APPLICABILITY OF A TWO PARAMETER WATER BALANCE MODEL TO SIMULATE DAILY RAINFALL RUNOFF – CASE STUDY OF KALU AND GIN RIVER BASINS IN SRI LANKA

Pramila Kumari Mahanama Dissanayake

(158555N)

Degree of Master of Science in Water Resources Engineering and Management

Department of Civil Engineering

University of Moratuwa Sri Lanka

February 2017

APPLICABILITY OF A TWO PARAMETER WATER BALANCE MODEL TO SIMULATE DAILY RAINFALL RUNOFF – CASE STUDY OF KALU AND GIN RIVER BASINS IN SRI LANKA

P. K. M. DISSANAYAKE (158555N)

Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Water Resources Engineering and Management

> Supervised by Professor N.T.S. Wijesekera

Department of Civil Engineering University of Moratuwa Sri Lanka

February 2017

DECLARATION

I hereby declare that, this is my own work and this thesis does not incorporate without acknowledgement of any material previously submitted for a Degree or Diploma in any other University or Institute of higher learning to the best of my knowledge and belief. It does not contain any material previously published or written by another person except where the acknowledgment is made in text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, as whole or a part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

P.K.M.Dissanayake

Date

The above candidate has carried out research for the Master's thesis under my supervision.

Т

Professor N.T.S. Wijesekera

Date

ACKNOWLEDGEMENT

I would like to express my sincere and heartfelt gratitude to my research supervisor, Professor N.T.S. Wijesekera for the continuous support of my study with his patience, motivation and immense knowledge. Without his dedicated supervision and continued guidance, this thesis would not be successfully completed within the time frame. During my period, he consistently allowed this research to be my own work, but steered me in the right direction whenever he thought I needed it. He is a great teacher, not only to complete this research but also for my carrier success.

It is my duty to extend my gratitude to the course coordinator Dr. R.L.H. Lalith Rajapakse for providing me all necessary assistance and consistent encouragement while guidance when required even working under busy schedule.

Further I would like to extend my gratitude to Mr. Wajira Kumarasinghe and staff of University of Moratuwa for their support in different ways during this research period. I would also like to thank Late. Shri Madanjeet Singh, Management of Fund and the University of Moratuwa for giving me this opportunity to study towards a Master Degree of Water Resource Engineering and Management, at UNESCO Madanjeet Singh Centre for South Asia Water Management, Department of Civil Engineering, University of Moratuwa, Sri Lanka.

My sincere thanks extends to the General Manager of National Water Supply & Drainage Board, Sri Lanka, by giving me this opportunity to follow this Master Degree course.

Also, I must thank Director of Irrigation (Hydrology), for her kind assistance and the Department of Irrigation for approvals to in collect necessary data.

Especially I must express my very profound gratitude to my mother (G. Leelawathie) for encouragement and for taking care of my two sons Abiru and Theviru. Finally, my thanks are to my husband Amil, for providing unfailing support and continuous encouragement throughout this study.

APPLICABILITY OF A TWO PARAMETER WATER BALANCE MODEL TO SIMULATE DAILY RAINFALL RUNOFF – CASE STUDY OF KALU AND GIN RIVER BASINS IN SRI LANKA

ABSTRACT

Most of hydrological models are complex, data intensive and require optimization of many model parameters. Due to prohibitively high institutional pricing and access constraints associated with data, water research even at daily time scale is a challenge. In this aspect monthly data can be treated as better. Lack of a simple and reliable rainfall runoff model to simulate daily rainfall runoff with an indication for soil moisture is a concern when field applications are carried out. In this backdrop the present work investigated the applicability of a monthly model in the daily time scale. The two-parameter monthly water balance model (Xiong and Guo, 1999) performed well in two Sri Lankan watersheds was selected. This model after an initial evaluation was calibrated with monthly data. Daily streamflow estimations were done for Ellagawa (1372 km2) and Thawalama (364 km2) watersheds for the respective durations 2006-2014 and 2000-2015. Estimations were compared using MRAE as the objective function, hydrographs, duration curves and water balance. Nash-Sutclifff was used to observe the goodness of fit in the high flow estimates. Initial evaluations with the previously calibrated dataset showed satisfactory results with the recent data used for the present work but were inferior to the previous outputs probably due to temporal setting or other data quality issues.

The two parameter model calibrated and verified for the recent data showed very good results for the Tawalama watershed and good results for the Ellagawa watershed with different degrees of overestimation. Daily flow estimations agreed reasonably well with the Thiessen averaged rainfall and observed streamflow patterns but demonstrated an overestimation with a noticeable pattern.

After observing monthly and daily outputs in both catchments, the model concept was modified to incorporate a third parameter called AF (Adjustment Factor) to arrest over estimation which may have caused due to the need to incorporate watershed effects arising from variations in slope, land cover, detention and soils.

This Three Parameter Monthly model showed excellent results with the matching of outflow hydrographs, duration curve and water balance for water resources management. In case of Tawalama watershed, the average MRAE values for the two parameter and Three Parameter Models were 0.2061 and 0.1657 respectively. In Ellagawa watershed average MRAE values for the same were 0.7668 and 0.3135 respectively. Respective c and Sc values for the Two Parameter Model were 0.89 and 1,288.63 for Tawalama watershed while the same were 1.29 and 829.84 for Ellagawa. Respective c, Sc and AF values for the Three Parameter Model were 1.02, 1,292 and 0.83 for Tawalama watershed while the same were 0.52, 975.2 and 0.46 for Ellagawa.

Conceptualization extended in the three parameter model demonstrates the potential of successful catchment process conceptualization within the monthly and daily temporal resolutions.

Present work concluded that in case of two case study watersheds, the three parameter monthly model concept is applicable for both monthly and daily time scales.

Therefore this model is recommended for water resources planning and identification of climate change impacts in similar watersheds.

Key Words

Water balance optimization, Water Resources Management, Sri Lanka, Hydrologic

Model Objective Function, Flow Duration Curve, Absolute Error

TABLE OF CONTENTS

ACK	NOWLEI	DGEMENT	ii
ABST	RACT		iii
1. II	NTRODU	JCTION	1
1.1	Gener	al	1
1.1	Objec	tives	2
	1.1.1	Overall Objective	2
	1.1.2	Specific Objectives	3
1.2	Projec	et Area	3
2. L	ITERAT	URE REVIEW	6
2.1	Gener	al	6
2.2	Water	shed Modeling	6
	2.2.1	Monthly water balance models	7
	2.2.2	Two parameters monthly water balance models	8
	2.2.3	Daily Water Balance Models	9
		, ,	
2.3	Objec	tive Functions	.11
2.3 2.4	Objec Param	tive Functions	. 11 . 16
2.3 2.4 2.5	Objec Param Warm	tive Functions neter Optimization	. 11 . 16 . 18
2.3 2.4 2.5 3. N	Objec Param Warm IETHOD	tive Functions neter Optimization nup period OLOGY	. 11 . 16 . 18 . 20
2.3 2.4 2.5 3. N 4. D	Objec Param Warm IETHOD DATA AN	tive Functions neter Optimization nup period OLOGY ND DATA CHECKING	. 11 . 16 . 18 . 20 . 22
2.3 2.4 2.5 3. N 4. D 4.1	Objec Param Warm IETHOD OATA AN Kalug	tive Functions neter Optimization nup period OLOGY ND DATA CHECKING anga Basin at Ellagawa	. 11 . 16 . 18 . 20 . 22 . 22
2.3 2.4 2.5 3. M 4. D 4.1 4.2	Objec Param Warm IETHOD DATA AN Kalug Ginga	tive Functions neter Optimization o up period OLOGY ND DATA CHECKING anga Basin at Ellagawa nga Basin at Tawalama	. 11 . 16 . 18 . 20 . 22 . 22 . 22
2.3 2.4 2.5 3. M 4. D 4.1 4.2 4.3	Objec Param Warm IETHOD OATA AN Kalug Ginga Thiess	tive Functions neter Optimization o up period OLOGY ND DATA CHECKING ganga Basin at Ellagawa nga Basin at Tawalama sen Average Rainfall	. 11 . 16 . 18 . 20 . 22 . 22 . 22 . 24 . 27
2.3 2.4 2.5 3. N 4. D 4.1 4.2 4.3	Objec Param Warm IETHOD OATA AN Kalug Ginga Thiess 4.3.1	tive Functions neter Optimization o up period OLOGY ND DATA CHECKING sanga Basin at Ellagawa nga Basin at Ellagawa sen Average Rainfall Ellagawa Watershed	. 11 . 16 . 18 . 20 . 22 . 22 . 22 . 24 . 27 . 27
2.3 2.4 2.5 3. M 4. D 4.1 4.2 4.3	Objec Param Warm IETHOD OATA AN Kalug Ginga Thiess 4.3.1 4.3.2	tive Functions neter Optimization oup period OLOGY ND DATA CHECKING anga Basin at Ellagawa nga Basin at Ellagawa sen Average Rainfall Ellagawa Watershed Tawalama Watershed	. 11 . 16 . 18 . 20 . 22 . 22 . 22 . 24 . 27 . 27 . 29
2.3 2.4 2.5 3. N 4. D 4.1 4.2 4.3	Objec Param Warm IETHOD ATA AN Kalug Ginga Thiess 4.3.1 4.3.2 4.3.3	tive Functions neter Optimization up period OLOGY ND DATA CHECKING	. 11 . 16 . 18 . 20 . 22 . 22 . 22 . 24 . 27 . 27 . 29 . 29
2.3 2.4 2.5 3. N 4. D 4.1 4.2 4.3	Objec Param Warm IETHOD ATA AN Kalug Ginga Thiess 4.3.1 4.3.2 4.3.3 Strear	tive Functions neter Optimization o up period OLOGY ND DATA CHECKING anga Basin at Ellagawa ranga Basin at Ellagawa sen Average Rainfall Ellagawa Watershed Tawalama Watershed Annual Average Rainfall nflow Data	. 11 . 16 . 18 . 20 . 22 . 22 . 22 . 22 . 24 . 27 . 27 . 29 . 29 . 31
2.3 2.4 2.5 3. M 4. D 4.1 4.2 4.3	Objec Param Warm IETHOD OATA AN Kalug Ginga Thiess 4.3.1 4.3.2 4.3.3 Stream 4.4.1	tive Functions neter Optimization	. 11 . 16 . 18 . 20 . 22 . 22 . 22 . 22 . 22 . 27 . 27 . 27

	4.5		Evapo	oration Data	. 31
	4.6		Visua	l Data Checking	. 32
	4.7		Daily	Data Comparison	. 32
		4.	7.1	Ellagawa Watershed	. 32
		4.	7.2	Tawalama Watershed	. 36
	4.8		Month	nly Data Comparison	. 36
		4.	8.1	Ellagawa Watershed	. 36
		4.	8.2	Tawalama Watershed	. 40
	4.9		Annua	al Data Comparison	.41
		4.	9.1	Ellagawa Watershed	.41
		4.	9.2	Tawalama Watershed	. 42
	4.10)	Annua	al Water Balance	. 43
		4.	10.1	Ellagawa Watershed	. 43
		4.	10.2	Tawalama Watershed	. 45
	4.11	1	Doubl	e Mass Curve	. 46
		4.	11.1	Ellagawa Watershed	. 47
		4.	11.2	Tawalama Watershed	. 47
	4.12	2	Identi	fication of Missing Data	. 47
	4.13	3	Outlie	r check	. 47
5	. A	N	ALYSI	IS AND RESULTS	. 48
	5.1		Introd	uction	. 48
	5.2		Mode	l Development	. 48
	5.3		Evalu	ation of Objective Function	. 49
	5.4		Identi	fication of High, Medium and Low flows	. 50
	5.5	- 4440	Two F	Parameter Founder Model (Monthly Input) – Comparison with	51
		em		a	51
	3.0	F		auon or 1 wo Parameter Monthly Model (Monthly Alternate data).	. 30
		э.	0.1	General	. 36
		5.	6.2	Determination of Global Minimum	. 56

5.6.3 Comparison of 2PM (Monthly Input) Performance	67
5.6.3.1 Ellagawa Watershed	67
5.6.3.2 Tawalama Watershed	69
5.6.4 Selected Parameters to the 2PM	69
5.7 Daily Outflow Estimation with 2PM (Daily Input)	70
5.7.1 General	70
5.7.2 Performance of 2PM (Daily Input)	70
5.7.2.1 Tawalama Watershed	70
5.7.2.2 Ellagawa Watershed	82
5.7.3 Summary of 2PM (Daily Input) Model Performance	91
5.8 Three Parameter Model (Monthly Input)	92
5.8.1 General	92
5.8.2 Calibration of Three Parameter Model	93
5.8.3 Tawalama Watershed	93
5.8.3.1 Calibration	93
5.8.3.2 Verification	96
5.8.4 Ellagawa Watershed	98
5.8.4.1 Calibration	98
5.8.4.2 Verification	100
5.9 Three Parameter Model (Daily Input)	102
5.9.1 General	102
5.9.2 Tawalama watershed	102
5.9.2.1 Calibration Period	102
5.9.2.2 Verification period	107
5.9.3 Ellagawa Watershed	111
5.9.3.1 Calibration Period	111
5.9.3.2 Verification	115
5.9.4 Comparison of Monthly Estimates	119
6. DISCUSSION	121

6.1	Model Identification	
6.2	Two Parameter Monthly Model (Monthly Input)	
6.3	Two Parameter Model (Daily Input)	
6.4	Three Parameter Model (Monthly Input)	
6.5	Three Parameter Model (Daily Input)	
6.6	Importance Of Three Parameter Model	
6.7	Data Disparity	
6.8	Model conceptualization	
7. CC	DNCLUSIONS	
8. RE	ECOMMENDATIONS	
9. RE	EFERENCES	
ANNE	X A - DATA	
ANNE	X B - DATA CHECKING (ELLAGAWA BASIN)	
ANNE	X C - DATA CHECKING (TAWALAMA WATERSHED)	
ANNE	X D - ANALYSIS AND RESULTS	

LIST OF FIGURES

Figure 1-1: Project Area – Ellagawa Watershed	4
Figure 1-2: Project Area – Thawalama Watershed	5
Figure 3-1: Methodology Flow chart	21
Figure 4-1: Landuse Map – Kalu Ganga Basin at Ellagawa	23
Figure 4-2: Landuse Map Gin Ganga Basin at Tawalama	26
Figure 4-3: Thiessen Polygons – Ellagawa Watershed	28
Figure 4-4: Thiessen Polygons – Tawalama Watershed	29
Figure 4-5: Ellagawa Streamflow response with each rainfall station data in 2007/2008	34
Figure 4-6 : Streamflow responses with Thiessen averaged rainfall – Ellagawa Watershed	35
Figure 4-7: Streamflow response with each rainfall station data -Tawalama (2012/2013)	37
Figure 4-8: Streamflow responses with Thiessen average rainfall at Tawalama Ye 2000~2005	ar 38
Figure 4-9: Ellagawa monthly streamflow response with each rainfall station monthly data	39
Figure 4-10: Tawalama monthly streamflow response with each rainfall station monthly data	40
Figure 4-11: Annual Rainfall Pattern – Alupola	41
Figure 4-12: Annual Rainfall Pattern - Tawalama	42
Figure 4-13: Annual water balance Kalu Ganga Basin at Ellagawa	43
Figure 4-14: Pan Evaporation vs Annual water balance- Ellagawa Watershed	44
Figure 4-15: Annual water balance at Tawalama– Gin Ganga Basin	45
Figure 4-16: Annual Water Balance vs Pan Evaporation – Tawalama Watershed	46
Figure 5-1: Streamflow Comparison with Kandu.D.,(2016,unpuble) Model– Tawalama watershed – Founder and Alternate Data	54

Figure 5-2:	Streamflow Comparison with Sharifi.M.B.,(2016,unpuble) Model – Ellagawa watershed – Founder and Alternate Data	55
Figure 5-3:	Search for Global Minimum of MRAE– Tawalama Watershed	57
Figure 5-4:	Search for Global minimum of MRAE – Ellagawa Watershed	57
Figure 5-5:	Variation of Objective Function with Parameter Values – Tawalama Watershed	58
Figure 5-6:	Variation of Objective Function with Parameter Values – Ellagawa Watershed	58
Figure 5-7:	Hydrographs of 2PM (Monthly Input) for Tawalama Watershed – Calibration – Alternate Data	60
Figure 5-8:	Flow duration curve of 2PM (Monthly Input) for Tawalama Watershed Calibration – Alternate Data	l – 61
Figure 5-9:	Annual Water Balance of 2PM (Monthly Input) for Tawalama Watersh - Calibration – Alternate Data	ned 61
Figure 5-10): Hydrographs of 2PM (Monthly Input) for Tawalama Watershed - Verification	62
Figure 5-11	1: Flow duration curve of 2PM (Monthly Input) for Tawalama Watershe Verification	ed 63
Figure 5-12	2: Annual Water Balance of 2PM (Monthly Input) for Tawalama Watershed - Verification	63
Figure 5-13	3: Hydrographs of 2PM (Monthly Input) for Ellagawa Watershed – Calibration	64
Figure 5-14	4: Flow duration curve of 2PM (Monthly Input) for Ellagawa Watershed	1 – 64
Figure 5-15	5: Annual Water Balance of 2PM (Monthly Input) for Ellagawa Watersh Calibration	ned 65
Figure 5-16 Ve	5: Hydrographs of 2PM (Monthly Input) for Ellagawa Watershed - erification	65
Figure 5-17 Ve	7: Flow duration curve of 2PM (Monthly Input) for Ellagawa Watershed	l – 66

Figure 5-18: Annual Water Balance of 2PM (Monthly Input) for Ellagawa Water - Verification	shed 66
Figure 5-19: Comparison of Hydrographs – Monthly data (Year 2006/07- 2013/1 Ellagawa Watershed	4) – 68
Figure 5-20: Streamflow comparison - 2PM (Daily Input) – Calibration Period – Tawalama Watershed	70
Figure 5-21: 2PM (Daily Input)– Monthly Streamflow Estimation – Calibration Period – Tawalama Watershed	71
Figure 5-22: 2PM (Monthly Input) – Monthly Streamflow Estimation – Calibrat Period – Tawalama Watershed	ion 71
Figure 5-23: Output hydrographs – 2PM (Daily Input) – Calibration Period – Tawalama (Semi Logarithmic Plot) – Year 2000/01 – 2003/04	72
Figure 5-24: Output hydrographs from 2PM (Daily Input) – Calibration - Tawala watershed (Semi Logarithmic Plot)	ma 73
Figure 5-25: Flow Duration curve – 2PM (Daily Input - Calibration Period) - Tawalama Watershed	74
Figure 5-26: Annual Water Balance - 2PM (Daily Input) – Calibration Period – Tawalama Watershed	75
Figure 5-27: 2PM (Daily Input) – Daily Streamflow Estimation – Verification Pe – Tawalama Watershed	riod 76
Figure 5-28: 2PM (Daily Input) – Monthly Streamflow Estimation – Validation Period – Tawalama Watershed	77
Figure 5-29: 2PM (Monthly Input) – Monthly Streamflow – Verification Period – Tawalama Watershed	- 77
Figure 5-30: Output hydrographs – 2PM (Daily Input) – Verification Period – Tawalama Watershed (Semi Logarithmic Plot)	78
Figure 5-31: Output hydrographs – 2PM (Daily Input) – Verification Period – Tawalama Watershed (Semi Logarithmic Plot)	79
Figure 5-32: Flow Duration curve – 2PM (Daily Input) – Verification Period – Tawalama Watershed	80
Figure 5-33: Annual Water Balance - 2PM (Daily Input) – Verification Period – Tawalama Watershed	81

Figure 5-34:	2PM (Daily Input) – Daily Streamflow Estimation – Calibration Perio – Ellagawa Watershed	od 82
Figure 5-35:	2PM (Daily Input) – Monthly Streamflow Estimation – Calibration Period – Ellagawa Watershed	83
Figure 5-36:	2PM (Monthly Input) – Monthly Streamflow Estimation – Calibration Period – Ellagawa Watershed	n 83
Figure 5-37:	Output hydrographs – 2PM (Daily Input) – Calibration Period – Ellagawa Watershed (Semi Logarithmic Plot)	84
Figure 5-38:	Flow Duration curve – 2PM (Daily Input) – Calibration Period - Ellagawa Watershed	85
Figure 5-39:	Annual Water Balance - 2PM (Daily Input) – Calibration Period – Ellagawa	86
Figure 5-40:	2PM (Daily Input) – Daily Streamflow Estimation – Validation Perio Ellagawa Watershed	d – 87
Figure 5-41:	2PM (Daily Input) – Monthly Streamflow Estimation – Validation Period – Ellagawa Watershed	88
Figure 5-42:	2PM (Monthly Input) – Monthly Streamflow Estimation – Validation Period – Ellagawa Watershed	1 88
Figure 5-43:	Output hydrographs – 2PM (Daily Input) – Verification Period – Ellagawa Watershed	89
Figure 5-44:	Flow Duration curve – 2PM (Daily Input) – Validation Period - Ellagawa Watershed	90
Figure 5-45:	Annual Water Balance - 2PM (Daily Input) – Verification – Ellagawa	a91
Figure 5-46:	Output hydrographs – 3PM (Monthly Input) – Calibration – Tawalam Watershed	na 94
Figure 5-47:	Flow duration curve – 3PM (Monthly Input) – Calibration – Tawalan Watershed	na 95
Figure 5-48:	Annual Water Balance – 3PM (Monthly Input) – Calibration – Tawalama Watershed	95
Figure 5-49:	Output hydrographs – 3PM (Monthly Input) – Verification – Tawalan	na 96

Figure 5-50: Flow duration curve – 3PM (Monthly Input) – Verification Period – Tawalama Watershed	97
Figure 5-51: Annual Water Balance – 3PM (Monthly Input) – Verification Period Tawalama Watershed	1 – 97
Figure 5-52: Output hydrographs – 3PM (Monthly Input) – Calibration – Ellagav	va98
Figure 5-53: Flow duration curve – 3PM (Monthly Input) – Validation Period – Ellagawa	99
Figure 5-54: Annual Water Balance – 3PM (Monthly Input) – Calibration Period Ellagawa	- 99
Figure 5-55: Output hydrographs – 3PM (Monthly Input) – Verification – Ellaga	wa 100
Figure 5-56: Flow duration curve – 3PM (Monthly Input) – Verification Period – Ellagawa	101
Figure 5-57: Annual Water Balance – 3PM (Monthly Input) – Verification Period Ellagawa	1 – 101
Figure 5-58: Output hydrographs – 3PM (Daily Input) – Calibration Period – Tawalama Watershed (Semi Logarithmic Plot)	103
Figure 5-59: Output hydrographs – 3PM (Daily Input) – Calibration Period – Tawalama Watershed (Semi Logarithmic Plot)	104
Figure 5-60: Flow duration curve – 3PM (Daily Input) — Calibration Period – Tawalama	105
Figure 5-61: Annual Water Balance – 3PM (Daily Input) — Calibration Period – Tawalama	106
Figure 5-62: 3PM (Daily Input) – Daily Streamflow Estimation — Calibration Period – Tawalama	106
Figure 5-63: Output hydrographs – 3PM (Daily Input) – Verification Period – Tawalama	108
Figure 5-64: Flow duration curve – 3PM (Daily Input) — Verification – Tawalar Watershed	na 109
Figure 5-65: Annual Water Balance – 3PM (Daily Input) — Verification – Tawalama Watershed	110

Figure 5-66: 3PM (Daily Input) – Daily Streamflow Estimation — Verification	on
Period – Tawalama	110
Figure 5-67: Output hydrographs – 3PM (Daily Input) – Calibration Period – Ellagawa	112
Figure 5-68: Flow duration curve – 3PM (Daily Input) — Calibration Period – Ellagawa watershed	113
Figure 5-69: Annual Water Balance – 3PM (Daily Input) – Calibration Period – Ellagawa	 114
Figure 5-70: 3PM (Daily Input) – Daily Streamflow Estimation— Calibration	Period
— Ellagawa Watershed	114
Figure 5-71: Output hydrographs – 3PM (Daily Input) – Verification Period– Ellagawa	116
Figure 5-72: Flow duration curve – 3PM (Daily Input) — Verification Period – Ellagawa Watershed	- 117
Figure 5-73: Annual Water Balance – 3PM (Daily Input) — Verification – Ella	agawa 118
Figure 5-74: Streamflow Comparison – 3PM (Daily Input) — Verification Per	iod –
Ellagawa Watershed	118
Figure 5-75: 3PM (Monthly Input & Daily Input) - Monthly Streamflow Estim	ation
— Calibration Period – Tawalama Watershed	119
Figure 5-76: 3PM (Monthly Input & Daily Input) - Monthly Streamflow Estim	ation
— Verification Period – Tawalama Watershed	119
Figure 5-77: Monthly estimation Comparison – 3PM (Monthly Input & Daily I	Input)
— Calibration Period – Ellagawa Watershed	120
Figure 5-78: Monthly estimation Comparison – 3PM (Monthly Input & Daily I	Input)
— Verification Period – Ellagawa Watershed	120
Figure B-1: Variation of Maximum, Mean and average monthly rainfall, stream & evaporation	nflow 136
Figure B-2 : Rainfall response to Ellagawa Streamflow in year 2006/2007- Ser	ni
Logarithmic scale	137
Figure B-3 : Rainfall response with Ellagawa Streamflow in 2007/2008 - Semi Logarithmic scale	138

Figure B -4 : Rainfall response with Ellagawa Streamflow in 2008/2009 - Semi Logarithmic scale	139
Figure B -5: Rainfall response with Ellagawa streamflow in 2009/2010- Log sca	ile 140
Figure B -6: Rainfall response with Ellagawa streamflow in 2010/2011- Log sca	ıle 141
Figure B -7: Rainfall response with Ellagawa stream flow in 2011/2012- Log sc	ale 142
Figure B -8: Rainfall response with Ellagawa stream flow in 2012/2013- Log sc	ale 143
Figure B -9: Rainfall response with Ellagawa stream flow in 2013/2014- Log sc	ale 144
Figure B -10 : Rainfall response to Ellagawa Streamflow in year 2006/2007- No scale	ormal 145
Figure B -11 : Rainfall response with Ellagawa Streamflow in 2007/2008 - Norn scale	nal 146
Figure B -12 : Rainfall response with Ellagawa Streamflow in 2008/2009- Log s	scale 147
Figure B -13: Rainfall response with Ellagawa streamflow in 2009/2010 - Norm scale	al 148
Figure B -14: Rainfall response with Ellagawa streamflow in 2010/2011- Norma scale	al 149
Figure B -15: Rainfall response with Ellagawa stream flow in 2011/2012 - Norm scale	nal 150
Figure B -16: Rainfall response with Ellagawa stream flow in 2012/2013- Log s	cale 151
Figure B -17: Rainfall response with Ellagawa stream flow in 2013/2014 - Norm scale	nal 152
Figure B -18: Theissen Average Rainfall response with Ellagawa stream flow in 2010-2014- Normal scale	153
Figure B -19: Monthly Rainfall Comparison – Ellagawa Watershed	154

Figure B -20: Double Mass Curve for Rainfall Data – Ellagawa basin15	5
Figure C-1: Variation of high, medium and minimum flows – Tawalama Watershed 15	8
Figure C-2: Rainfall response to Tawalama Stream flow in year 2000/2001 –Log scale 15	<i>.</i> 9
Figure C -3: Rainfall response to Tawalama Stream flow in year 2001/2002 – Log scale 16	50
Figure C -4: Rainfall response to Tawalama Stream flow in year 2002/2003 – Log scale 16	51
Figure C -5: Rainfall response to Tawalama Stream flow in year 2003/2004– Log scale 16	52
Figure C -6: Rainfall response to Tawalama Stream flow in year 2004/2005– Log scale 16	i3
Figure C -7: Rainfall response to Tawalama Stream flow in year 2005/2006 – Log scale 16	<i>i</i> 4
Figure C -8: Rainfall response to Tawalama Stream flow in year 2006/2007– Log scale 16	5
Figure C -9: Rainfall response to Tawalama Stream flow in year 2007/2008– Log scale 16	6
Figure C -10: Rainfall response to Tawalama Stream flow in year 2008/2009– Log scale 16	57
Figure C -11: Rainfall response to Tawalama Stream flow in year 2009/2010– Log scale 16	i8
Figure C -12: Rainfall response to Tawalama Stream flow in year 2010/2011– Log scale 16	<i>i</i> 9
Figure C -13: Rainfall response to Tawalama Stream flow in year 2011/2012– Log scale 17	0'
Figure C -14: Rainfall response to Tawalama Stream flow in year 2012/2013 – Log scale 17	'1
Figure C -15: Rainfall response to Tawalama Stream flow in year 2013/2014 – Log scale 17	2

XVI

Figure C -16:	Rainfall response to Tawalama Stream flow in year 2014/2015– Lo scale	og 173
Figure C -17:	Thiessen Average Rainfall response to Tawalama Stream flow 2005~2010– Log scale	174
Figure C -18:	Thiessen Average Rainfall response to Tawalama Stream flow 2010~2015– Log scale	175
Figure C -19:	Rainfall response to Tawalama Stream flow in year 2000/2001 – Normal scale	176
Figure C -20:	Rainfall response to Tawalama Stream flow in year 2001/2002 – Normal scale	177
Figure C -21:	Rainfall response to Tawalama Stream flow in year 2002/2003 – Normal scale	178
Figure C -22:	Rainfall response to Tawalama Stream flow in year 2003/2004 – Normal scale	179
Figure C -23:	Rainfall response to Tawalama Stream flow in year 2004/2005 – Normal Log scale	180
Figure C -24:	Rainfall response to Tawalama Stream flow in year 2005/2006 – Normal scale	181
Figure C -25:	Rainfall response to Tawalama Stream flow in year 2006/2007– Normal scale	182
Figure C -26:	Rainfall response to Tawalama Stream flow in year 2007/2008 – Normal scale	183
Figure C -27:	Rainfall response to Tawalama Stream flow in year 2008/2009 – Normal scale	184
Figure C -28:	Rainfall response to Tawalama Stream flow in year 2009/2010 – Normal scale	185
Figure C -29:	Rainfall response to Tawalama Stream flow in year 2010/2011– Normal scale	186
Figure C -30:	Rainfall response to Tawalama Stream flow in year 2011/2012– Normal scale	187
Figure C -31:	Rainfall response to Tawalama Stream flow in year 2012/2013 – Normal scale	188

Figure C -32: Rainfall response to Tawalama Stream flow in year 2013/2014 – Normal scale	189
Figure C-33: Rainfall response to Tawalama Stream flow in year 2014/2015 – Normal scale	190
Figure C-34: Thiessen Average Rainfall response to Tawalama Stream flow 2005~2010 – Normal scale	191
Figure C-35: Thiessen Average Rainfall response to Tawalama Stream flow 2010~2015 – Normal scale	192
Figure C-36: Comparison of Annual Rainfall Pattern	193
Figure C-37: Double Mass Curve for Rainfal data - Tawalama Basin	194
Figure D-1: Flow Duration Curve – Monthly Scale - Tawalama Watershed (Norr Scale)	nal 199
Figure D-2: Flow Duration Curve – Monthly Scale - Tawalama Watershed (Log Scale)	199
Figure D-3: Flow Duration Curve – Monthly Scale - Ellagawa Watershed (Norma Scale)	al 200
Figure D-4: Flow Duration Curve – Monthly Scale - Ellagawa Watershed (Log Scale)	200
Figure D-5: Flow Duration Curve – Daily Scale - Tawalama Watershed (Normal Scale)	201
Figure D-6: Flow Duration Curve – Daily Scale - Tawalama Watershed (Log Sca	le) 201
Figure D-7: Flow Duration Curve – Daily Scale - Ellagawa Watershed (Normal Scale)	202
Figure D-8: Flow Duration Curve – Daily Scale - Ellagawa Watershed (Log Scale	e) 202
Figure D-9: Streamflow Comparison with Kandu.D.,(2016,unpuble) Model– Tawalama watershed – Founder and Alternate Data (Normal Scale)	203
Figure D-10: Streamflow Comparison with Sariffi.M.B.,(2016,unpuble) Model– Ellagawa watershed – Founder and Alternate Data (Normal Scale)	203

Figure D-11: Output hydrographs from 2PM (Daily) – with calibrated parameter	s –
Calibration - Tawalama watershed (Normal Scale Plot)	204
Figure D-12: Output hydrographs from 2PM (Daily) – with calibrated parameter	s –
Calibration - Tawalama watershed (Normal Scale Plot)	205
Figure D-13: Output hydrographs from 2PM (Daily) –Verification - Tawalama watershed (Normal Scale Plot)	206
Figure D-14: Output hydrographs from 2PM (Daily) –Verification - Tawalama watershed (Normal Scale Plot)	207
Figure D-15: Output hydrographs from 2PM (Daily) – with calibrated parameter	s –
Calibration - Ellagawa watershed (Normal Scale Plot)	208
Figure D-16: Output hydrographs from 2PM (Daily) – Calibration - Ellagawa watershed (Normal Scale Plot)	209
Figure D-17: Output hydrographs from 2PM (Daily) – with calibrated parameter	s –
Validation - Ellagawa watershed (Normal Scale Plot)	210
Figure D-18: Flow duration curves for 2PM (Daily) – with calibrated parameters	-
Calibration - Tawalama watershed (Log Scale Plot)	211
Figure D-19: Flow Duration Curves for 2PM (Daily) – with calibrated parameter	rs –
Calibration - Tawalama watershed (Log Scale Plot)	212
Figure D-20: Flow Duration Curves for 2PM (Daily) – with calibrated parameter	rs –
Validation - Tawalama watershed (Log Scale Plot)	213
Figure D-21: Flow Duration Curves for 2PM (Daily) – with calibrated parameter	rs –
Validation - Tawalama watershed (Log Scale Plot)	214
Figure D-22: Flow Duration Curves for 2PM (Daily) – with calibrated parameter	rs –
Calibration - Ellagawa watershed (Log Scale Plot)	215
Figure D-23: Flow Duration Curves for 2PM (Daily) – with calibrated parameter	rs –
Validation - Ellagawa watershed (Log Scale Plot)	216
Figure D-24: Output hydrographs for 3PM (Daily) – Calibration - Tawalama watershed (Log Scale Plot)	217
Figure D-25: Output hydrographs for 3PM (Daily) – Calibration - Tawalama watershed (Log Scale Plot)	218
Figure D-26: Output hydrographs for 3PM (Daily) – Verification - Tawalama watershed (Normal Scale Plot)	219

Figure D-27: Output hydrographs for 3PM (Daily) – Verification - Tawalama watershed (Normal Scale Plot)	220
Figure D-28: Output hydrographs for 3PM (Daily) – Calibration - Ellagawa watershed (Normal Scale Plot)	221
Figure D-29: Output hydrographs for 3PM (Daily) – Verification - Ellagawa watershed (Normal Scale Plot)	222
Figure D-30: Flow duration curves for 3PM (Daily) – Calibration - Tawalama watershed (Log Scale Plot)	223
Figure D-31: Flow duration curves for 3PM (Daily) – Calibration - Tawalama watershed (Log Scale Plot)	224
Figure D-32: Flow duration curves for 3PM (Daily) – Calibration – Ellagawa watershed (Log Scale Plot)	225
Figure D-33: Flow duration curves for 3PM (Daily) – Validation – Tawalama watershed (Log Scale Plot)	226
Figure D-34: Flow duration curves for 3PM (Daily) – Validation – Tawalama watershed (Log Scale Plot)	227
Figure D-35: Flow duration curves for 3PM (Daily) – Validation – Ellagawa watershed (Log Scale Plot)	228
Figure D-36: 2PM (Monthly) – Seasonal Comparison (Calibration) - Tawalama	229
Figure C-37: 2PM (Daily) – Seasonal Comparison (Calibration) – Tawalama	229
Figure D-38: 2PM (Monthly) – Seasonal Comparison (Validation) - Tawalama	230
Figure D-39: 2PM (Daily) – Seasonal Comparison (Validation) - Tawalama	230
Figure D-40: 2PM (Monthly) – Seasonal Comparison (Calibration) – Ellagawa	231
Figure D-41: 2PM (Daily) – Seasonal Comparison (Calibration) – Ellagawa	231
Figure D-42: 2PM (Monthly) – Seasonal Comparison (Validation) – Ellagawa	232
Figure D-43: 2PM (Daily) – Seasonal Comparison (Validation) – Ellagawa	232
Figure D-44: Seasonal comparison – 3PM (Monthly) – Validation – Tawalama	232
Figure D-45: Seasonal comparison – 3PM (Daily) – Validation – Tawalama	233
Figure D-46: Seasonal comparison – 3PM (Monthly) – Calibration – Ellagawa	233

Figure D-47: Seasonal comparison – 3PM (Daily) – Calibration – Ellagawa	233
---	-----

Figure D-48: Seasonal	l comparison –	- 3PM (Monthly) –	Validation – Ellagawa	234
0				-

- Figure D-49: Seasonal comparison 3PM (Daily) Validation Ellagawa 234
- Figure D-50: Seasonal comparison 3PM (Monthly) Calibration Tawalama 234
- Figure D-51: Seasonal comparison 3PM (Daily) Calibration Tawalama 235

LIST OF TABLES

Table 4-1: Details of Data for KaluGanga Basin at Ellagawa	22
Table 4-2: Landuse data – KaluGanga Basin at Ellagawa	24
Table 4-3: Details of Data Gin Ganga basin at Tawalama	25
Table 4-4: Landuse data Gin Ganga Basin at Tawalama	25
Table 4-5: Comparison of Distribution of Gauging Stations of Tawalama and Ellagawa Watersheds	27
Table 4-6: Thiessen Weights for Ellagawa Watershed	27
Table 4-7: Thiessen Weights for Tawalama Watershed	30
Table 4-8: Thiessen Average Rainfall - Ellagawa Watershed	30
Table 4-9: Thiessen Average Rainfall - Tawalama Watershed	30
Table 4-10: Streamflow Data – Ellagawa Watershed	31
Table 4-11: Streamflow Data – Tawalama Watershed	31
Table 4-12: Evaporation Data	32
Table 4-13: Annual Water Balance – Ellagawa Watershed	43
Table 4-14: Annual Water Balance – Tawalama Basin	45
Table 5-1: Medium and Low flow limits with Monthly and Daily Data	50
Table 5-2: Medium and Low Flow Limits of Founder data periods with Monthly Data	50
Table 5-3: Comparison of Parameters and Estimation Errors – Watersheds at Tawalama & Ellagawa	51
Table 5-4: Temporal & Spatial Comparison with Founder and Alternate model data Tawalama watershed	a - 52
Table 5-5: Temporal & Spatial Comparison with present and previous model data Ellagawa watershed	- 52
Table 5-6: Results of already Calibrated Model with Alternate Data	52
Table 5-7: Comparison of soil moisture of Tawalama and Ellagawa watersheds with Founder and Alternate model data	th 53

Table 5-8: Comparison of Model Performance – 2PM (Monthly Input) with Foun Parameters and Alternate dataset – Tawalama Watershed	der 59
Table 5-9: Comparison of Model Performance – 2PM (Monthly Input) with Foun Parameters and Alternate dataset – Ellagawa Watershed	der 59
Table 5-10: Model performance and Data Disparities – Ellagawa Watershed	67
Table 5-11: Model performance and Data Disparities – Tawalama Watershed	69
Table 5-12: 2PM (Monthly Input) – Selected Parameters	69
Table 5-13: Comparison of Model Performance 2PM (Daily Input) – Tawalama Watershed	75
Table 5-14: Comparison of Model Performance 2PM (Daily Input) – Ellagawa Watershed	86
Table 5-15: Optimized Parameters - 3PM (Monthly Input)	93
Table 5-16: Objective Function values - 3PM (Monthly Input) – Tawalama Watershed	94
Table 5-17: Comparison of Model Performance 3PM (Monthly Input) – Ellagawa Watershed	ι 98
Table 5-18: Indicators and Parameter values – 3PM (Daily Input) - Tawalama	102
Table 5-19: Parameters and indicators of 3PM (Daily Input) - Ellagawa	111
Table 6-1: Model parameters and initial soil moisture values for two parameter monthly model	121
Table 6-2: Model parameters and initial soil moisture values for two parameter monthly model	122
Table A-1: Thiessen Average Rainfall Data – Tawalama Watershed	132
Table A-2: Streamflow Data – Tawalama Watershed	132
Table A-3: Evaporation Data – Rathnapura Station	133
Table A-4: Thiessen Average Rainfall Data – Ellagawa Watershed	134
Table A-5: Streamflow Rainfall Data – Ellagawa Watershed	134
Table B -1: Cumulative Average Rainfall for Double Mass Curve – Ellagawa Watershed	156

Table B -2: Cumulative Average Rainfall for Double Mass Curve – Tawalama	
Watershed	156
Table D-1: Data points with Disparities – Ellagawa Watershed	236
Table D-2: Data points with Disparities – Ellagawa Watershed	237
Table D-3: Behaviour of MRAE with c & Sc – Tawalama Watershed	238
Table D-4: Behaviour of MRAE with c & Sc – Ellagawa Watershed – 2PM	239
Table D-5: Annual Water Balance 2PM (Monthly Input - Calibration) - Tawalam Watershed	a 240
Table D-6: Annual Water Balance 2PM (Monthly Input - Validation) - Tawalama Watershed	a 240
Table D-7: Annual Water Balance 2PM (Monthly Input - Calibration) - Ellagawa Watershed	240
Table D-8: Annual Water Balance 2PM (Monthly Input - Validation) - Ellagawa Watershed	241
Table D-9 : Annual Water Balance - 2PM (Daily Input) – Calibration Period – Tawalama Watershed	241
Table D-10 : Annual Water Balance - 2PM (Daily Input) – Validation Period – Tawalama Watershed	242
Table D-11 : Annual Water Balance - 2PM (Daily Input) – Calibration Period – Tawalama Watershed	242
Table D-12 : Annual Water Balance - 2PM (Daily Input) – Validation Period – Ellagawa Watershed	242
Table D-13: Behaviour of MRAE with c & Sc – Tawalama Watershed – 2PM	243
Table D-14: Behaviour of MRAE with c & Sc – Ellagawa Watershed – 2PM	245
Table D-15: Annual Water balance (Calibration) - 3PM (Monthly Input) – Tawal	ama 247
Table D-16: Annual Water balance (Validation) - 3PM (Monthly) – Tawalama	247
Table D-17: Annual Water balance (Calibration) - 3PM (Monthly Input) - Ellaga	wa 248

Table D-18: Annual Water balance (Calibration) - 3PM (Monthly Input) - Ellaga	ıwa
	248
Table D-19: Annual Water balance (Calibration Period) - 3PM (Daily Input) – Tawalama	248
Table D-20: Annual Water balance (Validation Period) - 3PM (Daily Input) – Tawalama	249
Table D-21: Annual Water balance (Calibration Period) - 3PM (Daily Input) – Ellagawa	249
Table D-22: Annual Water balance (Validation Period) - 3PM (Daily Input) – Ellagawa	249

LIST OF ABBREVIATIONS

Abbreviation	Description
AF	Runoff Adjustment Factor
c	Parameter c
С	Runoff Coefficient
DSD	Divisional Secretary Divisions
Ε	Nash-Sutcliffe coefficient
E (t)	Actual Evapotranspiration
EP (t)	Pan Evaporation
MAR	Mean Annual Rainfall
MRAE	Mean Ratio of Absolute Error
MSE	Mean Square Error
NEM	North East Monsoon
P (t)	Rainfall
Q (t)	Runoff
RAEM	Ratio of Absolute Error to Mean
RE	Relative Error
RMSE	Root Mean Square Error
S (t)	Soil Moisture Content
SC	Field capacity of the catchment
SWM	South West Monsoon
2PM	Two Parameter Model
3PM	Three Parameter Model