
 

 

DevAssist 

Developer Assistant for VisualStudio 

 

 

 

 

by 

H.D.L. Dayarathna 

149207B  

 

 

 

 

 

Dissertation submitted to the Faculty of Information Technology, University of 

Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of 

Master of Science in Information Technology. 

 

June 2017 

 



i 
 

Declaration 

I declare that this thesis is my own work and has not been submitted in any form for another 

degree or diploma at any university or other institution of tertiary education. Information 

derived from the published or unpublished work of others has been acknowledged in the 

text and a list of references is given. 

Name of Student Signature of Student 

H.D.L. Dayarathna 

 

 

 

 

 Date: 23/06/2017 

 

Supervised by 

Name of Supervisor Signature of Supervisor 

Mr. Chaman Wijesiriwardana 

 

 

 

 

 

 

 

        

 Date: 23/06/2017 

 



ii 
 

Acknowledgement 

 

There are many important individuals who supported me to make this project a success. I 

would like to extend our sincere gratitude to all of them. My deepest gratitude and warmest 

appreciation goes to Mr. Chaman Wijesiriwardana, my supervisor for his valuable support 

and guidance throughout the development of this project. His advices and suggestions were 

immensely helpful in both designing and implementation phases, to develop a better and 

more value-added system at the end.  

I am also grateful to all the authors of the reference materials we have used throughout this 

project and the web sites that we used in gathering data. Finally, I wish express a sense of 

gratitude to my family and all my friends for their support, strength, and help for 

completing this research this extend successfully. 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

 

 

Abstract 

With the rapid growth of the information technology, large number of programmers enter 

the software development field every year. Having tough deadlines in their day to day task 

completion, the performance monitoring for career growth, the inner contest is higher and 

the availability for peers is less. Due to higher complexity of the software components, the 

developer face lack of technology knowledge and domain knowledge every phase when 

solving deep logics. DevAssist is the best solution to feed knowledge into developer’s 

mind. It is always better to have a method to guide developers in programming tasks acting 

like an experienced peer especially considering busy schedule of developers.  

DevAssist plugin is an efficient solution that will allow developers to be aware of the 

updated technology as well as domain strategies. Considering business perspective, any 

software company may satisfy if there are many exceptional developers there. As 

developer, anybody would like to have someone as a peer overlooking your shoulder and 

providing guidance. So DevAssist is a way to have positive responses for own desires.  

Basic idea of implementing such a system is to, make it easier to solve complex logical 

problems by suggesting solutions to the developers. Here it uses fewer inputs for the system 

and system will run as a background process. This will help users of the system to continue 

their focus smoothly as user doesn’t have to bother on saving the useful content time to 

time manually. In this effort application is fed by the inputs automatically and then it 

detects user activities.  

 

 

 

  



iv 
 

Contents 

Introduction ...................................................................................................................................... 1 

1.1 Prolegomena .................................................................................................................... 1 

1.2       Background & Motivation ................................................................................................ 2 

1.3       Problem statement ........................................................................................................... 4 

1.4       Hypothesis ........................................................................................................................ 5 

1.5       Aim and objectives ........................................................................................................... 5 

1.6       Solution approach ............................................................................................................ 6 

1.7       Structure of the Thesis ..................................................................................................... 7 

1.8       Summary ........................................................................................................................... 7 

Review of Others Work ................................................................................................................... 8 

2.1       Introduction ...................................................................................................................... 8 

2.2      An Exploratory Study of How Developers Seek, Relate, and Collect Relevant Information 
during Software Maintenance Tasks ........................................................................................... 8 

2.3      COSME: A NetBeans IDE plugin as a team-centric alternative for search driven software 
development ................................................................................................................................ 8 

2.4       SurfClipse: Context-Aware Meta Search in the IDE .......................................................... 9 

2.5       Prompter: A Self-confident Recommender System ....................................................... 10 

2.6       Comparison of other approaches to DevAssist. ............................................................. 11 

2.6       Summary ......................................................................................................................... 12 

Usage of Technology ..................................................................................................................... 13 

3.1 Introduction ................................................................................................................... 13 

3.2 Technologies Used ......................................................................................................... 13 

3.3 Microsoft technologies .................................................................................................. 14 

3.3.1         What are Microsoft Technologies? ........................................................................ 14 

3.3.2         .NET Framework .................................................................................................... 14 

3.3.3        What are the components of .Net Framework? .................................................... 14 

3.3.4        Why .Net Framework? ............................................................................................ 15 

3.4 Levenshtein distance ..................................................................................................... 15 

3.5 Summary ........................................................................................................................ 16 

An Approach to DevAssist: Developer assistant for VisualStudio IDE ........................................ 17 

4.1        Introduction ................................................................................................................... 17 

4.2 Hypothesis...................................................................................................................... 17 

4.3 Input to the system ........................................................................................................ 17 

4.4 Output of the system ..................................................................................................... 17 



v 
 

4.5 Users of the system........................................................................................................ 18 

4.6 Process ........................................................................................................................... 18 

4.6.1         Query Building Process .......................................................................................... 18 

4.6.2         Searching process .................................................................................................. 19 

4.6.3         Ranking model ....................................................................................................... 20 

4.7 Features ......................................................................................................................... 22 

4.8 Summary ........................................................................................................................ 22 

Analysis and Design ...................................................................................................................... 23 

5.1        Introduction ................................................................................................................... 23 

5.2 The Proposed Design ..................................................................................................... 23 

5.3        Design Diagram .............................................................................................................. 26 

5.4 Detailed description about the Design Diagram ............................................................ 26 

5.5        Sequence Diagram of the System .................................................................................. 29 

5.6 Summary ........................................................................................................................ 29 

Implementation .............................................................................................................................. 30 

6.1 Introduction .................................................................................................................... 30 

6.2 Overall solution .............................................................................................................. 30 

6.3 Implementation of Query Builder Service ..................................................................... 30 

6.4 Implementation of Search Service ................................................................................. 39 

6.5 Implementation of Ranking Model ................................................................................ 41 

6.6 Summary ........................................................................................................................ 47 

Evaluation ...................................................................................................................................... 48 

7.1 Introduction ................................................................................................................... 48 

7.2 Evaluation of the prototype ........................................................................................... 48 

7.2.1          Generate search query ......................................................................................... 48 

7.2.2.         Ranking results ...................................................................................................... 50 

7.2.3          Accuracy of receiving a result using DevAssist plug-in ......................................... 51 

7.2 How our solution differs from the others’ work ............................................................ 52 

7.3 Summary of the entire report ........................................................................................ 52 

7.4 Summary ........................................................................................................................ 53 

Conclusion & Further work ........................................................................................................... 54 

8.1 Introduction ................................................................................................................... 54 

8.2 Objectives ...................................................................................................................... 54 

8.3 Achievements of objectives ........................................................................................... 55 

8.4 Problems Encountered .................................................................................................. 55 



vi 
 

8.5 Further work .................................................................................................................. 56 

8.6 Summary ........................................................................................................................ 56 

References ...................................................................................................................................... 57 

Appendix ........................................................................................................................................ 59 

 

  



vii 
 

 

List of Figures 
 

Figure 5.1: Module that captures data manually from the user ................................................... 24 
Figure 5.2: Module which gathers data from code editor ............................................................. 25 
Figure 5.3: Design diagram of the system ..................................................................................... 26 
Figure 5.4: Sequence diagram of the system ................................................................................. 29 
Figure 6.1: Screenshot of Visual Studio IDE with DevAssist ........................................................... 31 
Figure 6.2: Levenshtein algorithm example ................................................................................... 42 
Figure 7.1: Query generation example 1 ....................................................................................... 48 
Figure 7.2: Query generation example 2 ....................................................................................... 49 
Figure 7.3: Query generation example 3 ....................................................................................... 49 
Figure 7.4: Ranking result 1 ........................................................................................................... 50 
Figure 7.5: Ranking result 2 ........................................................................................................... 50 
Figure 7.6: Ranking result 3 ........................................................................................................... 50 

 

List of Tables 
 

Table 2.1: Comparison between other’s work and our solution ................................................... 11 

Table 6.1: C# keywords .................................................................................................................. 33 

Table 6.2: Contextual keywords in C# ............................................................................................ 34 

Table 7.1: Accuracy of received results using DevAssist plug-in ................................................... 51 

Table 7.2: Evaluation of DevAssist against Related wok ................................................................ 52 

 

 



1 
 

Chapter 1 

Introduction  

1.1 Prolegomena 

Software development is a tedious task that requires extensive knowledge different 

technologies. Many programming languages and technologies emerge every day. It is a 

stressful, time consuming task for a developer to keep up with new technology and to make 

use of them when needed.  Even though the technical knowledge is up-to-date, it may be 

not enough when working with the industrial projects. They must earn vast domain 

knowledge in addition to knowledge of the technologies. Developers must deal with 

unknown or partially known parts of a system. At the same time developers, should go 

beyond the knowledge that they already possess.   

 

Most modern software development relies on reusable software asserts like frameworks, 

libraries which are exported through application programming interface (API). These are 

large and heavy structured information spaces that the developer must understand and 

navigate to complete their tasks. But the stressful deadlines are compulsory in the software 

field. At the moment developer is an isolated person although he or she is a part of a large 

development team. In other words, developer must do his/her own research when 

confronted with any technical/non-technical issue. 

 

Thanks to many sites and information in the web, developers are able to learn and update 

knowledge faster to support today’s growing software requirements. Therefore, the 

approach to software development has become more a search driven approach. This has 

lead developers spending more time in searching proper code samples than actual time 

spent on programming itself.  

 

To aid these search-driven development approaches many technology specific documents, 

sites and forums are available in the Internet.  Few of the most well-known forums are 

Stack Overflow, Snipplr and Github. Most of these forums are community based and 

require help from search engines such as Google to retrieve the relevant documents from 



2 
 

them. However, programmers should go through several forums and refine their search 

many times in order find a proper sample code or an explanation. This can be time 

consuming and will contribute into many search hours in software development projects.  

 

In addition, most of the developers heavily depend on integrated development environment 

(IDE) for development. There are many IDEs being used by different developers depending 

on their development language and requirements. Few of the mostly used IDEs are Visual 

Studio and Eclipse. Eclipse is a free open source IDE while Visual Studio is Microsoft 

proprietary solution mainly used for .Net development.  

 

These IDEs are well equipped with many features and functionalities to assist developers.  

There is a great deal of help given by IDE when concerning programming language 

commands, testing and deployment. The IDEs that developers currently using are highly 

advance in its kind and equipped with many tools for successful software development, 

testing, launching and even repository management.  However, to date IDEs do not have 

any code snippet search help. Code snippet search tool, which can prompt solutions by 

understanding the context of the current code being developed, can significantly increase 

the effectiveness and the performance of a developer. 

 

1.2 Background & Motivation 

The development environment for software includes all the development related tools. In 

additionally large application programming interfaces (API) include extensive 

documentations, reference documentations, user manuals and code examples. As an 

experienced developer, the facilities provided by integrated development environment 

(IDE) [1] are useful. But integrated development environment (IDE), information spaces 

and other dynamic knowledge resources provide unfiltered solutions regarding of 

technology. However, when there are issues related to the logic, or issues related the 

domain, the integrated development environment (IDE) will not be a player anymore.  

 



3 
 

The developer is merely isolated person even though he is a part of a bigger software 

development team. Thus when a developer faces situations like domain issue, logic issue 

and also may be a technology related issue, collogues, online help forums [2], mailing lists 

[3], blogs, Q&A websites will help randomly. Other resources may not provide the 

optimum solution. The solution may be outdated, has performance issues or less secure or 

unethical. As a developer, the solution cannot be analyzed to check whether it is the best 

without additional peer reviews, extensive logic review or implementing it.   

 

The coding speed of a developer directly affects to the deadline and ultimately for the 

performance of the developer. Referring the provided frameworks, libraries by integrated 

development environment (IDE) will be time consuming. On the other hand, the developer 

must have a structured knowledge and extended practice to apply these technology adapters 

to own solution. The deadlines are strict and must be strict hence the nature of the software 

field. Therefore, when a developer gets stuck in a critical task, it is not possible to patch a 

solution by learning a new technology from scratch completely. In these cases, most of the 

developers just learn a specific part of a technology that is required to fix the critical task 

they must perform.  

 

Apart from that, many new junior developers enter the software development field every 

year. They gain knowledge by collecting experiences. Beginners will come across many 

technical issues, which their senior peers have already come across but they cannot depend 

on experts always or reach out to them easily. Due to these reasons, developers always tend 

to maintain and update Q&A sites such as Stack Overflow with problems they faced 

previously so the beginners don’t have to reinvent the wheel. As beginners, they should 

learn to manage time, get up-to-date with new of technologies, collect domain knowledge 

etc. 

 

However, it would be nice to have tool, which perform like a peer developer with more 

experience that will always looking over your shoulder and analyzing the code in progress. 

Expert knowledge is available online with Q&A sites and forums. Nevertheless, what is 

lacking to automate the process of peer developer is a tool, which can analyze the in-



4 
 

progress code snippet, query web for solutions and rank and prompt it in an IDE. So, the 

motivation was to suggest a solution, which is a tool embedded in IDE, which act like a 

peer. The solution should be available only when the developer needs it. It should behave 

like a peer by providing solutions to developer’s problems, guiding the developer, 

collecting vast accurate information available in the web, filtering best solutions, 

optimizing the written source code, be available in the currently working integrated 

development environment (IDE).  

 

The suggested system can be developed further, if it can connect with many integrated 

development environments (IDE). If a system acts like a peer, like a mentor, it will be the 

best tool, which can be used by a developer to gain knowledge. In addition, this tool will 

increase the productivity of the developer by decreasing the time spent on searching best 

solutions.    

 

The suggested system will be intelligent enough to generate the query and rank the most 

suitable solution. However, there is much inaccurate information in the Internet, which can 

act as a match to the generated search query. To achieve accuracy, we can consider some 

well-known accurate resources that are popular among developers. Basically, Stack 

Overflow [9] which is the largest online community for programmers to learn and share 

their knowledge can be used as a main information resource for the system. Apart from 

that, the user will be facilitated to connect with the other standard online communities, 

which are some Q&A web sites, forums etc. This tool will become one of the most useful 

tools included in the IDE when the algorithms used can precisely point out what developer 

is looking for.  

 

1.3 Problem statement 

Developers tend to use tremendous time searching for better solution over various 

resources with respect to technology or logic. The issue, focused in this research is how an 

automated system can provide better assistance to software developers similar to an expert 

peer programmer. Although the problem of time spent on updating knowledge, find 



5 
 

solutions are common in the software field; the proper automated solution has not yet been 

initialized.  

 

In summary, the problem is lack of a proper navigator system for software developers. 

Research related to this problem area cannot be seen much. Since the proposed solution 

must be an intelligent system, which must possess the knowledge beyond an experienced 

developer, the percentage of unsolved areas of the problem may be higher.  

 

Among many challenging areas of this problem, most challenging would be to predict 

accurate solutions to prompt to users and further improve its algorithms in order to provide 

a better solution by understanding the context of the code. This will be a challenging task 

and would need constant upgrades to the tool. 

 

Fine tuning the intelligence of this system is a challenging in this research. In the same 

time, the design must concern about the high performance, security, robustness, and 

technical barriers that will come across implementing the solution. 

 

1.4 Hypothesis 

The hypothesis of the research is an enhanced way to assist developers by prompting 

performance issues, best solutions or simply technical documentation for code using a tool 

embedded in the Integrated Development Environment (IDE). This tool will generate 

search queries based on the code context and pass it to API services of search engines and 

top technology related forums. Extracted solutions are then evaluated and suggest available 

help by the relevance to the problem considering various decision-making criteria. 

 

1.5 Aim and objectives 

The aim is to develop an intelligent plugin to the Integrated Development Environment 

(IDE), which will support as a guider as well a peer to software developers. 

 

 



6 
 

Objectives can be illustrated as follows. 

1. Critically analyze and understand the problem 

2. Identify functional and non-functional requirements 

3. Design an overall architecture 

4. Identify required technologies to address the issue 

5. Study the technologies  

6. Design and implement the system 

7. Make recommendations to improve it further 

 

1.6 Solution approach 

The solution is focused on creating a tool, which will assist developers in their development 

effort. This tool provides guidance by suggesting the most accurate programming solutions 

or technical documentation available to the developer. Though the proposed software 

system is basically focused on experienced software developers, it also facilitates for junior 

developers as a learning tool. Further the modern complex software systems require these 

sorts of plugins for monitoring code optimizations and testing. 

Proposed solution aim at resolving few main issues when building a developer assistant 

tool as discussed below: 

1. The tool should generate a query based on the in-progress code of the developer, 

which can be used for web/API search.  

2. It should only obtain information from relevant sources therefore it has make use 

of well-known Q&A sites and documentation specific to programming language.  

3. It should evaluate the search results using its content and meta data to further rank 

and present help accordingly.  

4. This tool should also consider performance issues in the IDE. It should not delay 

operations or add overhead to IDE.  

To achieve above-mentioned objectives, system is developed using separate modules. The 

system will consist of a query building module, search module and a ranking module. It is 



7 
 

essential to test this tool extensively to enhance its algorithms. With each test cycle, these 

three modules can be enhanced further.  

 

1.7 Structure of the Thesis 

Next few chapters are aiming at giving a thorough knowledge about the suggested solution. 

Structure of the following chapters is as follows: Chapter 2 discusses the information, 

which have been collected from various studies that others have carried out to solve similar 

problems. Chapter 3 will give an introduction about the technology adapted. Next, Chapter 

4 discusses the approach to solve the problem. Chapters 5, 6 and 7 describe the high-level 

design approach of the solution, implementation and discussion in order. In Chapter 8 it 

discusses the conclusion of the thesis and further work. 

 

1.8 Summary 

In this chapter, it has discussed in detail about background and motivation, hypothesis, 

aim and objectives and approach of the solution. In the next few chapters it describes 

some key points about the system.      

 

 

 

 

 

 

 

 

 



8 
 

Chapter 2 

Review of Others Work 

2.1 Introduction 

This chapter is about related research carried out by various scholars on this subject matter. 

Some of the studies cited below analyze the necessity of a developer assistant tool while 

other studies carried out implementations but focusing different aspects of such a tool. The 

following research survey and the table of comparisons describe those similar research 

areas and studies that already implemented such applications.  

 

2.2 An Exploratory Study of How Developers Seek, Relate, and Collect Relevant 

Information during Software Maintenance Tasks 

The goal of this research [5] was to investigate developers’ strategies for understanding 

and utilizing relevant information and discover ways in which Eclipse and other 

environments might be related to strategies. Researcher tried to take a closer look at 

variations in developers’ task structures, task contexts, and perceptions of relevance. The 

research investigation only considered one programming language and one development 

environment.  

 

The limited size of sample and the limited experience of the developers in the sample both 

limit the study’s generalizability. Research describes program understanding as a process 

of searching, relating, and collecting relevant information; all by forming perceptions of 

relevance from cues in the programming environment. This model is an extension of the 

general theory of information foraging [6]. This model is consistent with prior models of 

program understanding, while accounting for developers’ actions.  

 

2.3 COSME: A NetBeans IDE plugin as a team-centric alternative for search driven 

software development 

The goal of this study [7] was to develop an IDE plugin for NetBeans IDE, which helps 

developers with search-driven development. Although search-driven development is 



9 
 

considered an individual task, this research is focused on how information retrieval 

applications can be more collaborative. So the idea behind this study is to provide a tool 

that developers can use for collaborative information retrieval. COSME (COde Search 

Meeting) tool can be used by remotely located developers to share search sessions or any 

other related documentation or information among them. COSME includes features such 

as automatic division of labor, search sessions management and explicit recommendations.  

 

This tool is more focused as a distributed collaborative environment than trying to analyze 

the current code developer is working on. This tool is more suitable for larger software 

development companies where many developers are dealing with same type of 

technologies and source code. They will have more common issues that they need to look 

for. In that case, junior developers might be able to use more refine search carried out by 

more experienced developers. 

 

2.4 SurfClipse: Context-Aware Meta Search in the IDE 

Researchers of SurfClipse [8] are focused on mitigating time spent on fixing exception 

occurred at during Software development. Programming exceptions can have different 

levels of interpretation having an exception stack rather than a simple error message and it 

is not a simple task for a developer to manually analyze the error messages given the IDE 

to determine the issue.  Developers normally would perform time consuming, tedious 

debugging steps to analyze the exception even before looking in the web for solution. So, 

it is important to understand the context of the code before querying the web for a solution 

for the exception. 

 

SurfClipse is developed as an IDE assistant tool that analyzes an encountered exception 

and its context in the IDE, and recommends suitable search results via web searches right 

inside IDE or provide search queries that can be used in the web. SurfClipse works as both 

proactive and interactive tool.  

 

The researchers proposed a tool that captures technical details of an encountered exception, 

and generates list of suitable search queries, which are ranked, based on the context of the 



10 
 

exception. These search queries can be used in the SurfClipse IDE tool itself or in the web. 

Then the search results are also ranked per the encountered exception and the context of 

the code.   

 

Web search is performed using three popular search engines and StackOverflow site via 

API calls and make use of StackOverflow metrics such as most recent and relevant post 

for ranking 

This research is more focused on analyzing an encountered exception at the time of 

debugging/testing a program rather than at the time of development  

 

2.5 Prompter: A Self-confident Recommender System 

Prompter [9]  is another tool developed which is quite similar to SurfClipse that 

automatically search relevant discussions from StackOverflow in order to assist developer. 

In this research, it looks for in-progress code context rather than encountered exceptions to 

generate the search query.  

 

Prompter is a plug-in for the Eclipse IDE. It identifies relevant StackOverflow discussions, 

evaluates their relevance given the code context in the IDE, and notifies the developer if 

and only if a user-defined confidence threshold is surpassed. Prompter consist of Query 

generation service, Search service and ranking model.   

 

One of the novel approaches in this research is generating queries from code context. 

Researchers made use of current natural language processing mechanisms to generate 

search query. They also computed the entropy of all terms present in Stack Overflow 

discussions by using the data dump of June 2013, which was used for query generation.  

Entropy and term frequency are used as two factors eliminating certain words or to give 

weightage to words. Thus, it is very sensitive to the data dump used to calculate entropy.  

 

 

  



11 
 

2.6 Comparison of other approaches to DevAssist.  

 

 Other approaches DevAssist 

SurfClipse: 

Context-Aware 

Meta Search in 

the IDE 

Analyzes an encountered 

exception and its context in 

the IDE, and recommends not 

only suitable search queries 

but also relevant web pages 

for the exception (and its 

context).  

Eclipse plugin 

Analyze the in-progress 

programming code rather than the 

exception of the program. 

Visual Studio plugin.  

Prompter: A 

Self-confident 

Recommender 

System 

Proposed a novel approach 

that, given a context in the 

IDE, automatically retrieves 

pertinent discussions from 

Stack Overflow, evaluates 

their relevance, and, if a 

given confidence threshold is 

surpassed, notifies the 

developer about the available 

help. [ref] 

Uses entropy and term 

frequency for query 

generations.  

Eclipse plugin 

DevAssist uses MSDN, Stack 

Overflow as well as other web 

searches to provide recommended 

solutions.  

In addition, DevAssist uses meta 

tags to analyze content of web 

results and retrieve code snippet 

and rank them using Levenshtein 

distance between terms occurred 

in title of the results rather than 

using entropy.  

 

DevAssist is developed as a 

Visual Studio Plugin.  

Table 2.1: Comparison between other’s work and our solution 

 



12 
 

2.6 Summary 

In this chapter, we clarified similar studies others have carried out and how the knowledge 

about those studies were based for this project. Next few chapters discuss more in depth 

representation of this project including the technology, design and implementation of 

DevAssist.  

 

 

 

  



13 
 

Chapter 3 

 

Usage of Technology 

3.1  Introduction 

In this chapter, it is discussed about technologies it had used to solve the problem.  Focus 

of this chapter is to state how those technologies can be used efficiently to design a solution 

for the problem. There are special reasons to use each of these technologies within this 

approach to perform specific tasks.  

 

3.2 Technologies Used  

Technologies are crucial factor when implementing a system. Developers should pay a lot 

attention on its suitability and the compatibility when developing the system. 

Here are the reasons why it is needed to use correct technologies when developing the 

system, 

1. When developed, some technologies may provide high performance compared to 

others. 

2. For a given system some technologies are easy to use and implement. 

3. Some technologies are specifically designed for specific type of systems. 

4. Some technologies provide greater support in developing compared to other 

technologies. 

5. New and enhanced technologies provide greater user friendliness compared to other 

technologies. 

6. Environment which they are going to be used will be critical in deciding the suitable 

technology.  

Therefore, by taking the above-mentioned factors into consideration, a thorough study must 

be done to find suitable technologies for the solution. By analyzing deep accordance, the 



14 
 

matter, the Microsoft technologies are selected as best matching technologies to develop 

the solution. 

3.3 Microsoft technologies 

Microsoft was founded by Paul Allen and Bill Gates on April 4, 1975, to develop and sell 

BASIC interpreters for the Altair 8800. It rose to dominate the personal computer operating 

system market with MS-DOS in the mid-1980s, followed by Microsoft Windows.  

 

3.3.1 What are Microsoft Technologies? 

There is bulk of technologies launched by Microsoft since it was begun. File systems, 

backup, administration, internet services, databases, developer services are some of among 

them.  

 

3.3.2 .NET Framework 

Microsoft started development on the .NET Framework [10] in the late 1990s originally 

under the name of Next Generation Windows Services (NGWS). By late 2001 the first beta 

versions of .NET 1.0 were released. The first version of .NET Framework was released on 

13 February 2002, bringing managed code to Windows NT 4.0, 98, 2000, ME and XP.  

 

3.3.3 What are the components of .Net Framework? 

.Net Framework is consisted with two components basically which are Common Language 

Runtime (CLR) and .Net Framework Class Library (FCL) [10].    

Common Language Runtime (CLR) provides an environment to run all the .Net Programs. 

The code which runs under the CLR is called as Managed Code. Programmers need not to 

worry on managing the memory if the programs are running under the CLR as it provides 

memory management and thread management. 

This is also called as Base Class Library and it is common for all types of applications i.e. 

the way you access the Library Classes and Methods in VB.NET will be the same in C#, 



15 
 

and it is common for all other languages in .NET. The following are different types of 

applications that can make use of .net class library.  

 

1. Windows Application. 

2. Console Application 

3. Web Application. 

4. XML Web Services. 

5. Windows Services. 

 

3.3.4 Why .Net Framework?  

The .Net Framework offers several advantages to developers. Below are few advantages 

of .Net Framework 

1. Consistent programming model 

2. Direct Support for Security 

3. Simplified Development efforts 

4. Easy application deployment and Maintenance 

5. Assemblies 

 

3.4 Levenshtein distance 

 

The Levenshtein algorithm [11] (also called Edit-Distance) calculates the least number of 

edit operations that are necessary to modify one string to obtain another string. The most 

common way of calculating this is by the dynamic programming approach. A matrix is 

initialized measuring in the (m, n)-cell the Levenshtein distance between the m-character 

prefix of one with the n-prefix of the other word. The matrix can be filled from the upper 

left to the lower right corner. Each jump horizontally or vertically corresponds to an insert 

or a delete, respectively. The cost is normally set to 1 for each of the operations. The 

diagonal jump can cost either one, if the two characters in the row and column do not match 

or 0, if they do. Each cell always minimizes the cost locally. 

 



16 
 

3.5 Summary 

In this chapter, we discussed about technologies that we have used and going to be used to 

develop the web application. In the next few chapters let us look at how those technologies 

are adapted effectively to meet our requirements. 

  

  

  



17 
 

Chapter 4 

An Approach to DevAssist: Developer assistant for VisualStudio IDE 

4.1 Introduction 

Software developers often require knowledge beyond the one they possess. Here we 

describe a novel approach DevAssist: professional assistant for IDE based software 

development, DevAssist will analyze the code context to provide related discussions 

available in the top technological websites such as StackOverflow. These discussions will 

be available inside the IDE enabling the developers to have code suggestions right at their 

fingertips. The approach is further elaborated in the sections: hypothesis, input to the 

system, output of the system, process, users of system and features of the system. 

 

4.2 Hypothesis 

The hypothesis of this research is to propose an algorithm to derive the context of the code 

and pass it as a query to API services of top technology related websites to give 

suggestions.  The returned results from these websites are then prioritized based on 

different factors and propose solutions/suggestions to developers to enhance their coding.  

 

4.3  Input to the system 

In progress code snippets that developer is working on can be an input to the solution. That 

can be a fully or partially completed method, class/method declaration or even a library 

related object creation. Additionally, system provides manual search capability discussion 

through DevAssist plugin. So, the manually query’s also taken as input to the system. From 

beginner to expert developers can beneficiated by the system by taking their level of 

sensitivity to the related search. 

 

4.4  Output of the system 

The output of the system will be the most relevant discussion that can be benefited to the developer. 



18 
 

4.5  Users of the system 

Different users can benefit from novel DevAssist system in multiple ways. More 

importantly, professionals, academics, and students working within the systems 

development life cycle who care about creating, delivering, and maintaining software can 

be directly benefited by this solution.  

 

4.6  Process 

There are three main processes in entire construction of this hypothesis, namely, query 

building, searching and ranking. These three principles are very different and they are 

studies of their own. In the following paragraph, brief introduction to each process is given, 

and then continue to investigate each process in detail.  

Main purpose of query building process is to make a valid query from automatically 

captured code context in the IDE. Secondly, searching process invokes relevant API calls 

on technical websites and direct searching on different search engines.  Ranking model will 

prioritize the right discussions to suggest to developer. 

4.6.1 Query Building Process 

To get the most suited discussion for a given code, it is a must to have a good strategy in 

building an accurate query to trigger the searching.  

This process is the most challenging part of the whole project thus generating successful 

query will help other processes work seamlessly as well.   

 4.6.1.2 Generate query from the code context  

Query generator module uses a naive approach to treat the code as a bag of words by 

splitting and removing unnecessary comments, variable declarations and stop-words [12] 

[13]. Then the remaining code is tokenized with the help of natural language toolkit 

[NLTK] [14]. Separation of programming language oriented pre-defined keywords and 

pre-defined contextual keywords from the tokens happens next. Remains are prioritized 

per the frequent word count. Top most frequent terms are selected and query composed out 

of those tokens appropriately describe the code context. 



19 
 

 

4.6.2 Searching process 

After building the query with the addition header data it is sent to the search service. In 

general, there are two kinds of searching strategies. Under the first searching strategy, APIs 

of well-known Q&A sites are invoked with the encored query. One of the disadvantage of 

this approach is it is not guaranteed that there will be a matching the query with available 

discussions. In the second searching strategy, query is sent to the search engines to 

performed web search. Therefore, second searching strategy will be proposed to solve the 

disadvantages of the first strategy.   

After taking the resulting URLs duplicates are removed. Each result coming from API calls 

and Web search are sent to the Ranking Model for further processing. 

4.6.2.1 API Service 

API service responsible to handle multiple API’s and calls, API is an application 

programming interface for either a web server or a web browser, we can directly call 

configured web APIs with query generated previously. Before we use the service, it should 

be registered on particular website to get a request key. Request keys grant requests per 

day, and are necessary to use access tokens created via authentication. All responses 

are JSON, Every response in the API is returned in a common "wrapper" object, for easier 

and more consistent parsing. Information’s coming from the API clean and sent to the 

ranking model to further processing. Well known Q&A sites as well as Google provides 

API service to search internally that works with .NET framework.  However, Google 

search API is a paid service and StackOverflow API [15] [16] has a limitation per day.  

Example service call: 

https://api.stackexchange.com/2.2/search/advanced?order=desc&sort=activity&tit

le=zip%20file&site=stackoverflow 

 

 

http://stackapps.com/apps/oauth/register
https://api.stackexchange.com/docs/authentication
http://en.wikipedia.org/wiki/JSON
https://api.stackexchange.com/docs/wrapper
https://api.stackexchange.com/2.2/search/advanced?order=desc&sort=activity&title=zip%20file&site=stackoverflow
https://api.stackexchange.com/2.2/search/advanced?order=desc&sort=activity&title=zip%20file&site=stackoverflow


20 
 

4.6.2.2 Web Search 

First part of web search is clutching relevant URLs. Query is sent to search engines like 

(Google, Bing, Yahoo) to perfume web search, first 20 URLs of each search engines are 

collected. Every URL that refers to discussion must match with certain pattern. Others are 

discarded.  

Example: 

Stack Overflow: http://stackoverflow.com/questions/<id>/<title> 

Otherwise it is discarded.  

Example web search: 

https://msdn.microsoft.com/en-us/library/ms404280(v=vs.110).aspx 

stackoverflow.com/questions/940582/how-do-i-zip-a-file-in-c-using-no-3rd-

party-apis 

Collected URLs are merged and duplicates are removed. Second part of web search is to 

visit each page to look necessary information like, Meta information’s, code segments. If 

code segment is not found, those URLs are also discarded. Finally, collected information 

is saved under Temp folder for further reference. 

 

4.6.3 Ranking model 

 

4.6.3.1 API call Ranking model 

Goal of the API ranking model is to rank the retrieved discussions and measure their 

relevance to the query by considering some features mentioned below. Considering those 

features system must assign a value to retrieved discussions. Ranking relies on different 

features like textual similarity, tag similarity, user reputation, view count, accepted answer 

score and the question score those are briefly explained below.  The ranked list of 

discussions is sent to the plug-in interface to notify Developer. 

http://stackoverflow.com/questions/%3cid%3e/%3ctitle
https://msdn.microsoft.com/en-us/library/ms404280(v=vs.110).aspx


21 
 

 

 

1. Textual similarity  

This checks similarity of the code on the IDE to the textual part of the discussions. E.g.: 

topic of the question, body and cording part. By using stop word removing and duplicate 

removing part of building query we have created array of words from textual part of 

discussion to compare with the query build before.   

2. Tag similarity 

Tags of the code context are matched against the obtained discussion tags. tags of code 

context split to remove versions and symbols (e.g.: visual-c#2015-Compiler-version-

4.0.30319.1, C#-5- .net4.5 become c#, .net4.5). Tags from discussion retrieves are listed 

on the JSON data what we retreated from the API service ("tags”: ["c#","2015",” .net”]). 

3. User reputation 

The level of reputation of the person who posted the question by considering that evaluates 

the reliability of the person who asked the question on the community.  

4. Accepted answer score 

This is about the quality of the score of the accepted answers in the discussion. In case 

accepted answer not present those are not taken in to account. It can be even detected by 

using attribute of “is_answerd: true/false” property of the returning JSON. 

5. Question score 

This indicates the quality of the question according to the community. 

 

4.6.3.1 Web search data ranking 

Collected Meta information from search phase is used for prioritization in the ranking 

algorithm. Goal of web search data raking process is to get the highest priority URL first 

and display others after that to developer. According to the ranking process most relevant 



22 
 

URL get more score. Meta information like page titles is tokenized into words. Each token 

from every title is compared with rest of the page titles to find a matching token. For that 

we use Levenshtein algorithm. Levenshtein algorithm is word comparison algorithm, 

which returns a value per relevance (distance) of each character to character from 

comparing word. It helps to compare collected Meta title to one to another.  

 

4.7 Features 

Following features are assuring by the DevAssist plugin. 

1. Robustness  

Ability of a DevAssist plugin to cope with errors during execution and cope 

with erroneous input. 

2. Focus on questions about actual problem/difficulties you have faced. 

System takes on time code context as input to the system. 

3. Best answers show up first so that they are always easy to find. 

Most up voted and relevant answers always show up first 

4. Real time retrieval most updated answers 

Working real-time with most accurate and up-to-date sources of 

information available  

5. Minimal user input 

Other than the code context what he or she working only sensitivity adjust 

bar is the input to the system. 

 

4.8  Summary 

This chapter describes overall solution of the research. Here we have mention input to the 

system, output, each process with sub processes, users and features of the system.  Next 

chapter describes design of our solution. 

 

 

 



23 
 

 

 

Chapter 5 

Analysis and Design 

5.1   Introduction  

This chapter describes the analysis and design of the system with more details. Here it has 

explained the design diagram of our project and the task of each module in the system and 

interaction among those components. This chapter will help to get a clear view of the 

design.  

5.2 The Proposed Design 

The ultimate outcome of the system is, provide or suggest accurate results for given 

problems of software developers, which will arise in their ongoing software developments. 

For this purpose, the system must have a clear understanding about the source code and 

programming language. Query data is captured in two different methods as explained 

below. 

1) Module that captures data manually, entered by the user. 

2) Module which gathers data automatically from the system. 

 

5.2.1 Module which captures data manually entered by the user 

The manual data gathering is planned to do by providing a text box controller in the user 

interface. Figure 5.1 illustrates the functionality of this module. 



24 
 

 

Figure 5.1: Module that captures data manually from the user 

 

 

 Search text box 

It captures search queries that developer manually typed in. This task is totally done 

by the user when he or she needs a help from the plugin. The target user of the system 

is a software developer. Therefore, developer can solve the problem in the same 

environment with developments without running any browser applications separately.  

 

 

 

 



25 
 

 

5.2.2. Module which gathers data from code editor 

 

Figure 5.2: Module which gathers data from code editor 

This task is partially done by the user and the rest of phase done by the system 

automatically.  

DevAssist provides user with a few different ways to select code segments and ask for help 

or right click the exception to get help and even manually type query to seek help. The 

process is as follows:  

1. Remove single line and multiple line comments.  

2. Separate variable declarations. 

3. Tokenize the remaining codes.  

4. Weighting and find the frequency of the keyword and contextual keyword. 

5. Find the distance between each word to calculate similarity.  



26 
 

6. Choose the top scored five tokens 

5.3 Design Diagram 

 The designed diagram of the implemented system with its components is shown below.  

 

Figure 5.3: Design diagram of the system 

Figure 5.3 illustrates the top-level architecture of DevAssist, with following components  

1. Interface Module 

2. Query Build Module  

3. Search Module. 

4. API service Manager  

5. Ranking module.  

 

5.4 Detailed description about the Design Diagram 

 

Detailed description about each module of the design diagram could be expressed as below. 

 Query Builder Service. 

The plug-in is designed to generate a query automatically. Very first approach of our work 

is to get a highest priority word from selected code snippet. The approach of building the 

query is to treat the code as a bag of words by: (i) splitting identifiers and removing stop 



27 
 

words; (ii) ranking the obtained terms per their frequency; and (iii) selecting the top-n most 

frequent terms. Simply removing stop words and ranking per frequent words will not 

provide the most accurate highest priority item. As natural languages (NLTK), source 

codes don’t contain too much of stop words, other than variable declarations. Therefore, 

following few steps like removing unnecessary comments, assigning different weightage 

to each code level (keyword, contextual keywords, declared variables, remaining words), 

the list of highest priority words will get selected to be used for query generation.   

 Search Service 

Search service acts as a proxy within DevAssist plugin. Query generated from query 

service and the data entered manually are used as inputs to the search service. This process 

mainly consists with two parts which are search engine browsing and individual page visits. 

Other than the web browsing, the search service responsible for storing collected 

information on text documents for future reference. Those are stored in a temporary 

directory. In the next search step, those files are deleted. 

 Ranking Model 

The goal of the ranking model is to prioritize retrieved discussions per the relevancy with 

the search query. Each title information is compared with the rest of the titles from other 

sites to check the similarity. It relies on different features that capture relations between 

retrieved discussions and source codes. 

Semantic similarity ratio with Levenshtein Distance: The goal is to assess the similarity 

between each topics / titles of the pages and the meta information of the discussion page. 

For this we must first remove the unwanted html tags and special characters (like ASCII) 

then remove the English stop words.  Remaining words are going to process with 

Levenshtein Distance checking algorithm. Levenshtein Distance is a metric for measuring 

the amount of difference between two sequences.  The Levenshtein distance between two 

strings is defined as the minimum number of edits needed to transform one string into the 

other. 

 



28 
 

 

 Search Engine  

Query from query build service and manually entered text used to obtain results from 

search engines. The query is send to world top rated search engines like Google, Yahoo, 

and Bing by Microsoft for web search. The first 20 of each search engine results are 

collected. StackOverflow and Microsoft developer network (MSDN) web sites follow 

special format to catch up only discussion threads.   

For example: https://www.stackoverflow.com/questions/{id}, 

https://msdn.microsoft.com/en-us/library  

All the results are collected and merged to remove duplicates. At that time, those links are 

neither visited nor ranked. 

 Page Visit 

Collected URLs of each website are processed in background by visiting each link from 

search service to collect title, Meta information and code segments. Code segments are 

filtered by using W3C certified HTML5 tags. 

 <code></code> 

 <samp></samp> 

 <pre></pre>  

 <blockquote> 

Those tags are generally contained in the context (i.e., stack traces and code segments) 

associated with the discussed exception in the page. Code segment availability can be 

checked using this process. Collected information is stored in a text file. According to the 

unique number that has been given to the text files, the pages won’t be revisited to show 

the final output.     

Title and Meta information of each page send to ranking model to rank the result list. 

 

https://www.stackoverflow.com/questions/%7bid%7d


29 
 

5.5 Sequence Diagram of the System 

 

Figure 5.4: Sequence diagram of the system 

 

5.6 Summary 

The design has been described with focusing on few major modules and what each module 

does. Those modules are namely query generation module, searching and ranking. This 

system is designed to leverage Visual Studio in built functionalities. The illustrated design 

has been used for the implementation, which is described in next chapter. 

 

 

 

  



30 
 

Chapter 6 

Implementation  

6.1  Introduction 

This chapter describes implementation related aspects of this project. General design 

decisions have been described in the previous chapter, including the system and software 

design concept. It provides the technical information about the overall solution, including 

the system and software design decisions taken and the implementation of query builder 

service. 

6.2  Overall solution 

The implementation of the DevAssist is written as a plug-in for Visual Studio using the 

plug-in development environment in Visual Studio IDE (Integrated Development 

Environment). It is C# language based, platform independent solution which can be 

installed with the 2013 versions of Visual Studio or above. The plug-in is available for free 

downloading via Visual Studio extension/package manager. It does not require any other 

pre-requisites other than ongoing internet connection and Visual Studio IDE.  

6.3  Implementation of Query Builder Service 

Query builder is responsible for building a query to retrieve relevant discussions on 

selected web sites. The DevAssist shortcut is placed as a sub menu in the ‘Edit’ menu and 

in the default right click menu within the editor.  

Stepwise, query builder processes as follows: 

1. Get the selected code snippet from the code editor by highlighting. 

2. Right-click on the selected code snippet and choose “Support from DevAssist”. 

 

Figure 6.1 illustrates how to use DevAssist.  



31 
 

 

Figure 6.1: Screenshot of Visual Studio IDE with DevAssist 

The selected code segment proceeds in several ways as mention in design chapter.  

Step 1. Remove single line and multiple line comments.  

The purpose of removing comments is to get a plain code. The below regular expressions 

are used for this task. 

var blockComments = @"/\*(.*?)\*/"; 

var lineComments = @"//(.*?)\r?\n"; 

var strings = @"""((\\[^\n]|[^""\n])*)"""; 

var verbatimStrings = @"@(""[^""]*"")+"; 

var consoleWriteLine_ = @"Console.(.*?)\((.*?)\)"; 

var betweenQuotes = @\".*?\"; 

 

Step 2. Separate variable declarations. 

The below regular expressions catch the most of variable declaration patterns inside c# 

code. The separated unique variable declarations are weighted and prioritized according to 

the frequency.  



32 
 

          [A-Za-z0-9]+(\s[A-Za-z0-9_]+)?;"; 

          [A-Za-z0-9]+(\s[A-Za-z0-9_]+)+(\s[=]+)(\s[A-Za-z0-9._*]+)?;"; 

    

Step 3. Tokenize the remaining codes.  

Tokenization is the process of breaking a stream of text up into words, phrases, symbols, 

or other meaningful elements called tokens. The list of tokens becomes input for further 

processing. Below code snippet explain the implementation of tokenization.  

        public List<string> Tokenize(string text) 

        { 

            string[] tokens = text.Split(delimiters_no_digits, 

StringSplitOptions.RemoveEmptyEntries); 

            tokens = tokens.ToList().Where(p => p.Length > 

1).ToArray();//length more then 1 

 

            for (int i = 0; i < tokens.Length; i++) 

            { 

                string token = tokens[i]; 

 

                // Change token only when it starts and/or ends with "'" 

and   

                // it has at least 2 characters.  

                token = token.Replace(System.Environment.NewLine, 

string.Empty).Replace("@", string.Empty); 

                if (token.Length > 1) 

                { 

                    if (token.StartsWith("'") && token.EndsWith("'")) 

                        tokens[i] = token.Substring(1, token.Length - 2); 

// remove the starting and ending "'"  

 

                    else if (token.StartsWith("'")) 

                        tokens[i] = token.Substring(1); // remove the 

starting "'"  

 

                    else if (token.EndsWith("'")) 

                        tokens[i] = token.Substring(0, token.Length - 1); 

// remove the last "'"  



33 
 

                } 

            } 

 

            return tokens.ToList(); 

        } 

   

Step 4. Segregate keyword and contextual keyword. 

There are some common keywords and contextual keywords in C# [17] and VB. Net. 

Keywords are predefined, reserved identifiers that have special meanings to the compiler. 

They cannot be used as identifiers in your program. Few example of keyword shows below 

and rest of attached to appendix.  

abstract  as  base  bool 

break  byte  case  catch  

char  checked  class  etc  

Table 6.1: C# keywords 

A contextual keyword is used to provide a specific meaning in the code, but it is not a 

reserved word in C#. Some contextual keywords, such as partial and where, have special 

meanings in two or more contexts. 

 

 

 

 

https://msdn.microsoft.com/en-us/library/sf985hc5.aspx
https://msdn.microsoft.com/en-us/library/cscsdfbt.aspx
https://msdn.microsoft.com/en-us/library/hfw7t1ce.aspx
https://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
https://msdn.microsoft.com/en-us/library/adbctzc4.aspx
https://msdn.microsoft.com/en-us/library/5bdb6693.aspx
https://msdn.microsoft.com/en-us/library/06tc147t.aspx
https://msdn.microsoft.com/en-us/library/0yd65esw.aspx
https://msdn.microsoft.com/en-us/library/x9h8tsay.aspx
https://msdn.microsoft.com/en-us/library/74b4xzyw.aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/e6w8fe1b.aspx


34 
 

add alias ascending 

async await descending 

dynamic from get 

yield  

 

etc 

Table 6.2: Contextual keywords in C# 

 

Step 5. Prioritize token categories and calculate term frequency 

Once the keywords and contextual keywords are segregated they are given lower priority 

than the remaining words.  

Tokens are prioritized in below order: 

1) Remaining words 

2) Contextual Keywords 

3) Keywords 

Afterwards the term frequency of each token is calculated. Below code snippet illustrates 

the algorithm: 

public Dictionary<string, int> ToStrIntDict(string[] words) 

        { 

            Dictionary<string, int> dict = new Dictionary<string, int>(); 

 

            foreach (string word in words) 

            { 

                // if the word is in the dictionary, increment its freq.  

                if (dict.ContainsKey(word)) 

                { 

                    dict[word]++; 

https://msdn.microsoft.com/en-us/library/cc713648.aspx
https://msdn.microsoft.com/en-us/library/ms173212.aspx
https://msdn.microsoft.com/en-us/library/cc713606.aspx
https://msdn.microsoft.com/en-us/library/hh156513.aspx
https://msdn.microsoft.com/en-us/library/hh156528.aspx
https://msdn.microsoft.com/en-us/library/cc713622.aspx
https://msdn.microsoft.com/en-us/library/dd264741.aspx
https://msdn.microsoft.com/en-us/library/bb383978.aspx
https://msdn.microsoft.com/en-us/library/ms228503.aspx
https://msdn.microsoft.com/en-us/library/9k7k7cf0.aspx


35 
 

                } 

                // if not, add it to the dictionary and set its freq = 1  

                else 

                { 

                    dict.Add(word, 1); 

                } 

            } 

 

            return dict; 

        } 

public Dictionary<string, int> ListWordsByFreq(Dictionary<string, int> 

strIntDict, SortOrder sortOrder) 

        { 

            // Copy keys and values to two arrays  

            string[] words = new string[strIntDict.Keys.Count]; 

            strIntDict.Keys.CopyTo(words, 0); 

 

            int[] freqs = new int[strIntDict.Values.Count]; 

            strIntDict.Values.CopyTo(freqs, 0); 

 

            //Sort by freqs: it sorts the freqs array, but it also 

rearranges  

            //the words array's elements accordingly (not sorting)  

            Array.Sort(freqs, words); 

 

            // If sort order is descending, reverse the sorted arrays.  

            if (sortOrder == SortOrder.Descending) 

            { 

                //reverse both arrays  

                Array.Reverse(freqs); 

                Array.Reverse(words); 

            } 

 

            //Copy freqs and words to a new Dictionary<string, int>  

            Dictionary<string, int> dictByFreq = new Dictionary<string, 

int>(); 

 

            for (int i = 0; i < freqs.Length; i++) 



36 
 

            { 

                dictByFreq.Add(words[i], freqs[i]); 

            } 

 

            return dictByFreq; 

        } 

 

Step 6. Generate query using term frequency and priority  

Query should contain minimum three terms or maximum five terms. To select these terms, 

program initially consider remaining words bucket. If it has more than 3 unique terms, up 

to 5 terms are selected from this list. Otherwise, program will consider contextual keywords 

or keywords respectively.  

Below code snippet explain the algorithm used to build the search query using maximum 

5 terms: 

 

//get first 5 items from dictionary to build the query 

                    string buildedQuery = string.Empty; 

                    if (sortedTFTokens != null) 

                    { 

                        if (sortedTFTokens.Count > 4) 

                        { 

                            int count = 0; 

                            foreach (var item in sortedTFTokens) 

                            { 

                                if (count == 5) 

                                    break; 

                                buildedQuery += item.Key + " "; 

                                count++; 

                            } 

                        } 

                        else 

                            foreach (var item in sortedTFTokens) 

                                buildedQuery += item.Key + " "; 

                    } 

                    if (buildedQuery != string.Empty || buildedQuery != " ") 



37 
 

                    { 

                        searchKey = buildedQuery.Replace("\"", 

string.Empty).Replace("\\", string.Empty); 

                        this.txtSearch.Text = 

buildedQuery.Replace("\"",string.Empty).Replace("\\", string.Empty); 

                        Button_Click(new object(), new RoutedEventArgs()); 

                    } 

 

Below code segment illustrate selecting terms using different token sets per their priority.  

//TERM FREQUENCY METHOD----------------------------------------------------

----------------------------- 

  

                    List<string> remaingTokens = contextualKeywordNotMatch; 

                    List<string> _contextualKeywordList = contextualKeywordMatch; 

                    List<string> _keywordList = keywordMatch; 

                    List<string> _variables = variableNames.Split(',').ToList(); 

                    //contextual keyword TF 

                    //keyword TF 

                    //variable names TF 

                    Dictionary<string, int> tfTokens; 

                    Dictionary<string, int> sortedTFTokens = null; 

  

                    if (remaingTokens.Count > 2) 

                    { 

                        tfTokens = termFrequency.ToStrIntDict(remaingTokens.ToArra

y()); 

                        sortedTFTokens = termFrequency.ListWordsByFreq(tfTokens, T

ermFrequency.SortOrder.Descending); 

                    } 

                    else 

                    { 

                        if (_contextualKeywordList.Count > 2) 

                        { 

                            tfTokens = termFrequency.ToStrIntDict(_contextualKeywo

rdList.ToArray()); 

                            if (remaingTokens.Count > 0 && !string.IsNullOrEmpty(r

emaingTokens[0])) 



38 
 

                                tfTokens.Add(remaingTokens[0], 100);//add remaing 

token and prioratize as 1st 

                            if (remaingTokens.Count > 1 && !string.IsNullOrEmpty(r

emaingTokens[1])) 

                                tfTokens.Add(remaingTokens[1], 99);//add remaing t

oken and prioratize as 2nd 

                            sortedTFTokens = termFrequency.ListWordsByFreq(tfToken

s, TermFrequency.SortOrder.Descending); 

                        } 

                        else 

                        { 

                            if (_keywordList.Count > 2) 

                            { 

                                tfTokens = termFrequency.ToStrIntDict(_keywordList

.ToArray()); 

                                if (remaingTokens.Count > 0 && !string.IsNullOrEmp

ty(remaingTokens[0])) 

                                    tfTokens.Add(remaingTokens[0], 100);//add rema

ing token and prioratize as 1st 

                                if (remaingTokens.Count > 1 && !string.IsNullOrEmp

ty(remaingTokens[1])) 

                                    tfTokens.Add(remaingTokens[1], 99);//add remai

ng token and prioratize as 2nd 

                                if (_contextualKeywordList.Count > 0 && !string.Is

NullOrEmpty(_contextualKeywordList[0])) 

                                    tfTokens.Add(_contextualKeywordList[0], 98);//

add contextial keyword and prioratize as 3rd 

                                if (_contextualKeywordList.Count > 1 && !string.Is

NullOrEmpty(_contextualKeywordList[1])) 

                                    tfTokens.Add(_contextualKeywordList[1], 97);//

add contextial keyword and prioratize as 4th 

                                sortedTFTokens = termFrequency.ListWordsByFreq(tfT

okens, TermFrequency.SortOrder.Descending); 

                            } 

                        } 

                    } 

 

Full source code of each process has been attached in appendix chapter. 



39 
 

6.4  Implementation of Search Service 

 

This tool uses client server architecture. Given that a user might be interested in refining 

the auto-generated search query or in a more traditional way of search, the tool provides a 

keyword-based search. The search is complemented with search query suggestion through 

auto-completion. The tool collects results in a nonintrusive way (i.e., without freezing the 

IDE). User can perform any other task while searching is processed in a separate thread in 

the background. Searching takes more than 80% of total execution time.  

Considering query that build from query building module search service call Microsoft 

web client silently to observe result from google, yahoo, Bing. Figure 1 shows the code 

snippet of web client implementation.  

public List<TechUrl> SearchQuery(string browser, string query) 

        { 

            List<TechUrl> __TechUrls = new List<TechUrl>(); 

            webclient = new WebClient(); 

 

            if (browser == "yahoo") 

            { 

                string htmlContent = webclient.DownloadString(yahoo + 

System.Uri.EscapeDataString(query)); 

                __TechUrls = FilterUrl(browser, htmlContent); 

            } 

            else if (browser == "bing") 

            { 

                string htmlContent = webclient.DownloadString(bing + 

System.Uri.EscapeDataString(query)); 

                __TechUrls = FilterUrl(browser, htmlContent); 

            } 

            else if (browser == "google") 

            { 

                string htmlContent = webclient.DownloadString(google + 

query); 

                __TechUrls = FilterUrl(browser, htmlContent); 

            } 

            return __TechUrls; 



40 
 

        } 

 

Each search engine call runs on a separate thread. All the process completes once the 

longest process of them is completed. After getting the first 20 search engine result set of 

each call we filter only the Uri, for that we use below regular expressions. Sample output 

attached to appendix. 

 

        string patternTitle = "(?i)<title>(.+?)</title>"; 

        string patternMetaTags = "(?i)<meta([^>]+)>"; 

        string patternCodeSnippetTags = "(?i)<pre>(.+?)</pre>"; 

        string patternCodeSnippetTags2 = "(?i)<pre([^>]+)>(.+?)</pre>"; 

 

        private string FilterTitleAndMeta(string htmlContent, bool title = true) 

        { 

            Console.WriteLine("--------------------"); 

            MatchCollection _titleMetaContents = Regex.Matches(htmlContent, title 

? patternTitle : patternMetaTags, RegexOptions.Singleline); 

            if (_titleMetaContents.Count > 0) 

                return removeTags(wordReplace(_titleMetaContents[0].Value)); 

            return string.Empty; 

        } 

Merging all together and removing duplicates is the next part. By doing that, the full list of 

distinct Urls can be obtained. Second part of search process is to call individual URL to 

collect necessary information from each website. figure 3 shows below the implementation 

of calling page url separately. Calling process happens on a multithreaded environment to 

reduce execution time. Most of the pages are loading correctly but there are certain pages 

that have a long delay before page loads. It also happens with every newly created page. 

Loaded sites data are filtered according to several groups 1. Meta information 2. Title 

information 3. Code snippets. Figure 4 shows the implementation steps of each information 

processing. Meta title information and code information validity checked with regular 



41 
 

expressions. META and title information are stored for ranking, available code snippet are 

validated and stored in a txt document under root path.  

Html 5 can be filtered with below W3c certified tags  

 <CODE>  

 <PRE>  

 <SAMP> 

 <CODE-BLOCK> 

 

Collected code snippets are saving under uniquely numbered documents under root path. 

Once the ranking happens we can show the pages to developer directly without going back 

to internet again.   

 

6.5 Implementation of Ranking Model 

The goal of the ranking model is to rank the retrieved discussions information and assign 

them a value based on priority.  

 

Since the search results are mainly retrieved from well-known search engines, results are 

already ranked to some extent.  However, after receiving search results, meta data of those 

results are retrieved. Title included in meta data is mainly used in the ranking module in 

DevAssist.  Each search result is given a priority value. Levenshtein algorithm is used to 

calculate similarity ratio of titles of the search results set, which is then used to calculate 

priority value.   

 

 Levenshtein distance 

Levenshtein distance algorithm [11] explains number of edits needed to turn one string into 

another. This metric is used to measure similarity and match approximate strings with 

fuzzy logic. 

Example of Levenshtein distance algorithm: 



42 
 

Distance is shortest sequence of edit commands that transform one string to another.  Let’s 

assume there are 2 strings S and T as given below: 

 

S: William Cohen  

T: Willliam Cohon 

 

Operation used to edit strings are as below: 

1) Copy/map character from S to T (cost 0) - C 

2) Delete character in S (cost 1) - D 

3) Insert character to T (cost 1) - I 

4) Substitute one character for another (cost 1) - S 

 

 

 

Figure 6.2: Levenshtein algorithm example 

 

In this case, number of edits required in string S to match with string T is 2.  

 

Implementation of Levenshtein algorithm: 

private int Compute(string s, string t) //LevenshteinDistance 

        { 

            int n = s.Length; 

            int m = t.Length; 

            int[,] d = new int[n + 1, m + 1]; 



43 
 

 

            // Step 1 

            if (n == 0) 

            { 

                return m; 

            } 

 

            if (m == 0) 

            { 

                return n; 

            } 

 

            // Step 2 

            for (int i = 0; i <= n; d[i, 0] = i++) 

            { 

            } 

 

            for (int j = 0; j <= m; d[0, j] = j++) 

            { 

            } 

 

            // Step 3 

            for (int i = 1; i <= n; i++) 

            { 

                //Step 4 

                for (int j = 1; j <= m; j++) 

                { 

                    // Step 5 

                    int cost = (t[j - 1] == s[i - 1]) ? 0 : 1; 

 

                    // Step 6 

                    d[i, j] = Math.Min( 

                        Math.Min(d[i - 1, j] + 1, d[i, j - 1] + 1), 

                        d[i - 1, j - 1] + cost); 

                } 

            } 

            // Step 7 

            return d[n, m]; 

        } 



44 
 

 

The result of the distance of search sentence is not sufficient to determine if a discussion 

is to be recommended or not. Therefore, Levenshtein algorithm is adapted to compare 

similar words. So initially the similarity of each word is calculated with the rest of the 

words and best matching word is selected initially. Then the distance is calculated for a 

pair of sentences.   Once the distance is calculated, similarity ratio is calculated using below 

function: 

Similarity Ratio = 1 – (Levenshtein Distance/Length of String) 

 

Again, if we refer our previous example, Levenshtein Distance (D) is common for set (S, 

T). D is divided by the maximum length of string S or T. So, the Similarity ratio (R) is 

calculated as below: 

  R(S,T) = 1 - D/Max(Length (S),Length(T)) 

 

After calculating ratio for each set, we get set of strings with highest value order. Then the 

sum of similarity ratio in a single string is compared to rest of the sums in other strings to 

get the maximum value. If P(Sx) is the sum of similarity ratios for String Sx, and there is n 

number of search results, P(Sx) is calculated as below: 

P(𝑆𝑥) =   ∑ 𝑅(𝑆𝑥, 𝑇𝑖)

𝑛

𝑖=0

  

where x ≠ i 

The string with the highest number is considered to be the best match for search query. 

 

Implementation of similarity ratio calculation: 

public double GetSimilarityRatio(String FullString1, String FullString2, out doubl

e WordsRatio, out double RealWordsRatio) 

        { 

            double theResult = 0; 

            String[] Splitted1 = FullString1.Split(new char[] { ' ' }, StringSplit

Options.RemoveEmptyEntries); 



45 
 

            String[] Splitted2 = FullString2.Split(new char[] { ' ' }, StringSplit

Options.RemoveEmptyEntries); 

            if (Splitted1.Length < Splitted2.Length) 

            { 

                String[] Temp = Splitted2; 

                Splitted2 = Splitted1; 

                Splitted1 = Temp; 

            } 

            int[,] theScores = new int[Splitted1.Length, Splitted2.Length];//Keep 

the best scores for each word.0 is the best, 1000 is the starting. 

            int[] BestWord = new int[Splitted1.Length];//Index to the best word of

 Splitted2 for the Splitted1. 

  

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                for (int loop1 = 0; loop1 < Splitted2.Length; loop1++) theScores[l

oop, loop1] = 1000; 

                BestWord[loop] = -1; 

            } 

            int WordsMatched = 0; 

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                String String1 = Splitted1[loop]; 

                for (int loop1 = 0; loop1 < Splitted2.Length; loop1++) 

                { 

                    String String2 = Splitted2[loop1]; 

                    int LevenshteinDistance = Compute(String1, String2); 

                    theScores[loop, loop1] = LevenshteinDistance; 

                    if (BestWord[loop] == -

1 || theScores[loop, BestWord[loop]] > LevenshteinDistance) BestWord[loop] = loop1

; 

                } 

            } 

  

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                if (theScores[loop, BestWord[loop]] == 1000) continue; 

                for (int loop1 = loop + 1; loop1 < Splitted1.Length; loop1++) 

                { 



46 
 

                    if (theScores[loop1, BestWord[loop1]] == 1000) continue;//the 

worst score available, so there are no more words left 

                    if (BestWord[loop] == BestWord[loop1])//2 words have the same 

best word 

                    { 

                        //The first in order has the advantage of keeping the word

 in equality 

                        if (theScores[loop, BestWord[loop]] <= theScores[loop1, Be

stWord[loop1]]) 

                        { 

                            theScores[loop1, BestWord[loop1]] = 1000; 

                            int CurrentBest = -1; 

                            int CurrentScore = 1000; 

                            for (int loop2 = 0; loop2 < Splitted2.Length; loop2++) 

                            { 

                                //Find next bestword 

                                if (CurrentBest == -

1 || CurrentScore > theScores[loop1, loop2]) 

                                { 

                                    CurrentBest = loop2; 

                                    CurrentScore = theScores[loop1, loop2]; 

                                } 

                            } 

                            BestWord[loop1] = CurrentBest; 

                        } 

                        else//the latter has a better score 

                        { 

                            theScores[loop, BestWord[loop]] = 1000; 

                            int CurrentBest = -1; 

                            int CurrentScore = 1000; 

                            for (int loop2 = 0; loop2 < Splitted2.Length; loop2++) 

                            { 

                                //Find next bestword 

                                if (CurrentBest == -

1 || CurrentScore > theScores[loop, loop2]) 

                                { 

                                    CurrentBest = loop2; 

                                    CurrentScore = theScores[loop, loop2]; 

                                } 



47 
 

                            } 

                            BestWord[loop] = CurrentBest; 

                        } 

  

                        loop = -1; 

                        break;//recalculate all 

                    } 

                } 

            } 

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                if (theScores[loop, BestWord[loop]] == 1000) theResult += Splitted

1[loop].Length;//All words without a score for best word are max failures 

                else 

                { 

                    theResult += theScores[loop, BestWord[loop]]; 

                    if (theScores[loop, BestWord[loop]] == 0) WordsMatched++; 

                } 

            } 

            int theLength = (FullString1.Replace(" ", "").Length > FullString2.Rep

lace(" ", "").Length) ? FullString1.Replace(" ", "").Length : FullString2.Replace(

" ", "").Length; 

            if (theResult > theLength) theResult = theLength; 

            theResult = (1 - (theResult / theLength)) * 100; 

            WordsRatio = ((double)WordsMatched / (double)Splitted2.Length) * 100; 

            RealWordsRatio = ((double)WordsMatched / (double)Splitted1.Length) * 1

00; 

            return theResult; 

        } 

 

6.6 Summary 

In this chapter, it had described the implementation of the process. It provides a clear 

understanding about the approach. 

 

 



48 
 

Chapter 7 

Evaluation 

7.1 Introduction  

In this chapter, we will report on how we evaluate the solution to see whether objectives 

have been achieved. In additionally, a summary about the entire report, how our solution 

may differ from others work and the further works are also included on here.  

7.2  Evaluation of the prototype  

After the implementation of prototype, the prototype is tested with Visual Studio IDE 

version 2013 (Integrated Development Environment) and same environment which was 

used to developments. Then then solution is installed to the real devices which are different 

versions higher than 2013 of Visual Studio and checked the prototype again. The prototype 

is being developed onwards by increasing the suitability of an enterprise level usage.  

7.2.1 Generate search query 

Below figures provide some sample queries generated by selecting a code segment and 

search results using DevAssist. 

 

Figure 7.1: Query generation example 1 



49 
 

 

Figure 7.2: Query generation example 2 

 

 

Figure 7.3: Query generation example 3 



50 
 

 

7.2.2. Ranking results 

Below details illustrate some example of ranking of results for manually entered query 

strings. 

 Query: stream reader c# 

Figure 7.4: Ranking result 1 

Result number 3 is the best answer. Order of the rest of the strings are 4,1,5,6,2.  

 Query: async await programming c# 

 

 

 

Figure 7.5: Ranking result 2 

Result number 1 is the best answer. Order of the rest of the strings are 3,2,5,6,4.  

 Query: random number generator c# 

 

 

 

 

Figure 7.6: Ranking result 3 

Result number 2 is the best result. Order of the rest of the strings are 4,1,5,6,2.  



51 
 

7.2.3 Accuracy of receiving a result using DevAssist plug-in 

The user interface of the plug-in has a separate view screen which shows the accuracy of 

the returned results. Also, it shows the owner sites of the results. As an example, whether 

the results are received from StackOverflow site or MSDN etc. When considering a code 

segment analysis and generating query or manually typed search query, it will take 

maximum one minute to show the output result set when the ongoing Internet connection 

has no issues. 

  

Pattern Number 

of query 

taken to 

test  

First 

displayed 

answer is the 

best answer  

Generated 

Query describe 

the question 

properly 

 

Resulted 

code 

snippet 

provides 

the answer 

Average 

rating for 

results 

(out of 5) 

Manually 

typed search 

query 

30 62% N/A N/A 3.50 

Auto built 

query 

47 53% 43% 69% 3.23 

Table 7.1: Accuracy of received results using DevAssist plug-in 

 

Table 7.1 provides a summary of data collected using survey carried out with a group of 6 

developers. They have been using DevAssist for their development tasks and completed 

questionnaire and provided a data set to analyze the tool. Manually typed in queries has 

better ratings according to this test results. The developers who tested this tool has a 

minimum of 3 years experience in the software industry. As these developers are 

experienced developers manual search queries they entered are very precise, therefore it 

resulted in better ratings. However, the results of the auto built query provides a better code 

snippet samples which has approval rating of 69%. Generate query has a poor rating of 

43%. So these results show us that the concept of this project has good approval rating as 

the idea was to provide a better sample code snippet as outcome. Generated query might 



52 
 

not represent the day today search terms resulting in poor rating by viewers but it represents 

the coding task which will give a better outcome.  

 

7.2 How our solution differs from the others’ work 

 Related Work DevAssist plug-in 

Use many web resources other than 

Stackoverflow 

X   

Only manual typed search query              X 

Customize web resources X   

No prerequisites            X   

No difficult configurations           X   

Independent from other API s           X   

Table 7.2: Evaluation of DevAssist against Related wok 

There are some similar works to this solution that others have done before. Three of those 

are mentioned in section of related work. All of them are individually providing some kind 

of a solution for the problem that the system has required. The research work is based auto 

built query search resulting. It discusses about detecting ongoing code development errors 

and provides higher accurate solutions automatically (or manually per request). But when 

comparing with others works, DevAssist is a combination of all of them with new era. 

DevAssist uses keywords, contextual key words and defined of the editor to provide higher 

accurate results in an intelligent manner.  

7.3   Summary of the entire report 

The entire report is stating about how a problem had raised for a solution, the background 

of the problem, find a solution for the problem, what is the solution, the background of the 

solution, addressing the solution, how that solution becomes a project, design the project 

with adding many enhancements, implement progress of the project and about the 

evaluation of the project. 

 



53 
 

7.4   Summary  

In this chapter, it has discussed about the further works and how the system is differing 

from the others works. Further a summary about the entire project is included.  

 

  



54 
 

Chapter 8 

Conclusion & Further work 

8.1 Introduction 

This Chapter will finalize the entire project and the report. In this chapter, there will be 

some references to the implementation of this plugin and discuss the matters with the 

outsider’s perspective. In other words, here it will discuss the application in the commercial 

perspective rather than the technical perspective. This kind of a conclusion is needed to 

identify the barriers of the system that prevent it to be directly put in to the market. 

At first, this chapter will discuss the achievement of the objectives, whether it is up to the 

expected performance. Then the problems that were encountered will be discussed. As the 

next step, the limitations of the provided solution will be discussed with the help of the 

evaluation carried out in the previous chapter. Finally, the further work will be discussed 

in order to complete the entire work proceeded up to now. Providing accurate results 

according to the percentage values of accuracy is important and catches commercial 

interests for context significant improvements of the software development industry. 

Therefore, DevAssist can be one of the most interesting plug-in among the developers 

hence its accuracy resulting giving nature and the sensible result collection to behave as an 

intelligent plug-in. It has given the options to input user’s data manually as well as 

automatically.  

 

8.2 Objectives 

 

• Critically analyze and understand the problem 

• Identify functional and non-functional requirements 

• Design an overall architectural design 

• Identify required technologies to address the issue 

• Study the technologies  

• Design and implement the system 

• Develop a reliable solution 



55 
 

• Make recommendations to improve it further 

 

8.3 Achievements of objectives 

 

Reliability is an important non-functional requirement which is an essential feature to 

develop a workable system. When developing system, it had concerned about getting the 

correct output for appropriate inputs. Wasting resource especially time is a common fact in 

many systems. But in this system, the waste has minimized a lot because it has integrated 

very important two tasks from one plug-in therefore the user does not want to take the use 

of any other application. 

A system had developed by using latest Microsoft technologies and according to the 

currently available versions of Visual Studio. By user friendly interface of the system has 

been enriched the attractiveness. Further it has taken data from currently developing code 

editor therefore it increases the familiarity with user and the software. To check whether 

the system is efficient it had to do some tests on each unit and after the integration. 

There were some more results emerged with the completion of the project. The vast area 

of knowledge that could be gained by doing this project was the one of the huge benefit 

that it could come across. By the beginning till the end of the project it had to learn most 

of the thing newly and apply them to the project. Therefore, from this final year project it 

could be gathered a huge knowledge on each part of the software development life cycle. 

 

8.4 Problems Encountered 

It had to face for some problem because of the scarce of resources. The main problem was 

the lack of resources regarding to the natural language processing (NLP).  

Further it happened to spend much time on researching how to generate accurate query for 

selected code snippet and how sites are rank because this is a new research area. One of 

my approaches is to identifying language related coding patterns e.g.: how variables are 

declared and identifying where it’s used. We have to match every single pattern to separate 

those values from the selected code snippet. Developers are free to use any kind of standard 

to program. So, some are well formatted and some are not. I saw some developer declared 

variable without any meaning. E.g.: x, y, f_name, l_name . Second is how the retreated 



56 
 

URLs are ranked. Ranked URLs are match to selected code segment. There’s no way to 

check the accuracy of the URLs. Without looking it we cannot guarantee the HTML 

content of web page. So we had to find good unique way to analyst and prioritize what was 

the best. 

When doing a vast search on the research area there is lack of research papers return about 

these areas. Therefore, when doing the project, some areas had been done with minimum 

references. 

8.5  Further work 

There are some further improvements for system as further works. Further works can be 

proposed for some input modules when considering the current functionalities. 

Basically, the plug-in should be extended to other IDEs (Integrated Development 

Environment) as well. In other words, next step is IDE independent DevAssist plug-in 

development. The tool works both as a search query and selected code snippet, and helps 

the developers in solving their programming problems with providing code samples from 

top rated web sites. Especially it is associated with programming errors and exceptions.  In 

future, I plan to conduct a more exhausted user study with prospective participants. 

Furthermore, increase the accuracy of query generating module and ranking algorithm. I 

also planned to extend this tool to support multiple languages and work with any other 

IDEs. 

8.6 Summary 

Main objective of the project is to implement a best assistant tool for a developer. As of 

now there is no such good successful implementation. Available systems have more issues 

and drawbacks compared to DevAssist. Next chapter shows the references. 

 

 

 

 

 



57 
 

 

References  

[1] K. Muşlu, Y. Brun, R. Holmes, M. D. Ernst, and D. Notkin, “Speculative analysis of 

integrated development environment recommendations,” ACM SIGPLAN Not., vol. 

47, no. 10, pp. 669–682, 2012. 

[2] C. Xia, J. Fielder, and L. Siragusa, “Achieving better peer interaction in online 

discussion forums: A reflective practitioner case study,” Issues Educ. Res., vol. 23, 

no. 1, pp. 97–113, 2013. 

[3] A. X. Zhang, M. S. Ackerman, and D. R. Karger, “Mailing Lists: Why Are They 

Still Here, What’s Wrong With Them, and How Can We Fix Them?,” 2015, pp. 

4009–4018. 

[4] A. Bacchelli, L. Ponzanelli, and M. Lanza, “Harnessing stack overflow for the ide,” 

in Proceedings of the Third International Workshop on Recommendation Systems 

for Software Engineering, 2012, pp. 26–30. 

[5] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory study of 

how developers seek, relate, and collect relevant information during software 

maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32, no. 12, pp. 971–987, 2006. 

[6] I. Kwan, S. D. Fleming, and D. Piorkowski, “Information Foraging Theory for 

Collaborative Software Development,” 2012. 

[7] J. M. Fernández-Luna, J. F. Huete, R. Pérez-Vázquez, J. C. Rodríguez-Cano, and C. 

Shah, “COSME: A NetBeans IDE plugin as a team-centric alternative for search 

driven software development,” CIS’10, 2010. 

[8] M. M. Rahman and C. K. Roy, “SurfClipse: Context-Aware Meta-search in the 

IDE,” 2014, pp. 617–620. 

[9] L. Ponzanelli, G. Bavota, M. Di Penta, R. Oliveto, and M. Lanza, “Mining 

StackOverflow to turn the IDE into a self-confident programming prompter,” in 

Proceedings of the 11th Working Conference on Mining Software Repositories, 

2014, pp. 102–111. 

[10] Microsoft Corporation, “Overview of the .NET Framework.” . 

[11] Michael Gilleland, “Levenshtein Distance, in Three Flavors.” . 



58 
 

[12] H. Saif, M. Fernandez, Y. He, and H. Alani, “On stopwords, filtering and data 

sparsity for sentiment analysis of Twitter,” 2014. 

[13] R. T.-W. Lo, B. He, and I. Ounis, “Automatically building a stopword list for an 

information retrieval system,” in Journal on Digital Information Management: 

Special Issue on the 5th Dutch-Belgian Information Retrieval Workshop (DIR), 

2005, vol. 5, pp. 17–24. 

[14] E. Loper and S. Bird, “NLTK: The natural language toolkit,” in Proceedings of the 

ACL-02 Workshop on Effective tools and methodologies for teaching natural 

language processing and computational linguistics-Volume 1, 2002, pp. 63–70. 

[15] Stack Exchange, Inc, “Stack Exchange API v2.2.” . 

[16] C. Treude and M. P. Robillard, “Augmenting API documentation with insights from 

stack overflow,” 2016, pp. 392–403. 

[17] Microsoft Corporation, “C# Keywords.”  

  



59 
 

Appendix  

C# keywords and contextual keywords 

C# Keywords                 C# Contextual Keywords 

abstract as  base  bool 

break  byte case  catch  

char  checked  class  const 

continue decimal  default  delegate  

do double else  enum  

event  explicit  extern  FALSE  

finally  fixed  float  for 

foreach  goto  if  implicit  

in  in 

(generic 

modifier)  

int  interface  

internal  is  lock  long 

namespace  new  null object  

operator  out  out 

(generic 

modifier)  

override  

params  private  protected  public 

readonly  ref  return  sbyte 

sealed  short  sizeof  stackalloc  

static  string  struct  switch  

this throw TRUE  try  

typeof uint  ulong unchecked 

unsafe  ushort  using  virtual  

void  volatile  while  

 
 

add alias  ascending  

async await descending 

dynamic from  get  

global group  into  

join  let  orderby  

partial 

(type) 

partial 

(method)  

remove  

select  set  value  

var  where 

(generic 

type 

constraint)  

where 

(query 

clause)  

yield  

  
 

 

 

 

 

https://msdn.microsoft.com/en-us/library/sf985hc5.aspx
https://msdn.microsoft.com/en-us/library/cscsdfbt.aspx
https://msdn.microsoft.com/en-us/library/hfw7t1ce.aspx
https://msdn.microsoft.com/en-us/library/c8f5xwh7.aspx
https://msdn.microsoft.com/en-us/library/adbctzc4.aspx
https://msdn.microsoft.com/en-us/library/5bdb6693.aspx
https://msdn.microsoft.com/en-us/library/06tc147t.aspx
https://msdn.microsoft.com/en-us/library/0yd65esw.aspx
https://msdn.microsoft.com/en-us/library/x9h8tsay.aspx
https://msdn.microsoft.com/en-us/library/74b4xzyw.aspx
https://msdn.microsoft.com/en-us/library/0b0thckt.aspx
https://msdn.microsoft.com/en-us/library/e6w8fe1b.aspx
https://msdn.microsoft.com/en-us/library/923ahwt1.aspx
https://msdn.microsoft.com/en-us/library/364x0z75.aspx
https://msdn.microsoft.com/en-us/library/25tdedf5.aspx
https://msdn.microsoft.com/en-us/library/900fyy8e.aspx
https://msdn.microsoft.com/en-us/library/370s1zax.aspx
https://msdn.microsoft.com/en-us/library/678hzkk9.aspx
https://msdn.microsoft.com/en-us/library/5011f09h.aspx
https://msdn.microsoft.com/en-us/library/sbbt4032.aspx
https://msdn.microsoft.com/en-us/library/8627sbea.aspx
https://msdn.microsoft.com/en-us/library/xhbhezf4.aspx
https://msdn.microsoft.com/en-us/library/e59b22c5.aspx
https://msdn.microsoft.com/en-us/library/67bxt5ee.aspx
https://msdn.microsoft.com/en-us/library/zwc8s4fz.aspx
https://msdn.microsoft.com/en-us/library/f58wzh21.aspx
https://msdn.microsoft.com/en-us/library/b1e65aza.aspx
https://msdn.microsoft.com/en-us/library/ch45axte.aspx
https://msdn.microsoft.com/en-us/library/ttw7t8t6.aspx
https://msdn.microsoft.com/en-us/library/13940fs2.aspx
https://msdn.microsoft.com/en-us/library/5011f09h.aspx
https://msdn.microsoft.com/en-us/library/z5z9kes2.aspx
https://msdn.microsoft.com/en-us/library/ttw7t8t6.aspx
https://msdn.microsoft.com/en-us/library/dd469484.aspx
https://msdn.microsoft.com/en-us/library/dd469484.aspx
https://msdn.microsoft.com/en-us/library/dd469484.aspx
https://msdn.microsoft.com/en-us/library/5kzh1b5w.aspx
https://msdn.microsoft.com/en-us/library/87d83y5b.aspx
https://msdn.microsoft.com/en-us/library/7c5ka91b.aspx
https://msdn.microsoft.com/en-us/library/scekt9xw.aspx
https://msdn.microsoft.com/en-us/library/c5kehkcz.aspx
https://msdn.microsoft.com/en-us/library/ctetwysk.aspx
https://msdn.microsoft.com/en-us/library/z2kcy19k.aspx
https://msdn.microsoft.com/en-us/library/51y09td4.aspx
https://msdn.microsoft.com/en-us/library/edakx9da.aspx
https://msdn.microsoft.com/en-us/library/9kkx3h3c.aspx
https://msdn.microsoft.com/en-us/library/s53ehcz3.aspx
https://msdn.microsoft.com/en-us/library/t3c3bfhx.aspx
https://msdn.microsoft.com/en-us/library/dd469487.aspx
https://msdn.microsoft.com/en-us/library/dd469487.aspx
https://msdn.microsoft.com/en-us/library/dd469487.aspx
https://msdn.microsoft.com/en-us/library/ebca9ah3.aspx
https://msdn.microsoft.com/en-us/library/w5zay9db.aspx
https://msdn.microsoft.com/en-us/library/st6sy9xe.aspx
https://msdn.microsoft.com/en-us/library/bcd5672a.aspx
https://msdn.microsoft.com/en-us/library/yzh058ae.aspx
https://msdn.microsoft.com/en-us/library/acdd6hb7.aspx
https://msdn.microsoft.com/en-us/library/14akc2c7.aspx
https://msdn.microsoft.com/en-us/library/1h3swy84.aspx
https://msdn.microsoft.com/en-us/library/d86he86x.aspx
https://msdn.microsoft.com/en-us/library/88c54tsw.aspx
https://msdn.microsoft.com/en-us/library/ybs77ex4.aspx
https://msdn.microsoft.com/en-us/library/eahchzkf.aspx
https://msdn.microsoft.com/en-us/library/cx9s2sy4.aspx
https://msdn.microsoft.com/en-us/library/98f28cdx.aspx
https://msdn.microsoft.com/en-us/library/362314fe.aspx
https://msdn.microsoft.com/en-us/library/ah19swz4.aspx
https://msdn.microsoft.com/en-us/library/06tc147t.aspx
https://msdn.microsoft.com/en-us/library/dk1507sz.aspx
https://msdn.microsoft.com/en-us/library/1ah5wsex.aspx
https://msdn.microsoft.com/en-us/library/eahhcxk2.aspx
https://msdn.microsoft.com/en-us/library/0yd65esw.aspx
https://msdn.microsoft.com/en-us/library/58918ffs.aspx
https://msdn.microsoft.com/en-us/library/x0sksh43.aspx
https://msdn.microsoft.com/en-us/library/t98873t4.aspx
https://msdn.microsoft.com/en-us/library/a569z7k8.aspx
https://msdn.microsoft.com/en-us/library/chfa2zb8.aspx
https://msdn.microsoft.com/en-us/library/cbf1574z.aspx
https://msdn.microsoft.com/en-us/library/zhdeatwt.aspx
https://msdn.microsoft.com/en-us/library/9fkccyh4.aspx
https://msdn.microsoft.com/en-us/library/yah0tteb.aspx
https://msdn.microsoft.com/en-us/library/x13ttww7.aspx
https://msdn.microsoft.com/en-us/library/2aeyhxcd.aspx
https://msdn.microsoft.com/en-us/library/cc713648.aspx
https://msdn.microsoft.com/en-us/library/ms173212.aspx
https://msdn.microsoft.com/en-us/library/cc713606.aspx
https://msdn.microsoft.com/en-us/library/hh156513.aspx
https://msdn.microsoft.com/en-us/library/hh156528.aspx
https://msdn.microsoft.com/en-us/library/cc713622.aspx
https://msdn.microsoft.com/en-us/library/dd264741.aspx
https://msdn.microsoft.com/en-us/library/bb383978.aspx
https://msdn.microsoft.com/en-us/library/ms228503.aspx
https://msdn.microsoft.com/en-us/library/cc713620.aspx
https://msdn.microsoft.com/en-us/library/bb384063.aspx
https://msdn.microsoft.com/en-us/library/bb311045.aspx
https://msdn.microsoft.com/en-us/library/bb311040.aspx
https://msdn.microsoft.com/en-us/library/bb383976.aspx
https://msdn.microsoft.com/en-us/library/bb383982.aspx
https://msdn.microsoft.com/en-us/library/wbx7zzdd.aspx
https://msdn.microsoft.com/en-us/library/wbx7zzdd.aspx
https://msdn.microsoft.com/en-us/library/6b0scde8.aspx
https://msdn.microsoft.com/en-us/library/6b0scde8.aspx
https://msdn.microsoft.com/en-us/library/cc713642.aspx
https://msdn.microsoft.com/en-us/library/bb384087.aspx
https://msdn.microsoft.com/en-us/library/ms228368.aspx
https://msdn.microsoft.com/en-us/library/a1khb4f8.aspx
https://msdn.microsoft.com/en-us/library/bb383973.aspx
https://msdn.microsoft.com/en-us/library/bb384067.aspx
https://msdn.microsoft.com/en-us/library/bb384067.aspx
https://msdn.microsoft.com/en-us/library/bb384067.aspx
https://msdn.microsoft.com/en-us/library/bb384067.aspx
https://msdn.microsoft.com/en-us/library/bb311043.aspx
https://msdn.microsoft.com/en-us/library/bb311043.aspx
https://msdn.microsoft.com/en-us/library/bb311043.aspx
https://msdn.microsoft.com/en-us/library/9k7k7cf0.aspx


60 
 

Implementation of Query Generator 

Get code snippet from code editor 

var m_dte = Microsoft.VisualStudio.Shell.Package.GetGlobalService(typeof(EnvDTE.DTE)) a

s EnvDTE.DTE; 

            var _activeWindow = m_dte.ActiveWindow; 

            var _ActiveDocument = m_dte.ActiveDocument; 

            if (_ActiveDocument != null) 

            { 

                TextSelection _TextSelection = _ActiveDocument.Selection as TextSelecti

on; 

                if (_TextSelection != null)//user select 'devAssist' from main menu 

                    if (!string.IsNullOrEmpty(_TextSelection.Text)) 

                        this.codeSnippet = _TextSelection.Text; 

                    else 

                        this.codeSnippet = DevAssistVSIX.V2.ToolWindow1Command.Instance

.selectedCodeSnippet; 

            } 

            DevAssistVSIX.V2.ToolWindow1Command.Instance.selectedCodeSnippet = string.E

mpty; 

  

            if (!string.IsNullOrEmpty(codeSnippet)) 

            { 

                ProcessQuery(); 

            } 

 

Making queries 

private void QueryGen() 

        { 

            if (string.IsNullOrEmpty(codeSnippet)) 

            { 

                var m_dte = Microsoft.VisualStudio.Shell.Package.GetGlobalService(typeo

f(EnvDTE.DTE)) as EnvDTE.DTE; 

                var _activeWindow = m_dte.ActiveWindow; 

                var _ActiveDocument = m_dte.ActiveDocument; 

                if (_ActiveDocument != null) 

                { 

                    TextSelection _TextSelection = _ActiveDocument.Selection as TextSel

ection; 



61 
 

                    if (_TextSelection != null)//user select 'devAssist' from main menu 

                        if (!string.IsNullOrEmpty(_TextSelection.Text)) 

                            codeSnippet = _TextSelection.Text.Replace("@", string.Empty

); 

                } 

            } 

  

            if (!string.IsNullOrEmpty(codeSnippet)) 

            { 

                try 

                { 

                    //remove comments 

                    var blockComments = @"/\*(.*?)\*/"; 

                    var lineComments = @"//(.*?)\r?\n"; 

                    var strings = @"""((\\[^\n]|[^""\n])*)"""; 

                    var verbatimStrings = @"@(""[^""]*"")+"; 

                    var consoleWriteLine_ = @"Console.(.*?)\((.*?)\)"; 

                    var betweenQuotes = new Regex("\".*?\""); 

  

                    var valuebetweenQuotes = betweenQuotes.Matches(codeSnippet); 

  

                    foreach (var item in valuebetweenQuotes)//remove value between doub

le quotes 

                    { 

                        codeSnippet = codeSnippet.Replace(item.ToString(), "*"); 

                    } 

  

                    string codeSnippetWithNoComments = Regex.Replace(codeSnippet, conso

leWriteLine_ + "|" + blockComments + "|" + lineComments + "|" + strings + "|" + verbati

mStrings, me => 

                    { 

                        if (me.Value.StartsWith("/*") || me.Value.StartsWith("//") || m

e.Value.StartsWith("Console.")) 

                            return me.Value.StartsWith("//") ? Environment.NewLine : ""

; 

                        // Keep the literal strings 

                        return me.Value; 

                    }, RegexOptions.Singleline); 

  

                    //variable declarations 

                    var varibledeclare = @"[A-Za-z0-9]+(\s[A-Za-z0-9_]+)?;"; 



62 
 

                    var varibledeclarewithValue = @"[A-Za-z0-9]+(\s[A-Za-z0-

9_]+)+(\s[=]+)(\s[A-Za-z0-9._*]+)?;"; 

                    string variableNames = string.Empty; 

                    foreach (Match match in Regex.Matches(codeSnippetWithNoComments, va

ribledeclare)) 

                    { 

                        if (match.Value.Split(' ').Length > 1) 

                        { 

                            variableNames += match.Value.Split(' ')[1].Replace(";", str

ing.Empty) + ","; 

                        } 

                    } 

                    foreach (Match match in Regex.Matches(codeSnippetWithNoComments, va

ribledeclarewithValue)) 

                    { 

                        if (match.Value.Split(' ').Length > 1) 

                        { 

                            variableNames += match.Value.Split(' ')[1].Replace(";", str

ing.Empty) + ","; 

                        } 

                    } 

  

                    TermFrequency termFrequency = new TermFrequency(); 

                    List<string> tokens = termFrequency.Tokenize(codeSnippetWithNoComme

nts.ToLower()); 

  

                    //spacial characters 

                    string specialChars = string.Empty; 

                    foreach (var item in tokens) 

                    { 

                        if (!Regex.IsMatch(item, @"^[a-zA-Z0-9_]+$")) 

                            specialChars += item + ","; 

                    } 

                    string onlynumbers = string.Empty; 

                    foreach (var item in tokens) 

                    { 

                        if (Regex.IsMatch(item, @"^-*[0-9,\.]+$")) 

                            onlynumbers += item + ","; 

                    } 

                    //remove variables + onlyumbers + specialChars 



63 
 

                    foreach (var item in onlynumbers.Split(',').Concat(variableNames.Sp

lit(',')).Concat(specialChars.Split(','))) 

                    { 

                        tokens.RemoveAll(x => x == item.ToLower()); 

                    } 

  

                    StreamReader _keywords; 

                    StreamReader _contextualkeywords; 

  

                    List<string> keywordMatch = new List<string>(); 

                    List<string> contextualKeywordMatch = new List<string>(); 

                    List<string> keywordNotMatch = new List<string>(); 

                    List<string> contextualKeywordNotMatch = new List<string>();//put t

o 1 array 

  

                    var keywords = keywordsData.Split(',').Select(p => p.Trim()).ToArra

y(); //_keywords.ReadToEnd().Replace("\r\n", string.Empty).Split(','); 

                    foreach (var word in tokens) 

                    { 

                        if (keywords.Contains(word.Trim())) 

                        { 

                            keywordMatch.Add(word); 

                        } 

                        else 

                            keywordNotMatch.Add(word.Trim()); 

                    } 

 

                    var contextualkeywords = contextualKeywordData.Split(',').Select(p 

=> p.Trim()).ToArray(); 

                    foreach (var word in keywordNotMatch) 

                    { 

                        if (contextualkeywords.Contains(word.Trim())) 

                        { 

                            contextualKeywordMatch.Add(word.Trim()); 

                        } 

                        else 

                            contextualKeywordNotMatch.Add(word.Trim()); 

                    } 

                    // } 

                    //TERM FREQUENCY METHOD--------------------------------------------

------------------------------------- 



64 
 

  

                    List<string> remaingTokens = contextualKeywordNotMatch; 

                    List<string> _contextualKeywordList = contextualKeywordMatch; 

                    List<string> _keywordList = keywordMatch; 

                    List<string> _variables = variableNames.Split(',').ToList(); 

                    //contextual keyword TF 

                    //keyword TF 

                    //variable names TF 

                    Dictionary<string, int> tfTokens; 

                    Dictionary<string, int> sortedTFTokens = null; 

  

                    if (remaingTokens.Count > 2) 

                    { 

                        tfTokens = termFrequency.ToStrIntDict(remaingTokens.ToArray()); 

                        sortedTFTokens = termFrequency.ListWordsByFreq(tfTokens, TermFr

equency.SortOrder.Descending); 

                    } 

                    else 

                    { 

                        if (_contextualKeywordList.Count > 2) 

                        { 

                            tfTokens = termFrequency.ToStrIntDict(_contextualKeywordLis

t.ToArray()); 

                            if (remaingTokens.Count > 0 && !string.IsNullOrEmpty(remain

gTokens[0])) 

                                tfTokens.Add(remaingTokens[0], 100);//add remaing token

 and prioratize as 1st 

                            if (remaingTokens.Count > 1 && !string.IsNullOrEmpty(remain

gTokens[1])) 

                                tfTokens.Add(remaingTokens[1], 99);//add remaing token 

and prioratize as 2nd 

                            sortedTFTokens = termFrequency.ListWordsByFreq(tfTokens, Te

rmFrequency.SortOrder.Descending); 

                        } 

                        else 

                        { 

                            if (_keywordList.Count > 2) 

                            { 

                                tfTokens = termFrequency.ToStrIntDict(_keywordList.ToAr

ray()); 



65 
 

                                if (remaingTokens.Count > 0 && !string.IsNullOrEmpty(re

maingTokens[0])) 

                                    tfTokens.Add(remaingTokens[0], 100);//add remaing t

oken and prioratize as 1st 

                                if (remaingTokens.Count > 1 && !string.IsNullOrEmpty(re

maingTokens[1])) 

                                    tfTokens.Add(remaingTokens[1], 99);//add remaing to

ken and prioratize as 2nd 

                                if (_contextualKeywordList.Count > 0 && !string.IsNullO

rEmpty(_contextualKeywordList[0])) 

                                    tfTokens.Add(_contextualKeywordList[0], 98);//add c

ontextial keyword and prioratize as 3rd 

                                if (_contextualKeywordList.Count > 1 && !string.IsNullO

rEmpty(_contextualKeywordList[1])) 

                                    tfTokens.Add(_contextualKeywordList[1], 97);//add c

ontextial keyword and prioratize as 4th 

                                sortedTFTokens = termFrequency.ListWordsByFreq(tfTokens

, TermFrequency.SortOrder.Descending); 

                            } 

                        } 

                    } 

                    //get first 5 items from dictionary to build the query 

                    string buildedQuery = string.Empty; 

                    if (sortedTFTokens != null) 

                    { 

                        if (sortedTFTokens.Count > 4) 

                        { 

                            int count = 0; 

                            foreach (var item in sortedTFTokens) 

                            { 

                                if (count == 5) 

                                    break; 

                                buildedQuery += item.Key + " "; 

                                count++; 

                            } 

                        } 

                        else 

                            foreach (var item in sortedTFTokens) 

                                buildedQuery += item.Key + " "; 

                    } 

                    if (buildedQuery != string.Empty || buildedQuery != " ") 



66 
 

                    { 

                        searchKey = buildedQuery.Replace("\"", string.Empty).Replace("\

\", string.Empty); 

                        this.txtSearch.Text = buildedQuery.Replace("\"", string.Empty).

Replace("\\", string.Empty); 

                        Button_Click(new object(), new RoutedEventArgs()); 

                    } 

                    else 

                    { 

                        tbSearching.Text = "Query Build failed"; 

                    } 

                } 

                catch (Exception ex) 

                { 

                    tbSearching.Text = ex.Message;//log 

                } 

                finally 

                { 

                    codeSnippet = string.Empty; 

                    DevAssistVSIX.V2.ToolWindow1Command.Instance.selectedCodeSnippet = 

string.Empty; 

                    tbSearching.Text = string.Empty; 

                } 

            } 

            else 

                tbSearching.Text = "highlight code segment and click to auto generate "

; 

        } 

 

Tokenize and Sort 

public enum SortOrder 

        { 

            Ascending, // from small to big numbers or alphabetically.  

            Descending // from big to small number or reversed alphabetical order  

        } 

        // This will discard digits  

        private static char[] delimiters_no_digits = new char[] { 

            '{', '}', '(', ')', '[', ']', '>', '<','-', '_', '=', '+', 

            '|', '\\', ':', ';', ' ', ',', '.', '/', '?', '~', '!', 



67 
 

            '@', '#', '$', '%', '^', '&', '*', ' ', '\r', '\n', '\t', 

            '0', '1', '2', '3', '4', '5', '6', '7', '8', '9' }; 

  

        public List<string> Tokenize(string text) 

        { 

            string[] tokens = text.Split(delimiters_no_digits, StringSplitOptions.Remov

eEmptyEntries); 

            tokens = tokens.ToList().Where(p => p.Length > 1).ToArray();//length more t

hen 1 

  

            for (int i = 0; i < tokens.Length; i++) 

            { 

                string token = tokens[i]; 

  

                // Change token only when it starts and/or ends with "'" and   

                // it has at least 2 characters.  

                token = token.Replace(System.Environment.NewLine, string.Empty).Replace

("@", string.Empty); 

                if (token.Length > 1) 

                { 

                    if (token.StartsWith("'") && token.EndsWith("'")) 

                        tokens[i] = token.Substring(1, token.Length - 2); // remove the

 starting and ending "'"  

  

                    else if (token.StartsWith("'")) 

                        tokens[i] = token.Substring(1); // remove the starting "'"  

  

                    else if (token.EndsWith("'")) 

                        tokens[i] = token.Substring(0, token.Length - 1); // remove the

 last "'"  

                } 

            } 

  

            return tokens.ToList(); 

        } 

  

        public Dictionary<string, int> ToStrIntDict(string[] words) 

        { 

            Dictionary<string, int> dict = new Dictionary<string, int>(); 

  

            foreach (string word in words) 



68 
 

            { 

                // if the word is in the dictionary, increment its freq.  

                if (dict.ContainsKey(word)) 

                { 

                    dict[word]++; 

                } 

                // if not, add it to the dictionary and set its freq = 1  

                else 

                { 

                    dict.Add(word, 1); 

                } 

            } 

  

            return dict; 

        } 

  

        public Dictionary<string, int> ListWordsByFreq(Dictionary<string, int> strIntDi

ct, SortOrder sortOrder) 

        { 

            // Copy keys and values to two arrays  

            string[] words = new string[strIntDict.Keys.Count]; 

            strIntDict.Keys.CopyTo(words, 0); 

  

            int[] freqs = new int[strIntDict.Values.Count]; 

            strIntDict.Values.CopyTo(freqs, 0); 

  

            //Sort by freqs: it sorts the freqs array, but it also rearranges  

            //the words array's elements accordingly (not sorting)  

            Array.Sort(freqs, words); 

  

            // If sort order is descending, reverse the sorted arrays.  

            if (sortOrder == SortOrder.Descending) 

            { 

                //reverse both arrays  

                Array.Reverse(freqs); 

                Array.Reverse(words); 

            } 

  

            //Copy freqs and words to a new Dictionary<string, int>  

            Dictionary<string, int> dictByFreq = new Dictionary<string, int>(); 

  



69 
 

            for (int i = 0; i < freqs.Length; i++) 

            { 

                dictByFreq.Add(words[i], freqs[i]); 

            } 

  

            return dictByFreq; 

        } 

 

Implementation of Search Service 

private void Search() 

        { 

            string query = searchKey; 

            WebSearchManager _search = new WebSearchManager(); 

     APISearchManager _ApiSearch = new APISearchManager(); 

 

            List<TechUrl> yahoo = _search.SearchQuery("google", query).Where(p => p.Bro

wser == "google").GroupBy(p => p.Url).Select(p => p.First()).ToList();//encord url 

            List<TechUrl> yahoo = _search.SearchQuery("yahoo", query).Where(p => p.Brow

ser == "yahoo").GroupBy(p => p.Url).Select(p => p.First()).ToList();//encord url 

            List<TechUrl> bing = _search.SearchQuery("bing", query).Where(p => p.Browse

r == "bing").GroupBy(p => p.Url).Select(p => p.First()).ToList();//encord url 

  

            margeResults = yahoo.Concat(bing).GroupBy(p => p.Url).Select(p => p.First()

).ToList();//l //.Where(p => p.Description.Contains(languageDefault) 

  

            int id = 0; 

            removeFiles();//previously saved files 

            foreach (var listItem in margeResults) 

            { 

                listItem.id = id++; 

                listItem.PageTitle = WebSearchManager.removeTags(WebSearchManager.wordR

eplace(_search.LoadSinglePage(listItem.id, listItem.Url))); 

            } 

  

            margeResults.RemoveAll(p => p.PageTitle.Length < 3);//remove short title li

nks 

  

            List<Score> _scores = new List<Score>(); 

  



70 
 

            for (int i = 0; i < margeResults.Count - 1; i++) 

            { 

                for (int j = i + 1; j < margeResults.Count; j++) 

                { 

                    double WordsRatio; 

                    double RealWordsRatio; 

                    double score; 

                    score = _search.SimilarityTwoString(margeResults[i].PageTitle, marg

eResults[j].PageTitle, out WordsRatio, out RealWordsRatio); 

                    _scores.Add(new Score() { ID = margeResults[i].id, Value = score })

; 

                } 

            } 

  

            var _ids = _scores.GroupBy(c => c.ID) 

                    .Select(grp => new 

                    { 

                        grp.Key, 

                        MaxValue = grp.OrderByDescending( 

                             x => x.Value).FirstOrDefault() 

                    }).ToList(); 

  

            for (int i = 0; i < _ids.Count; i++) 

            { 

                if (margeResults[i].id == _ids[i].MaxValue.ID) 

                    margeResults[i].Score = _ids[i].MaxValue.Value; 

            } 

  

            margeResults = margeResults.OrderByDescending(p => p.Score).ToList();  

  

        } 

 

Filter Urls 

public List<TechUrl> SearchQuery(string browser, string query) 

        { 

            List<TechUrl> __TechUrls = new List<TechUrl>(); 

            webclient = new WebClient(); 

  

            if (browser == "yahoo") 



71 
 

            { 

                string htmlContent = webclient.DownloadString(yahoo + System.Uri.Escape

DataString(query)); 

                __TechUrls = FilterUrl(browser, htmlContent); 

            } 

            else if (browser == "bing") 

            { 

                string htmlContent = webclient.DownloadString(bing + System.Uri.EscapeD

ataString(query)); 

                __TechUrls = FilterUrl(browser, htmlContent); 

            } 

            else if (browser == "google") 

            { 

                string htmlContent = webclient.DownloadString(google + query); 

                __TechUrls = FilterUrl(browser, htmlContent); 

            } 

            return __TechUrls; 

        } 

 

Filter Title Meta data and Code snippets 

string patternTitle = "(?i)<title>(.+?)</title>"; 

string patternMetaTags = "(?i)<meta([^>]+)>"; 

string patternCodeSnippetTags = "(?i)<pre>(.+?)</pre>";//<CODE> / <PRE> / <SAMP> 

string patternCodeSnippetTags2 = "(?i)<pre([^>]+)>(.+?)</pre>";//<CODE> / <PRE> / <SAMP

> 

  

private void FilterCodeSnippets(int id, string htmlContent) 

        { 

            //stackoverflow "acceptedAnswer" "answer accepted-answer" 

            Console.WriteLine("--------------------"); 

  

            //---conditions -- stackoverflow------------- 

            string stackoverflowAnswerDiv = "(?i)<div([^>]+)class=\"answer([^>]+)\"([^>

]+)>(.|\n)*?</body>"; 

            MatchCollection _AnswerDivs = Regex.Matches(htmlContent, stackoverflowAnswe

rDiv, RegexOptions.Singleline); 

            bool voteAcceptOn = htmlContent.Contains("vote-accepted-

on"); //only for stackoverflow 



72 
 

  

            MatchCollection _titleMetaContents = Regex.Matches(_AnswerDivs.Count > 0 ? 

_AnswerDivs[0].Value : htmlContent, patternCodeSnippetTags, RegexOptions.Singleline); 

            if (_titleMetaContents.Count < 1) 

                _titleMetaContents = Regex.Matches(htmlContent, patternCodeSnippetTags2

, RegexOptions.Singleline); 

            StringBuilder _content = new StringBuilder(); 

            if (_titleMetaContents.Count > 0) 

            { 

                _content.Append(voteAcceptOn ? "<hr style=\"height:4px; border: none; c

olor: green; background-color:green; \">" : "<hr/>"); 

  

                foreach (var snippet in _titleMetaContents) 

                { 

                    _content.Append(snippet); 

                    _content.Append("<hr/>"); 

                } 

                using (StreamWriter _file = new StreamWriter(@path + "DevAssistsTemp\\w

eb_content_dev_ast_pre_tag_" + id + ".txt")) 

                { 

                    _file.Write(_content.ToString()); 

                } 

  

            } 

        } 

        private string FilterTitleAndMeta(string htmlContent, bool title = true) 

        { 

            Console.WriteLine("--------------------"); 

            MatchCollection _titleMetaContents = Regex.Matches(htmlContent, title ? pat

ternTitle : patternMetaTags, RegexOptions.Singleline); 

            if (_titleMetaContents.Count > 0) 

                return removeTags(wordReplace(_titleMetaContents[0].Value)); 

            return string.Empty; 

        } 

 

Implementation of Ranking Model 

public voide Ranking(){ 

for (int i = 0; i < margeResults.Count - 1; i++) 

            { 



73 
 

                for (int j = i + 1; j < margeResults.Count; j++) 

                { 

                    double WordsRatio; 

                    double RealWordsRatio; 

                    double score; 

                    score = _search.SimilarityTwoString(margeResults[i].PageTitle, marg

eResults[j].PageTitle, out WordsRatio, out RealWordsRatio); 

                    _scores.Add(new Score() { ID = margeResults[i].id, Value = score })

; 

                } 

            } 

  

            var _ids = _scores.GroupBy(c => c.ID) 

                    .Select(grp => new 

                    { 

                        grp.Key, 

                        MaxValue = grp.OrderByDescending( 

                             x => x.Value).FirstOrDefault() 

                    }).ToList(); 

  

            for (int i = 0; i < _ids.Count; i++) 

            { 

                if (margeResults[i].id == _ids[i].MaxValue.ID) 

                    margeResults[i].Score = _ids[i].MaxValue.Value; 

            } 

  

            margeResults = margeResults.OrderByDescending(p => p.Score).ToList(); //che

ck orderby 

} 

Get Similarity Ratio of each Title and Meta description 

public double SimilarityTwoString(String FullString1, String FullString2, out double Wo

rdsRatio, out double RealWordsRatio) 

        { 

            double theResult = 0; 

            String[] Splitted1 = FullString1.Split(new char[] { ' ' }, StringSplitOptio

ns.RemoveEmptyEntries); 

            String[] Splitted2 = FullString2.Split(new char[] { ' ' }, StringSplitOptio

ns.RemoveEmptyEntries); 

            if (Splitted1.Length < Splitted2.Length) 

            { 



74 
 

                String[] Temp = Splitted2; 

                Splitted2 = Splitted1; 

                Splitted1 = Temp; 

            } 

            int[,] theScores = new int[Splitted1.Length, Splitted2.Length];//Keep the b

est scores for each word.0 is the best, 1000 is the starting. 

            int[] BestWord = new int[Splitted1.Length];//Index to the best word of Spli

tted2 for the Splitted1. 

  

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                for (int loop1 = 0; loop1 < Splitted2.Length; loop1++) theScores[loop, 

loop1] = 1000; 

                BestWord[loop] = -1; 

            } 

            int WordsMatched = 0; 

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                String String1 = Splitted1[loop]; 

                for (int loop1 = 0; loop1 < Splitted2.Length; loop1++) 

                { 

                    String String2 = Splitted2[loop1]; 

                    int LevenshteinDistance = Compute(String1, String2); 

                    theScores[loop, loop1] = LevenshteinDistance; 

                    if (BestWord[loop] == -

1 || theScores[loop, BestWord[loop]] > LevenshteinDistance) BestWord[loop] = loop1; 

                } 

            } 

  

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                if (theScores[loop, BestWord[loop]] == 1000) continue; 

                for (int loop1 = loop + 1; loop1 < Splitted1.Length; loop1++) 

                { 

                    if (theScores[loop1, BestWord[loop1]] == 1000) continue;//the worst

 score available, so there are no more words left 

                    if (BestWord[loop] == BestWord[loop1])//2 words have the same best 

word 

                    { 

                        //The first in order has the advantage of keeping the word in e

quality 



75 
 

                        if (theScores[loop, BestWord[loop]] <= theScores[loop1, BestWor

d[loop1]]) 

                        { 

                            theScores[loop1, BestWord[loop1]] = 1000; 

                            int CurrentBest = -1; 

                            int CurrentScore = 1000; 

                            for (int loop2 = 0; loop2 < Splitted2.Length; loop2++) 

                            { 

                                //Find next bestword 

                                if (CurrentBest == -

1 || CurrentScore > theScores[loop1, loop2]) 

                                { 

                                    CurrentBest = loop2; 

                                    CurrentScore = theScores[loop1, loop2]; 

                                } 

                            } 

                            BestWord[loop1] = CurrentBest; 

                        } 

                        else//the latter has a better score 

                        { 

                            theScores[loop, BestWord[loop]] = 1000; 

                            int CurrentBest = -1; 

                            int CurrentScore = 1000; 

                            for (int loop2 = 0; loop2 < Splitted2.Length; loop2++) 

                            { 

                                //Find next bestword 

                                if (CurrentBest == -

1 || CurrentScore > theScores[loop, loop2]) 

                                { 

                                    CurrentBest = loop2; 

                                    CurrentScore = theScores[loop, loop2]; 

                                } 

                            } 

                            BestWord[loop] = CurrentBest; 

                        } 

  

                        loop = -1; 

                        break;//recalculate all 

                    } 

                } 

            } 



76 
 

            for (int loop = 0; loop < Splitted1.Length; loop++) 

            { 

                if (theScores[loop, BestWord[loop]] == 1000) theResult += Splitted1[loo

p].Length;//All words without a score for best word are max failures 

                else 

                { 

                    theResult += theScores[loop, BestWord[loop]]; 

                    if (theScores[loop, BestWord[loop]] == 0) WordsMatched++; 

                } 

            } 

            int theLength = (FullString1.Replace(" ", "").Length > FullString2.Replace(

" ", "").Length) ? FullString1.Replace(" ", "").Length : FullString2.Replace(" ", "").L

ength; 

            if (theResult > theLength) theResult = theLength; 

            theResult = (1 - (theResult / theLength)) * 100; 

            WordsRatio = ((double)WordsMatched / (double)Splitted2.Length) * 100; 

            RealWordsRatio = ((double)WordsMatched / (double)Splitted1.Length) * 100; 

            return theResult; 

        } 

  

        private int Compute(string s, string t) //LevenshteinDistance 

        { 

            int n = s.Length; 

            int m = t.Length; 

            int[,] d = new int[n + 1, m + 1]; 

  

            // Step 1 

            if (n == 0) 

            { 

                return m; 

            } 

  

            if (m == 0) 

            { 

                return n; 

            } 

  

            // Step 2 

            for (int i = 0; i <= n; d[i, 0] = i++) 

            { 

            } 



77 
 

  

            for (int j = 0; j <= m; d[0, j] = j++) 

            { 

            } 

  

            // Step 3 

            for (int i = 1; i <= n; i++) 

            { 

                //Step 4 

                for (int j = 1; j <= m; j++) 

                { 

                    // Step 5 

                    int cost = (t[j - 1] == s[i - 1]) ? 0 : 1; 

  

                    // Step 6 

                    d[i, j] = Math.Min( 

                        Math.Min(d[i - 1, j] + 1, d[i, j - 1] + 1), 

                        d[i - 1, j - 1] + cost); 

                } 

            } 

            // Step 7 

            return d[n, m]; 

        } 

 

 


