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ABSTRACT

Open source Field Operation and Manipulation (OpenFOAM) is a free, Open-

source, feature rich Computational Fluid Dynamics (CFD) software that is used

to solve a variety of problems in continuum mechanics. It has a large user base

spread across various science and engineering disciplines and used in both aca-

demic and commercial contexts.

Depending on the type of problem and required accuracy, an OpenFOAM sim-

ulation may take several weeks to complete. OpenFOAM simulations generally

involve preprocessing, discretization, applying linear solvers and post processing.

For sufficiently large simulations, linear solvers contribute to a large portion of

the execution time. Hence, Graphics Processing Units (GPU) based linear solvers

can give a significant speedup compared to the native CPU implementation.

AmgX is a state of the art, high performance library which provides an elegant

way to accelerate linear solvers on GPUs. AmgX library provides various flavors

of multi-grid solvers, Krylov methods, smoothers, support for block systems and

support for MPI. It also provides a flexible way to use nested solvers, smoothers

and preconditioners.

In this work, we implemented OpenFOAM solvers on GPUs using AmgX li-

brary and a set of helper functions which enables seamless integration of these

solvers to OpenFOAM. These will take care of converting the linear system to

AmgX’s format and apply the user specified configurations to solve it. Experi-

ments carried out using a wind rotor simulation and a Fan wing simulations shows

that the use of AmgX library gives upto 10% speedup in the total simulation time

and 2x speedup in solving the linear system.

Keywords: OpenFOAM; GPUs; AmgX; CFD;
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Chapter 1

INTRODUCTION

This chapter gives a brief introduction to CFD and currently available software for

solving CFD problems. It also briefly describes the problem we intend to address,

objectives we hope to fulfill while solving the problem, contributions made by the

thesis work and overall thesis organization.

1.1 Computational Fluid Dynamics (CFD)

Scientific Computing has become a very important part of modern research. It

is used in a wide variety of science and engineering disciplines from Fluid Dy-

namics, Acoustics, Solid Mechanics to Electro-magnetics and many others. Often

scientists and engineers carry out simulations in these areas to model and better

understand important phenomena like wind patterns around a fan or temperature

variation of a gas. These simulations can save a whole lot of time, money and

often gives more flexibility than actually carrying out them in the real world.

CFD is one of the most important subfields in scientific computing. It is

used to model various phenomena in aerodynamics, meteorology, chemical en-

gineering, medicine, etc. CFD is essentially a combination of fluid dynamics,

numerical methods and computer science where computers are used to run nu-

merical algorithms to solve a fluid dynamics problem. Using computers to solve

fluid dynamics problems has become very popular in past decades. Two major

reasons behind this popularity are the availability of high performance computers

and the accuracy of existing numerical methods to solve these problems.
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OpenFOAM OpenFOAM is a general purpose open-source CFD code writ-
ten in C++ and uses an object oriented approach which makes
it easy to extend

𝑆𝑈2 The Stanford University Unstructured (SU2) suite is an open-
source collection of software tools written in C++ for solving
PDE’s and performing optimization problems

PyFR PyFR is a Python based framework using Flux Reconstruc-
tion and Explicit Runge-Kutta time integration

Code_Saturn A quickly developing code from EDF with full source code
access

FEniCS An open-source package for computational mathematical
modeling

OpenFVM A free CFD solver distributed under GPL
ISAAC A compressible Euler/Navier-Stokes code written in F77

Table 1.1: Free CFD software packages

1.2 Software for CFD

High Performance Computing (HPC) platforms has seen a dramatic improvement

over the last decades. These platforms can operate in petascale level and now

reaching for the Exascale [1]. Modern day computers are equipped with mul-

tiple cores and often these nodes have Graphics Processing Units (GPUs) that

act as co-processors or accelerators. These changes in the HPC hardware require

changes in the software packages used in CFD to fully utilize them.

Several decades ago, CFD codes were written using languages like FOR-

TRAN which was especially designed for the use of scientific community. Over

the years, CFD community has shifted into more high level languages like C,

C++ and even Python. There are a number of software packages used in CFD.

These software packages can be divided into two broad classes: Free and Com-

mercial. Table 1.1 includes a list of free software and the Table 1.2 includes a

list of commercial CFD software packages.

Open source Field Operation and Manipulation (OpenFOAM) [2] library is

a widely used free CFD software package in both academia and industry. Open-
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ADINA Finite element software for structural, fluid, heat transfer,
electromagnetic, and multi-physics problem

Autodesk Simulation Finite Element software of Autodesk
ANSYS US-based and -developed full CAE software package
COMSOL COMSOL Multiphysics Finite Element Analysis Software
SimScale 100% web-based CAE platform

Table 1.2: Commercial CFD software packages

FOAM is written in C++ and can be used to solve partial differential equations

(PDEs). OpenFOAM can be used in all three phases of of a simulation: pre-

processing, solving and post-processing. OpenFOAM contains various utilities

and meshing tools for pre-processing and visualization software like ParaView

for post-processing. Also, it has a wide range of CFD solvers like Laplace, Pois-

son, incompressible flow, etc. OpenFOAM comes with built in MPI functionality

which allows users to decompose a given mesh into multiple chunks and use

multiple nodes (or a single node with multiple cores) to process each chunk in

parallel.

1.3 Problem Statement

The main problem addressed in this project was to speed up a OpenFOAM

simulation of a wind turbine using GPUs. This simulation has a very intricate

design and has around 1166000 mesh points. This simulation takes weeks to

complete (for the required accuracy and time step) in a multi-core CPU setup.

Geometry of the wind turbine is shown in Figure 1.3.1 shows geometry of the

simulation as seen from positive X-axis.

Recently GPUs have been used to speed up various computationally intensive

tasks like audio/video signal processing, medical imaging, deep learning, etc.

(Originally, the GPUs were only used for computer graphics). These various

general computations done using GPUs are known as GPGPU: General-purpose

computing on graphics processing units. GPUs have been widely used in CFD

problems as well. Especially, CFD solvers have been successfully implemented in

GPUs and generally give a huge speed up compared to their CPU counterparts.
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Figure 1.3.1: Geometry of the simulation as seen from positive X-axis

1.4 Objectives

Objectives of this research are to survey the existing methods for porting Open-

FOAM simulations to GPUs and see how the wind turbine simulation can be

sped up using the GPUs.

1.5 Contributions

We ported OpenFOAM’s CFD solvers into GPU using NVIDIA’s AmgX li-

brary. We created a wrapper library that enables easy usage of AmgX solvers

from OpenFOAM.

Our contributions in the thesis are:

∙ Created a wrapper library that enables OpenFOAM user’s to run their

simulations in GPUs using the NVIDIA AmgX library.

∙ Enabled Multiple instances of AmgX solvers to be used from OpenFOAM.

∙ Enabled the MPI support through the wrapper so that multiple GPUs can

be used to run the simulation.
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∙ Created an AmgX wrapper for RapidCFD: A GPU based version of Open-

FOAM.

1.6 Organization

This thesis is organized as follows. In chapter 2, structure of OpenFOAM and the

related work in the area are discussed. Methodology we followed in the research

has been extensively described in chapter 3. Experiments we carried out with

AmgX wrapper library are presented in chapter 4. Finally, the conclusions and

recommendations are presented in chapter 5.

6



Chapter 2

Literature Survey

In this chapter, we are going to have a deeper look at OpenFOAM and survey cur-

rent methodologies that have been used to port general CFD codes and OpenFOAM

simulations to GPUs. We are also looking at existing software solutions for port-

ing OpenFOAM functionalities into GPUs. At last, we are introducing AmgX;

NVIDIA’s GPU based linear solver library which we used with OpenFOAM to

speed up the simulations.

2.1 OpenFOAM

OpenFOAM is written in C++ and heavily uses object oriented features in C++

to build the framework required for simulations. Primary use of OpenFOAM is

to create executables known as applications. These applications can be broadly

categorized into two categories: solvers and utilities. Solvers are created to solve

a specific problem in continuum mechanics like calculating pressure and veloci-

ties of an incompressible flow flowing through a specific tube geometry. Utilities

are designed to perform tasks that involve data manipulation. Users can create

custom solvers and utilities by using OpenFOAM with some knowledge about

underlying CFD algorithms, physics and programming techniques.

OpenFOAM ships with pre and post processing tools. OpenFOAM utilities

have been written on top of these tools to enable users to easily access them. Thus,

the interface to these pre and post processing tools are consistent even though

underlying tool environments can change. Overall structure of OpenFOAM is

shown in Figure 2.1.1.
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Figure 2.1.1: Overview of OpenFOAM structure (source: OpenFOAM website)

2.1.1 General Flow of a OpenFOAM Simulation

Preprocessing tools are responsible for converting the input of a flow problem to

a format that can be usable by the solver. Normally, input of a flow problem

consists of a specification of the computational domain (mesh), the equations to

be solved in the domain (e.g., Navier Stokes equation) and the boundary and

initial conditions of the problem.

OpenFOAM provides a mesh generation tool called blockMesh which generates

the mesh based on a configuration file called blockMeshDict. This file is created

by the user in the format of a dictionary. The user can use various keywords and

values to specify the mesh geometry or the computational domain of the problem.

A mesh is described using four building blocks: points, faces, cells and bound-

ary. Point is simply a vector in 2D or 3D space. All the points in the mesh are

compiled into a list and each point has a label which refers to the position of the

point in the list. A face is made up of these points as an ordered list of corre-

sponding labels. Similar to points, faces are also compiled into a list and each

face has a label that corresponds to its position in the list. Cell is a collection of

faces represented by corresponding face labels. Patch consists only of boundary

faces.
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The numerical methods on this computational domain are done using three

steps. First step is to approximate the flow variable. Flow variable can be any

physical quantity related to the flow like pressure, velocity, etc. At the very

beginning of the simulation, initial and boundary values are used for the ap-

proximation. The second step is the application of a discretization method to

estimate the PDEs. Discretization step is carried out in both the computational

domain and in the PDEs which the solver is going to solve. Third step is the

solution of the algebraic equations which resulted from the discretization. There

are various discretization schemes available and OpenFOAM uses the finite vol-

ume discretization.

After the discretization procedures, various numerical algorithms can be run

on the computational domain. Most of the times, iterative solution procedures

are used. In our work, we worked on the pimpleDymFoam solver from the Open-

FOAM solver set which uses PIMPLE algorithm. Our wrapper library can be

used with any OpenFOAM solver, either default or user made. High level al-

gorithms like PIMPLE define how the solution procedure should be carried out.

For example, in the PIMPLE algorithm, momentum and pressure equations may

be solved twice in a single time step.

2.1.2 OpenFOAM Linear Solvers

OpenFOAM has several methods (algorithms) to solve the linear system resulting

after the finite volume discretization. Algorithm selection depends on the result-

ing linear system (symmetric, asymmetric), initial and boundary conditions and

the convergence characteristics of the matrix. Table 2.1 shows the solvers avail-

able in OpenFOAM.

Different types of preconditioners and smoothers are used in OpenFOAM

to make the solution process of linear system more efficient. Preconditioners

transform the linear system so that the transformed system converges much faster

than the original. Smoothers on the other hand reduce the mesh dependency of

9



BICCG Diagonal incomplete LU preconditioned BiCG solver
diagonalSolver diagonal solver for both symmetric and asymmetric problems
GAMG Geometric agglomerated algebraic multi-grid solver (also

named Generalized geometric- algebraic multi-grid)
ICC Incomplete Cholesky preconditioned Conjugate Gradients

solver
PBiCG Preconditioned bi-conjugate gradient solver for asymmetric

lduMatrices using a run- time selectable preconditioner
PCG Preconditioned conjugate gradient solver for symmetric ldu-

Matrices using a run-time selectable preconditioner
smoothSolver Iterative solver using smoother for symmetric and asymmetric

matrices which uses a run-time selected smoother

Table 2.1: OpenFOAM linear solvers

the numbers of iterations. Figure 2.1.2 shows the complete structure of linear

solvers available in OpenFOAM along with preconditioners and smoothers.

Figure 2.1.2: OpenFOAM’s complete linear solver structure

2.2 General CFD on GPUs

There have been various attempts made to harness the power of GPUs in CFD.

Some of the CFD codes involve performing a homogeneous set of operations over

a large set of nodes in a mesh. These types of simulations can exploit SIMD type

parallelism using GPUs.
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Cohen et al. [3] describe a second-order double precision finite volume Boussi-

nesq code implemented using the CUDA platform. They compared and validated

their results with a Fortran code running on a high-end eight-core CPU. The

CUDA-accelerated code achieved approximately an eight-time speedup versus

the Fortran code on identical problems. They explored a number of GPU-specific

optimization strategies focused on optimizing memory access patterns to take

advantage of their GPU’s streaming memory architecture. They have used a

technique called congruent padding which amortizes the index to memory loca-

tion translation cost between grids.

Thibault and Senocak [4] have implemented a Navier-Stokes solver for incom-

pressible fluid flow using desktop platforms equipped with multi-GPUs. They

have used NVIDIA’s CUDA programming model to implement the discretized

form of the governing equations. The projection algorithm to solve the incom-

pressible fluid flow equations is divided into distinct CUDA kernels, and a unique

implementation that exploits the memory hierarchy of the CUDA programming

model is also suggested. They could gain a two orders of magnitude speedup

relative to a serial CPU implementation.

2.3 OpenFOAM on GPUs

More complex simulations created with CFD software packages like OpenFOAM

use different approaches to parallelize CFD codes. Since OpenFOAM is widely

used in both academia and industry, there are various attempts made to use

OpenFOAM with GPUs.

Amaniz AlOnazi et al. [1] have tried to design and optimize OpenFOAM

based CFD applications to hybrid heterogeneous HPC platforms. Although

OpenFOAM supports MPI natively, it doesn’t scale well for heterogeneous sys-
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tems [5]. Authors have extensively studied Conjugate Gradient (CG) method

(which is a Krylov subspace solver) and identified the bottlenecks when it is run

in a distributed memory system using MPI. Authors have proposed two major

improvements to the existing CG solver.

First the authors have implemented a hybrid conjugate gradient using MPI

and CUDA. The interesting aspect of their implementation is the addition of a

load balancing step during the heterogeneous decomposition which decomposes

the computing domain taking into account the performance of each computing de-

vice and minimizing communication. This heterogeneous decomposition method

consists of two steps: building the accurate performance model of the application

using the approach of FuPerMod [6, 7, 8, 9], and then using this performance

model as input to MeTiS [10] /SCOTCH [11] libraries.

Secondly, authors have introduced an algorithmic improvement to the existing

CG solver. They have implemented the pipelined conjugate gradient algorithm

of Ghysels and VanRoose [12] which can be considered as a communication

startup-reducing algorithmic improvement of the orginal CG method. The al-

gorithm modifies and reorders the s-step CG method, which is introduced by

Chronopoulos and Gear in their original paper [13] and minimizes the global

communication to only one collective communication per loop body instead of

three.

Qingyun He et al. [14] have used wide variety of existing libraries to speed

up OpenFOAM solvers. Authros have implemented the pressure-implicit with

splitting of operators (PISO) magnetohydrodynamics MHD solver on Kepler-

class graphics processing units (GPUs) using the CUDA technology. Authors

observed that a GPU (GTX 770) can outperform a server-class 4-core, 8-thread

CPU (Intel Core i7-4770k). Author’s have used the following libraries for CFD

acceleration of the MHD solver:
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1. CUDA for OpenFOAM Link (Cufflink) [15], an open source library for GPU

acceleration in OpenFOAM. It supports single and double precision.

2. SpeedIT Plugin [16] to OpenFOAM by Vratis released for demonstration

purposes for GPU acceleration. The free version supports only single pre-

cision.

3. GPU linear solvers library for OpenFOAM (ofgpu) [17] by Symscape under

GPL license. It supports only single precision.

Authors accelerated the MHD solver by only replacing its linear system solvers

since solving matrices occupy most of program running time. Also, authors re-

placed sparse matrix vector production (SMVP) kernels with the corresponding

GPU implementations. The vector–vector scalar product is calculated using the

NVIDIA CUBLAS [18] library. Authors were able to get a 4x speedup for the

benchmarks using a single GPU.

Jamshidi and Khunjush [19] have used the CUSPARSE [20] and CUBLAS [18]

libraries to implement some of the OpenFOAM solvers. Author’s have identi-

fied that the main computational intensive step in OpenFOAM solvers is the

solving systems of linear equations. Among these solvers, Preconditioned Bi-

conjugate Gradient (PBiCG), Preconditioned Conjugate Gradient (PCG) and

Diagonal Solver are the linear solvers that are widely used.

Authors have tested their implementations in three different multi-core plat-

forms including the Cell Broadband Engine, NVIDIA GPU, and an Intel quad-

core Xeon CPU. According to the achieved results, the GPU implementations

achieve the best performances due to having large number of threads. The maxi-

mum observed speedups are 15.5x and 345x for CG and Diagonal Solver, respec-

tively.
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2.4 Existing Software for porting OpenFOAM to GPUs

There are a handful of software solutions which attempt to port OpenFOAM

simulation to GPUs.

2.4.1 SpeedIT

SpeedIT provides GPU-accelerated iterative solvers for large systems of sparse

linear equations. The performance of the library was tested on matrices from

the University of Florida Sparse Matrix Collection and compared against CUS-

PARSE and CUSP. According to the website, in average SpeedIT outperforms

CUSPARSE and CUSP by a factor of x2 and x4, respectively [16]. There is a

plugin for OpenFOAM that enables the use of SpeedIT linear solvers in Open-

FOAM. But the plugin only supports old OpenFOAM versions (1.7.1, 2.1 and

2.2). Also, the free version only supports the single precision calculations which

is not acceptable for a large number of scientific computations which needs to be

done in double precision.

2.4.2 ofgpu

ofgpu is a free GPL library that provides GPU (sometimes referred to as GPGPU)

linear solvers for OpenFOAM v2.2.x (an older version) [17]. The library targets

NVIDIA CUDA devices on Windows, Linux, and (untested) Mac OS X. GPU

acceleration holds the promise of providing significant speed up at relatively low

cost and with low power consumption compared to other alternatives. ofgpu only

supports single precision calculations.

2.4.3 Cufflink

Cufflink is a library for linking numerical methods based on NVIDIA’s CUDA

Architecture C/C++ programming language and OpenFOAM.This is somewhat

of a dead project now. The last version of the OpenFOAM supported by the

cufflink library was v1.6 using the CUDA framework 4.0. This also lets users

14



to replace OpenFOAM’s linear solvers with its own GPU based linear solver

implementations.

2.4.4 RapidCFD

RapidCFD is different to other libraries in that it uses GPU computation for

performing most of OpenFOAM’s functionality, not only the linear solvers. Most

of the computation is done entirely on GPU. RapidCFD avoids copying data

during calculations between CPU and GPU as much as possible. Most of the

data structures are created on the GPU itself. Operations on these are then done

by using thrust [21] library. Main features of RapidCFD are [22]:

∙ most incompressible and compressible solvers on static mesh are available.

∙ can run in parallel on multiple GPUs.

∙ Most of the calculations are done on the GPU and the overhead for GPU-

CPU memory copy is minimum.

Although, the library is open source it takes a significant amount of time to

set it up on one’s own. Also, the library doesn’t support the GPUs of sm_20

architecture.

2.4.5 Paralution

Paralution is a library that enables users to perform various sparse iterative

solvers and preconditioners on multi/many-core CPU and GPU devices. Based

on C++, it provides a generic and flexible design that allows seamless integra-

tion with other scientific software packages [23]. It supports various back-ends

like OpenMP, CUDA and OpenCL. It also provides various plug-ins to common

and popular softwares like Deal II, OpenFOAM, Matlab/Octave and FORTRAN

programming language. Paralution is released under dual license scheme with a

open source GPLv3 license and a commercial license. Free license doesn’t support

MPI functionality.
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2.5 NVIDIA AmgX

AmgX provides a simple way to access accelerated core solver technology on

NVIDIA GPUs [24, 25]. AmgX provides up to 10x acceleration to the computa-

tionally intense linear solver portion of simulations, and is especially well suited

for implicit unstructured methods. It is a high performance, state-of-the-art li-

brary and includes a flexible solver composition system that allows a user to

easily construct complex nested solvers and preconditioners. AmgX is available

with a commercial and a free license. The free license is limited to Accelerated

Computing Developers and non-commercial use.

The AmgX library offers optimized methods for massive parallelism, the flex-

ibility to choose how the solvers are constructed, and is accessible through a

simple C API that abstracts the parallelism and GPU implementation. Using

the methods and tools from the AmgX library, developers can easily create spe-

cialized solvers using AmgX core methods and rapidly deploy solution on GPU

workstations, servers and clusters. Main features of the AmgX library include:

∙ Flexible configuration allows for nested solvers, smoothers, and precondi-

tioners.

∙ Ruge-Steuben algebraic multigrid.

∙ Un-smoothed aggregation algebraic multigrid.

∙ Krylov methods: PCG, GMRES, BiCGStab, and flexible variants.

∙ Smoothers: Block-Jacobi, Gauss-Seidel, incomplete LU, Polynomial, dense

LU.

∙ Support for Scalar or coupled block systems.

∙ MPI and OpenMP support.

∙ Flexible and simple high level C API.
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Chapter 3

METHODOLOGY

This chapter presents the profiling data of our OpenFOAM simulation we gathered

using callgrind and describes the methodology we used to port OpenFOAM’s linear

solvers to GPUs. We talk about the structure and API of our AmgX wrapper

library.

3.1 Profiling Data

In order to speed up the simulations, first thing we need to do is identifying

the performance bottlenecks. We ran our simulation using callgrind tool which

ships with valgrind to identify the computationally intensive sections of the pro-

gram [26]. Figure 3.1.1 and 3.1.2 shows the profiling results we got.

Figure 3.1.1: Top 15 Hot-spots by accumulated overhead of the method

According to Figure 3.1.1, Foam::fvMatrix::solve method has the highest ac-

cumulated overhead (discarding the main method). Nearly 1/3 of the simula-

tion time is spent on this single method. In OpenFOAM, Foam::fvMatrix is the

class that holds the matrix resulting from the finite volume discretization. solve
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Figure 3.1.2: Top 10 Hot-spots by self contributed overhead of the method

method is the member which solves the linear system associated with this matrix.

So, it can be concluded that a large portion of the simulation time is spent solving

the linear system.

This fact becomes more obvious with Figure 3.1.2. Figure 3.1.2 shows the

overhead introduced by methods ignoring the overhead of the callees. Four out

of the top 5 hot-spots are methods used in solving the linear system. It is evident

that we can maximize our speed up by making linear solvers run faster i.e., linear

solvers are the perfect candidates to be implemented in GPU.

3.2 AmgX Wrapper Library for OpenFOAM

We used the NVIDIA’s AmgX library described in section 2.5 to solve the Open-

FOAM’s linear system in the GPU. We implemented a wrapper library which en-

ables the easy use of AmgX’s linear solvers from OpenFOAM. Figure 3.2.3 shows

the overall structure and interaction of the wrapper library with OpenFOAM.

We found the work done by Pi-Yueh Chuang and Lorena A. Barba to add AmgX

support to PETSc [27] really helpful when writing our wrapper library.

As shown in the Figure 3.2.3, pre-processing and post-processing takes place

in the CPU using normal OpenFOAM utilities. But during the solving process,

linear system (Matrix and the right hand side vector) is copied to the GPU by the

AmgX wrapper library and the AmgX solvers are invoked on the system. After

the AmgX library finishes solving the system, results are copied back to the CPU
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Figure 3.2.3: AmgX Wrapper Library

by the AmgX Wrapper.

User can specify the solution algorithm, tolerance values, precondtioners and

smoothers in the OpenFOAM side as in a normal OpenFOAM simulation. AmgX

wrapper will read those values and setup the solver in the GPU according to that

information.

3.2.1 Data Structure Conversion

Before solving the linear system, AmgX wrapper has to convert the matrix and

the right hand vector to a format consumable by the AmgX library. After solv-

ing the system, wrapper has to convert the solution vector back to a OpenFOAM

vector. Conversion between the vectors is pretty straight forward. But the con-

version between the matrices require additional work.

OpenFOAM stores it matrices in the lduMatrix format [28, 29]. In the ldu-

Matrix format, lower, diagonal and upper elements of the matrix are stored sep-

arately in different arrays. Addressing for these elements are stored in another

two arrays which stores the row and column index of each element. This storage

method is extremely efficient for storing the matrices resulting from finite volume
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Figure 3.2.4: Conversion of lduMatrix to CSR Format

discretization.

AmgX solver library only accepts matrix in CSR format [30]. In CSR format,

only the nonzero elements in the matrix are stored. All the nonzero elements

of the matrix are stored row wise in one array (value in Figure 3.2.4) and the

column indices of these elements are stored in another array (column index in

Figure 3.2.4). A third array keeps track of the index of the start element in each

row. To use AmgX with OpenFOAM, we need to convert lduMatrix format to the

CSR format and this is done by our AmgX wrapper. Figure 3.2.4 shows visually

how the conversion can be done from lduMatrix to CSR.

3.2.2 MPI Support

Our AmgX wrapper supports using multiple GPUs in a cluster and/or node to

solve the linear system with MPI. The major issue in enabling multiple GPU

support is the mapping of MPI processes to the GPUs. Suppose we have a GPU

cluster like Figure 3.2.5 with three nodes.

First, the global communicator is split into in-node communicators which are
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Figure 3.2.5: GPU Cluster with three nodes

local to each node. Figure 3.2.6 shows the cluster after this initial split.

Figure 3.2.6: Global communicator split into local in-node communicators

Next, each in node (or local) communicator is divided depending on the num-

ber of GPUs available at the node and the number of MPI processes started at

the node. Figure 3.2.7 shows the communicators local to each GPU device after

this split. Usually, in OpenFOAM, the number of MPI processes equal to the

number of cores in the node. We want to make sure that each GPU device have

almost equal loads. Suppose we have 𝑛 GPU devices and 𝑚 MPI processes in a

given node.
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If 𝑚 is divisible by 𝑛, then each GPU device will get 𝑚
𝑛

MPI processes. This

is the case with the leftmost and the rightmost nodes in Figure 3.2.7. Suppose

𝑚 is not divisible by 𝑛 and leaves a remainder 𝑟 after division. Then 𝑚 − 𝑟 is

divisible by 𝑛. In this case, 𝑟 devices will get 𝑚−𝑟
𝑛

+1 MPI processes each and the

rest 𝑛− 𝑟 devices get 𝑚−𝑟
𝑛

MPI processes each. This is the case with the middle

node in Figure 3.2.7.

Figure 3.2.7: Local in-node communicators split by device

3.2.3 Multiple solver support

In a general OpenFOAM simulation, different types of solvers may be used to

solve for different physical quantities. For example, the solver used for calcu-

lating pressure in the mesh points may not be used for calculating the speed at

the mesh points. So, it is essential that our wrapper supports multiple types of

solvers to be used in the same simulation.

When transforming solver configurations from OpenFOAM to AmgX, differ-

ent solvers used in OpenFOAM have different configurations in AmgX as well.

So, the configuration string used by AmgX wrapper to initialize solvers in the

GPU are unique. We can use this configuration string and AmgX data structures
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used to run that particular solver in GPU as key value pairs in dictionaries.

For a solver to be run by AmgX, a resource handle and a solver handle must be

created. To support multiple solvers, we stored resource handlers of the solvers

in one dictionary and solver handlers in another dictionary. During the simu-

lation, we can select appropriate solver and resource handles depending on the

configuration string and run the required solver on the GPU. Another advantage

of this method is that we only need to initialize the AmgX library once. After

initialization is complete, any solver can be run in the GPU. After the simulation

is over, we can finalize the AmgX library. This step needs to be done only once

as well. This saves a lot of time, especially in smaller simulations.

3.2.4 AmgX wrapper with RapidCFD

We improved the wrapper to work with RapidCFD described in section 2.4.4.

However, we couldn’t figure out how to enable MPI functionality in RapidCFD.

RapidCFD is compiled using nvcc: Nvidia Cuda Compiler, not with gcc as normal

OpenFOAM library. We ran into a scope resolution error while trying to copy

the global MPI communicator from RapidCFD to AmgX wrapper.

3.2.5 AmgX wrapper API

AmgX wrapper API is very simple. Amgx wrapper library has a only single class

called AmgXSolver. User just need to instantiate an object of this class with

the required configurations whenever he/she needs to create an solver which uses

AmgX library. For a given simulation, first AmgXSolver instance does the initial-

ization and finalization of the AmgX library. This object need to be initialized

with null configuration. Figure 3.2.8 shows how the library should be used.
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Figure 3.2.8: OFAmgX API Flow

24



Chapter 4

EXPERIMENTAL RESULTS

This chapter describes our experimental setup and the results of the experiments

we did to benchmark AmgX wrapper library with native OpenFOAM and other

GPU implementations of OpenFOAM

We benchmarked native OpenFOAM, AmgX wrapper library, Paralution li-

brary (section 2.4.5) and RapidCFD (section 2.4.4) library under three different

hardware environments. These environments are listed in Table 4.1. We used

a server (A) and two desktop machines (B and C). Each machine is equipped

with GPUs and two desktop machines have two GPUs each. All the benchmarks

were run using Ubuntu 14.04 and CUDA 6.5. OpenFOAM version 2.4.x was used

in the benchmarks and the latest RapidCFD master from its git repository was

used. All the measurements are in seconds.

We used two different simulations under each environment to benchmark the

libraries. We used our original simulation described in section 1.3 and another

simulation which simulates wing of a fan (FanWing2D). The latter simulation is

relatively smaller than the former. Table 4.2 provides a summary of the simula-

tions used.

For the windLM simulation, experiments are carried out with MPI and with-

out MPI. Table 4.3 lists the execution time for windLM simulation for the three

environments without using MPI (i.e., without domain decomposition). Table 4.4

– 4.6 list the execution time for the windLM with MPI using 2,4 and 8 MPI pro-

cesses.

For the FanWing2D simulation, experiments are carried out without MPI since
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Table 4.1: Different Experimental Environments
Environment Details

A 32 Core Machine with 64 GB memory and a Tesla C2070 GPU
B Intel core i7 @ 3.40GHz X 4, 16 GB ram with 2 GTX 480 GPUs
C Intel core i7 @ 1.6GHz X 4, 8 GB ram with 2 GTX 480 GPUs

Table 4.2: Different Simulations used in the benchmarks
Simulation Details
windLM Simulation of a wind turbine with 1,166,000 mesh-points
FanWing2D Simulation of a 2D Fan with 60,000 mesh-points

Table 4.3: Total simulation time for windLM without MPI (in seconds)
OpenFOAM AmgX Wrapper RapidCFD Paralution

A 648.93 634.07 887.86 971.87
B 313.18 296.06 Note I 288.98
C 463.46 434.15 Note I 428.73

Table 4.4: Total simulation time for windLM with 2 MPI processes (in seconds)
OpenFOAM AmgX Wrapper RapidCFD Paralution

A 361.30 350.00 Note III Note II
B 216.80 201.15 Note I Note II
C 404.86 365.91 Note I Note II

Table 4.5: Total simulation time for windLM with 4 MPI processes (in seconds)
OpenFOAM AmgX Wrapper RapidCFD Paralution

A 144.33 152.33 Note III Note II
B 154.33 141.67 Note I Note II

Table 4.6: Total simulation time for windLM with 8 MPI processes (in seconds)
OpenFOAM AmgX Wrapper RapidCFD Paralution

A 102.67 113.67 Note III Note II
B 154 144.33 Note I Note II

Table 4.7: Total simulation time for FanWing2D without MPI (in seconds)
OpenFOAM AmgX Wrapper RapidCFD Paralution

A 67.61 79.51 668.70 32.71
B 29.18 26.85 Note I 31.52
C 50.44 45.24 Note I 51.76
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the domain decomposition is not possible. Table 4.7 lists the execution time for

FanWing2D simulation for the three environments without using MPI.

Notes:

I We were unable to configure RapidCFD to work in GTX 480 GPUs

II Paralution free version doesn’t support MPI

III RapidCFD gives an error when run using parallel mode

Figure 4.0.1: Performance of windLM simulation in A

Figures 4.0.1 and 4.0.2 summarizes the results of windLM simulation for the

environments A and B respectively. In A, AmgX wrapper gets slower as the

number of MPI processes increase. This is due to the fact that it has a single

GPU and all the MPI processes start competing to use this GPU. In B, AmgX

wrapper is always faster but the performance for 8 MPI processes is slower than for
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Figure 4.0.2: Performance of windLM simulation in B

4 MPI processes. This is due to the same reasons which caused the performance

drop in A.

If we consider the time taken to solve the linear system instead of the to-

tal simulation time, AmgX wrapper gives around 2x speedup depending on the

solver. For example, Preconditioned Biconjugate Gradient (PBiCG) solver with

DILU preconditioner takes 441383 seconds to complete in OpenFOAM. In the

AmgX wrapper, this only takes 213115 seconds to complete.

28



Chapter 5

CONCLUSIONS AND RECOMMENDATIONS

This chapter analyses the experimental results presented in chapter 4 and suggests

possible future work

According to chapter 4, in most of the experimental cases we get closer to

a 8% speedup in the total simulation time by using AmgX wrapper compared

to native OpenFOAM. In some cases it is even faster than Paralution library.

Moreover, our AmgX wrapper supports domain decomposition using MPI and

the free version of the Paralution library doesn’t have MPI support.

RapidCFD library doesn’t really show any promising results. This may be

due to the fact that it doesn’t support sm_20 GPU architecture. All the GPUs

we used in our experiments are built on sm_20 architecture. We had to change

some of its code to get it work on sm_20 architectures. For these reasons, it is

hard for a non technical user to setup RapidCFD on his/her own.

Backed by promising results we got, to our knowledge, AmgX wrapper library

is the best non-commercial option to run OpenFOAM’s linear solvers in GPUs.

Since we are using AmgX library, users get access to a lot of functionalities which

are not available in original OpenFOAM.

There are some areas in our wrapper library which can be improved further.

Although we added support for multiple solvers to be used in the same solution,

we couldn’t get significant improvements by using multiple solvers in the same

simulation. Also, we couldn’t beat OpenFOAM’s multi-grid solver (GAMG) with

the multi-grid solver available in AmgX library. Improving these may involve

finding the best parameter values to be used with AmgX.
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