et al. [1] and the third is a new construction. The performance

of these three different sparse set generation methods is evaluated with respect to

message length to cipher text ratio and the number of standard PKC decryption to

retrieve a single bit of plain text. Similar to the result give by Canetti et al. [1], this
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research has found better performance in the implementation of the second method

compared to first method. The third method proposed in this research has better

performance compared to first and second methods proposed by Canetti et al. [1].

Based on the third implementation, this research has demonstrated that with the use

of probabilistic encryption like enhanced RSA instead of using deterministic

encryption, which was used for the initial sparse set definition [1], the required

number of PKC encryptions can be reduced from k to 1. Since the plaintext is not

directly mapped to the cipher text value in probabilistic encryption, the adversary

cannot detect the S-values based on previous knowledge. Therefore, the S element

can be generated using only one standard PKC encryption. However, it requires

future research work to derive the security requirement of probabilistic encryption to

prevent statistical attack in deniable encryption.

In the first part of the cryptanalysis work, this research has showed that the adversary

can reduce the possible true message space by analyzing the S values and use that to

validate the fake/non-fake message given by the sender. The limitation of faking

based on 1/n-deniability given by Canetti et al. [1] has been also discussed.

In statistical cryptanalysis, this research has showed that it is possible to detect the

faking by detecting the deviation in distribution of V values from expected

distribution of V in non-faking. The detectability of faking increases when reducing

the bit length of V.

Finally, this research has showed that it is possible to break the implemented full

sender deniable scheme [1] by coercing the sender to generate more fake messages.

The faking of the given scheme can be detected by analyzing any other fake message

generated based on original real message and true message can be derived by

collectively analyzing the fake messages generated for same real message. This

research has also elaborated a straightforward method to find the real message by

requesting/forcing the sender to generate a fake randomness of given fake message

63



derived based on initial fake message and randomness given to the adversary.
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