ESTIMATING TRAVEL TIME FOR UN-SIGNALIZED TWO LANE HIGHWAYS IN SRI LANKA

Gayani Sandarukshi Galappaththi

138036G

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa Sri Lanka

May 2016

ESTIMATING TRAVEL TIME FOR UN-SIGNALIZED TWO LANE HIGHWAYS IN SRI LANKA

Gayani Sandarukshi Galappaththi

138036G

Thesis submitted in partial fulfilment of the requirements for the degree Master of Science in Civil Engineering

Department of Civil Engineering

University of Moratuwa Sri Lanka

May 2016

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Master's thesis under my supervision.

Signature of the supervisor:

Date:

Abstract

Estimating Travel Time for Un-signalized Two Lane Highways in Sri Lanka

Reliable travel time estimation of a given route is important in transport planning. Travel time estimation is an important parameter in effective transport planning, quality maintenance, and traffic management. Even though several models are available worldwide for travel time estimation from simple road network to a complex transport network, local availability of such methods are lacking mainly due to the inadequacy of research, data and resources. Travel time along a particular route is associated with several factors including land use type, geography, weather, road condition, traffic flow, road geometry. One or a combination of these factors can cause variation in travel time and the effect from each parameter can change with the land use activities in the area.

The objective of this research is to develop a relationship to estimate the travel time for road links to monitor the travel time and of two lane highways without signalized intersections in Sri Lankan context, by assessing the correlation between land use type and the travel time along the road.

Two lane road sections of three national highways in Sri Lanka; Peliyagoda-Puttalam road (A03), Colombo-Kandy road (A01), Ambepussa-Trincomalee road (A06) were considered for this study to associate the different land use types, different vertical and horizontal alignments and its correlation with vehicle travel times. Continuous travel time data along the roads was collected during daytime using GPS (Global Positioning System) data loggers. Road was sectioned according to the land use type. Multivariate stepwise regression was used to develop the relationship between the land use type and the travel time. Land use data showed significant positive correlation with the travel time data. One travel time estimation model for three leg un-signalized intersections and four models for travel time estimation for different four land use types, commercial, residential present on both side, residential present on one side and cultivation for the stretch of the road were successfully developed with model fit more than 69% and Mean Absolute Percentage Error (MAPE) of more than 38%.

Key words: Two Lane Highways, Travel Time Estimation, Land Use Type, Transport Planning

Dedication

To my loving parents and my husband

Acknowledgement

First and foremost, I would like to express my appreciation to my research supervisor, Professor J.M.S.J. Bandara for the guidance, support, patients provided through this period and above all allowing me to learn through my own experience.

Further I would like to convey my gratitude to Mr. Loshaka Perera for guidance and assistance received and also I am grateful to the Transportation Engineering division staff for being so supportive as well as the assistance provided during my work, specially Prof. Wasantha Mampearachchi, Dr. H.R. Pasidu and Ms. Melani.

Next I would like to convey my gratitude to the Civil Engineering Department Staff for the enormous support provided through my research and all other work. Further I would like to convey my gratitude to former head of the department Professor S.M.A. Nanayakkara, research coordinator Prof. Ashoka Perera, Director postgraduate studies Prof. Chintha Jayasinghe, Dean, Faculty of Graduate studies Prof. Dileeka Dias and staff of Postgraduate Studies Division and Faculty of Graduate Studies.

I should not forget to thank my fellow researchers at the Department of Civil Engineering, Isuru, Ruksala, Uditha, and Shyamane for their co-operation, valuable time spent on me and discussion which were a great aid to successfully complete this research. Last but not least, I appreciate every person who contributed in any way to make this research project, a success.

Table of content

		Declaration	i
		Abstract	ii
		Dedication	iii
		Acknowledgement	iv
		Table of content	v
		List of Figures	viii
		List of Tables	ix
		List of Abbreviation	xi
1	Inro	oduction	1
	1.1	Background	1
	1.2	Objective of the study	2
	1.3	Scope of work	2
2	Lite	erature review	4
	2.1	Factors affecting the travel time	4
	2.1.	.1 Land Use	8
	2.1.2	.2 Weather	15
	2.2	Travel time estimation approaches	16
	2.2.	2.1 Extrapolation method	16
	2.2.2	2.2 Time series analysis	17
	2.2.	2.3 Artificial neural networks (ANN)	19
	2.2.4	2.4 Statistical approach	20
	2.3	Travel time data collection methods	24
3	Met	ethodology and data collection	

	3.1	Me	ethodology	8
	3.2	Ro	ute selection2	9
	3.3	Da	ta collection	0
	3.3.	1	Sectioning the roads	0
	3.3.2	2	Travel time data collection	1
	3.3.3	3	Land use data collection	3
	3.3.4	4	Data Reduction	6
4	Ana	lysi	s and results	8
	4.1 lane hi		avel time estimation for three leg un-signalized major intersection in tw /ays	
	4.1.	1	Sensitivity of the minimum buffer distance for intersections	8
	4.1.2 estir		Regression model of un-signalized three leg major intersections t the travel time	
	4.2	Tra	avel time estimation for the stretch of the road in two lane highways4	6
	4.2. deve		Travel time estimation model when the land use type is commercia ment	
	4.2.2	2	Travel time estimation model when the land use type is residential5	0
	4.2.3	3	Travel time estimation model when the land use type is cultivation5	5
5	Disc	cuss	ion & conclusion5	8
	5.1	Lir	nitations and future study areas6	0
6	Refe	eren	ces6	1
			PENDIX A: Regression Model of Un-Signalized Three Le ersections	
		AP	PENDIX B: Regression Model of Commercial Development	3
		AP	PENDIX C: Regression Model of Both Side Residential7	8
		AP	PENDIX D: Regression Model of One Side Residential Only8	9

APPENDIX E: Regression Model of Cultivation	93	3
---	----	---

List of Figures

Figure 2.1: Greenshield Speed – Flow Curve (1935)
Figure 2.2: Functional classification of roads7
Figure 2.3: Map of Pettah, Sri Lanka, 2016 May12
Figure 2.4: Map of Jaffna, Sri Lanka, May 201612
Figure 2.5: Map of Habarana Forest, Sri Lanka, May 201613
Figure 2.6: Sensors Located on the Road16
Figure 2.7: Seasonal variation over time
Figure 3.1 : Band development in Colombo Batticaloa Highway33
Figure 3.2: Band development in Colombo 07
Figure 3.3: Sketch of a major intersection
Figure 3.4: Stretch of the road
Figure 3.5 : 7 th of June 2013, 3pm trip from Ambepussa to Kandy37
Figure 4.1: Box plots of travel time(s) for intersection lengths of 40m, 50m, 60m,
80m, and 100m
Figure 4.2: Scatter plot for the sensitivity of buffer zone
Figure 4.3: Travel time map of an intersection41
Figure 4.4: Location map of the intersection shown in Figure 4.341
Figure 4.5: Method of test set and training set selection for model development43
Figure 4.6: Commercial length (m) Vs. Travel time(s)44
Figure 4.7: Travel distance (m) Vs. Travel time(s)44
Figure 4.8: Scatter plot- stretch of the road: commercial development

List of Tables

Table 2.1: Factors Affecting Travel Time
Table 2.2 : Effect of Land Use on Transport
Table 2.3 : Land Use Features 13
Table 2.4: Details of the Main roads of Sri Lanka14
Table 2.5 : Comparison of ITS Probe Vehicle Systems/Techniques
Table 3.1: Features considered for route selection 29
Table 3.2: Travel plan for three routes
Table 3.3: Sample of the data logged in the GPS data logger
Table 3.4: Parameters considered in the major intersection
Table 3.5: Parameters considered for the stretch of the road
Table 4.1: Statistics on sensitivity of buffer zone 40
Table 4.2: Number of data points used: Travel time estimation for major intersections
Table 4.3: Summary of the travel time estimation model for major intersections45
Table 4.4: Correlation of land use parameters with travel time: Stretch of the road-
Commercial development
Table 4.5: Number of data points: Travel time estimation for road stretch-
Commercial development
Table 4.6: Summary of 5 models -Stretch of the road: Commercial development49
Table 4.7: Correlation of land use parameters with travel time: Stretch of the road-
residential one side
Table 4.8: Number of data points: Travel time estimation for stretch of the road-
Residential both side
Table 4.9: Model summary: Stretch of the road-residential both side
Table 4.10: Correlation of land use parameters with travel time: Stretch of the road-
residential one side
Table 4.11: Number of data points: Travel time estimation for stretch of the road-
Residential one side
Table 4.12: Model summary: Stretch of the road-residential one side
Table 4.13: Correlation of land use parameters with travel time: Stretch of the road-
Cultivation

Table 4.14: Number of data points: Travel time estimation for stretch of the	e road -
Cultivation	55
Table 4.15: Model summary: Stretch of the road-Cultivation	57
Table 5.1 : Average speeds for three roads according to the land use type	58
Table 5.2: Model Summary	59
Table 5.3: Limiting Values of All models	60

List of Abbreviation

Abbreviation	Description
AI	Artificial Intelligence
ANN	Artificial Neural Network
AVI	Automatic Vehicle Identification
AVL	Automatic Vehicle Location
С	Cultivation Length
CEP	Circular Error Probable
CL	Commercial Length
DMI	Distance Measuring Instrument
DW	Durban Watson
GPS	Global Positioning System
Н	No of Houses
Ι	Number of Important Places
LOS	Level of Service
MAPE	Mean Absolute Percentage Error
RMSQ	Root Mean Squared Error
SMV	Support Vector Machine
TD	Travel Distance