FINDING THE BEST LEVEL OF FILLER MASTER BATCH TO BE ACCOMMODATED IN THIN GAUGED PRIMARY PACKAGING PRODUCTS

Mohamed Lafir Mohamed Farharth

138254X

Degree of Master of Science

Department of Chemical Engineering

University of Moratuwa

Sri Lanka

April 2017

FINDING THE BEST LEVEL OF FILLER MASTER BATCH TO BE ACCOMMODATED IN THIN GAUGED PRIMARY PACKAGING PRODUCTS

Mohamed Lafir Mohamed Farharth

138254X

Thesis/Dissertation submitted in partial fulfilment of the requirements for the degree Master of Science

Department of Chemical Engineering

University of Moratuwa

Sri Lanka

April 2017

Declaration, copyright statement and the statement of the supervisor

"I declare that this is my own work and this thesis/dissertation¹ does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

The above candidate has carried out research for the Masters of Science /Disertation under my supervision.

Signature of the supervisor:

Date

Acknowledgement

First, I would like to thank Dr. Olga Gunapala- supervisor of the research project, for her guidance, encouragement, and patience over the last three years. Thank you so much for your assistance and support to look at my research and my work in different ways and for opening my mind. Your support was essential to my success here.

I would like to thank Dr. Shantha Egodage-Academic Coordinator, for her indispensable advise, information and support and encouragement to complete the research project.

Further, I would like to include the management and staff of the Deeko Bahrain WLL, Dana Tool Room WLL and Dawanco Industries WLL for their support to conduct my research project.

Once and for all, I would like to thank the Academic Staff and members of the Department of Chemical and Process Engineering for their support.

Thank you.

Abstract:

"Finding the best level of filler master batch to be accommodated in thin gauged primary packaging products"

The main aim of this dissertationwas "Finding the best level of filler master batch to be accommodated in thin gauged primary packaging products", as currently there is only limited information available in the printed media especially for Thermoforming made thin gauged food contact plastic products.

Here only the thermoformed thin gauged primary packaging products made out of Polystyrene and Polypropylene materials were studied. To find out best filler level in plastic compounds 2 series of formulations such as Series N1 for Polystyrene based materials and Series N2 for Polypropylene based materials were prepared, where virgin filler load level varied from 0% to 25% were prepared and experimented. And these formulations were based on incremental addition of heavy filler such as Calcium Carbonate in virgin form as Filler Master Batch. Each and every Raw Material batches were tested for MFI (Melt flow Index) against the specification. Thin gauged sheets were extruded according to the decided formulation. Products were turnout via thermoforming process to test for consumer acceptance. Further in order to find out the best level of filler master batch to be accommodated to these products, thermoformed primary packaging was examined for Appearance Test, Specific Gravity test, Drop Test or Impact test, Oil Test and Actual Filler Master Batch test .Those testswere carried out to find out whether physical and aesthetic properties were compromised or not. It was observed during the trials that 25% Virgin FMB based formulated sheets were not suitable for thermoforming process as it tended to crack and torn like a paper. It was concluded through Actual FMB level test, that the accumulated Calcium Carbonate Filler level in the regrind introduced in these formulation had an impact on overall level of fillers in the extruded sheets had caused these cracks and defects. Based on the test results it was concluded that 26% of Filler in Styrene based materials and 40% of Fillers in polypropylene based materials were the optimum level of Filler Master Batch for these thin gauged primary packaging products.

TABLE OF CONTENTS

Declaration of the candidate & Supervisor	i
Acknowledgements	ii
Abstract	iii
Table of content	iv
List of Figures	vi
List of Tables	vii

List of	Appen	dices			ix	
List of	abbrev	iations			ix	
1.	Introd	uction			1	
2	Object	tives			4	
3		ture Rev ties of l	view Polypropylene and Polystyrene	5	5	3.1
		3.1.1	Preparation of Polypropylene		5	
		3.1.2	Preparation of Polystyrene		11	
			3.1.2.1 Forms of Polystyrene		14	
			3.1.2.2 GPPS		15	
			3.1.2.3 HIPS		16	
		3.1.3	Properties of PP and PS		17	
	3.2	Effect	of Fillers on Properties of Plastics		20	
		3.2.1	Calcium Carbonate as a Filler		20	
		3.2.2	Property Improvement		22	
		3.2.3	Effect of Filler on Extrusion Process		24	
		3.2.4	Wear Equipment and Mold Problems		26	
		3.2.5	Impact on Plastic aging due to Calcium Carbonate		27	
		3.2.6	Forming the problem size shrinkage		28	
	3.3 3.3.1		noforming Process are forming	33	28	
		3.3.2	Vacuum Forming		35	
		3.3.3	Mechanical forming		37	
		3.3.4	Heating and Cooling of the sheet.		38	
		3.3.5	Trimming Process		40	
		3.3.6	Stacking Process of the Thin Gauged Products		42	
		3.3.7	Web Regrinding Process / Scrap Crushing Process		42	
		3.3.8	Closed Loop System of thermoforming		44	
4.	Experi	imental			45	
	4.1.	Materi	als Used		45	

	4.2	Testing of Material Properties	46
	4.3	Preparation of Plastic Compounds and Extrusion of Sheet	47
	4.4	Compounding Formulation	49
	4.5	Extrusion of Plastic Sheets	54
	4.6	Testing of Finished Products	60
5.	Resu	lts and Discussions	64
6.	Conc	lusions	73
Reference List		74	
Appendices		76	

LIST OF FIG	JURES	Page
Figure 3.1	Variation of Tensile yield stress with MFI & Isotactic Index	8
Figure 3.2	Variation of Impact strength with MFI & Isotactic Index	9
Figure 3.3	Variation of Vicat Softening point with MFI & Isotactic Index	9
Figure 3.4	Variation of Brittle Point with MFI and Isotactic Index	10
Figure 3.5	Reaction of Benzene with Ethylene	11
Figure3.6	Molar Ratios of the raw Material and the products in the	
	production of polyethylbenzene.	12
Figure 3.7	Dehydrogenation Process of ethylbenzene	12
Figure 3.8	Worn out Cavities	26
Figure 3.9	Worn out Screw	27

Figure 3.10	Flow Chart of Thermoforming Process	29
Figure 3.11	Configuration of Thermoforming Machines	30
Figure 3.11.1	VFK Corporation Auto Vacuum Forming Machine	
	with in line Crusher	31
Figure 3.12	VFK Corporation Pressure Forming Machine	32
Figure 3.13	Pressure forming	33
Figure 3.14	Pressure forming Mold Cavities	34
Figure 3.15	Vacuum Forming Mold Cavities	34
Figure 3.16	(a) Straight vaccum forming mold (b) Plug assisted vacuum formin 36	ng mold
Figure 3.17	Forming with fixed plugs and sheet clamps	36
Figure 3.18	Moving Plug assisted forming	37
Figure 3.19	Mechanical forming	38
Figure 3.20	Form and Trim in Place Method	41
Figure 3.21	Post Trim Method	41
Figure 3.23	Stacking Process	42
Figure 3.23	Web Regrinding Process	43
Figure 3.24	After Crushing Recycles collected to Bags via Cyclone Separator	44
Figure 3.25	Closed Loop System	44
Figure 4.1	MFI Tester	46
Figure 4.2	Mcguire Gravimetric Blender	48
Figure 4.3	Schematic Diagram of Mcguire Blender	49
Figure 4.4	VFK PP/PS Extruder	54
Figure 4.5	VFK 800/1200 Thermoforming Machine	57
Figure 4.6	Thin gauged Product Samples	60
Figure 4.7	Densimeter MD 300 Series	61
Figure 4.8	Schematic Diagram of Drop test	62

LIST OF TABLES

Table 3.1.1	Some Mechanical and Thermal Properties of Commercial H	PP	07
Table 3.1.2	Comparison of some properties of Syndiotactic and Isotacti 11	ic Polyp	ropylene
Table 3.1.3	Principal Properties of Pure styrene		14
Table 3.1.4	Mel flow Index vs Molecular weight Mw of Polypropylene	;	18
Table 3.1.5	Properties of Polypropylene		18
Table 3.1.6	Properties of Polystyrene		19
Table 4.1	Formulations of compounds of series No1		50
Table 4.2 and pro	Effect of Regrind with FMB on extrusion of PS plastic shee oduct appearance	et 51	
Table 4.3	Formulations of compounds of series No2		52
Table 4.4 and pro	Effect of Regrind with FMB on extrusion of PP plastic she oduct appearance	eet 53	
Table 4.5.1	Extrusion data for polystyrene Materials		55
Table 4.5.2	Extrusion data for Polypropylene Materials		56
Table 4.5.3	Thermoforming machine setting data for polystyrene		58
Table 4.5.4	Thermoforming Machine setting data for polypropylene		59
Table 5.1 formul	Test Results of Melt Flow Index of Raw Materials used in ation Series N1 and N2	65	
Table 5.2.1 (Formu	Test Results of Appearances of PS Mixing alation Series N1)	65	
Table 5.2.2 (Formulation S	Test Results of Appearances of PP MixingSeries N2)66		
Table 5.3.1 formul	Test Results of the specific gravity of the ation series N1	66	
Table 5.3.2	Test results of Specific Gravity of Formulation series N2		67
Table 5.4.1	Test Results of Drop Test of Formulation series N1		68
Table 5.4.2	Test Results of Drop Test of Formulation Series N2		69
Table 5.5.1	Test Results of Actual FMB level of formulation Series N1		70
Table 5.5.2	Test Results of Actual FMB level of formulation Series N2	1 7	70
Table 5.5.3 Series N1 and	Actual FMB level of Regrind Used in formulation of N2 71		
Table 5.6.1	Test Results of Oil Test of Formulation Series N1		72

LIST OF APPENDICES

Appendix I	Material Specification of GPPS	76
Appendix II	Material Specification of HIPS	77
Appendix III	Material Specification of FMB	78
Appendix IV	Material Specification of WMB	81
Appendix V	Material Specification of PP	82
Appendix VI	Extruder Machine Specification	83

LIST OF ABBREVIATIONS

Abbreviation	Description
GPPS	General Purpose Polystyrene
HIPS	High Impact Polystyrene
PS	Polystyrene

PP	Polypropylene
FMB	Filler Master Batch
WMB	White Master Batch
RP	Recycled Plastics (Crush)