

Service Oriented Code Generator for Fast

Prototyping

Based on Requirement Definition Schema

By D.U.I.Hewage

149211G

Faculty of Information Technology

University of Moratuwa

May 2017

Service Oriented Code Generator for Fast

Prototyping

Based on Requirement Definition Schema

Software tool providing easy prototyping ability for web applications

D.U.I. Hewage

149211G

(MSCIT/14/028)

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of

MSc in Information Technology.

Faculty of Information Technology

University of Moratuwa

May 2017

ii

Declaration

I declare that this thesis is my own work and has not been submitted in any form for

another Masters, Degree or diploma at any university or other institution of tertiary

education. Information derived from the published or unpublished work of others has

been acknowledged in the text and a list of references is given.

Name of the Student: Signature of the Student

D. U. I. Hewage

 …………………………..

 Date:

Supervised by: Signature of the Supervisor

Mr.Chaman Wijesiriwardana ……………………………

 Date:

iii

Dedication

This dissertation is dedicated to my beloved parents, siblings, nimshi and her parents,

my teachers who gave me endless courage and support to achieve my task and goal in

completing the research project.

iv

Acknowledgement

My heartiest thanks go to my supervisor Mr. Chaman Wijesiriwardana for the guidance,

assistance, encouragement, valuable advices on improving the research and providing

this opportunity carry out this research project.

Also, sincerely thanks to all my teachers who taught in MSc IT degree program. Things

leant from these subjects made it easier to make this research project a successful one.

Last but not least, a sincere thank goes to everyone who supported specially teams from

Redot Pvt Ltd and Effro Pte Ltd Singapore for contributing their valuable time on this

research.

v

Abstract

With the rise of the latest web technologies, it has now become the mostly used software

solution for lots of business areas. Because of its flexibility and easy connections

between the clients and the server made via clouds, it’s the most popular technology

solution provider for the industry. Having said that, new and faster approaches for

programming, planning, deploying and testing are being introduced at a rapid speed.

As a result of this, large number of new tools and technologies are popping up in the

industry. Even though they have introduced these tools and technologies to ease up

development work, still there are some areas which are time consuming and costly for

the management. To be specific Database Designing, Initial Project setup,

Authentication module coding, Coding the User Interfaces, Writing CRUD functions

covering every use case of the applications, setting up deploying mechanism, writing

test cases, and many more tasks are still done manually or taken from a previous project.

Even if they have taken it from a previous project they still have to code the CRUD

operations and some other things which are not automated yet.

Goal of this research is to find out a proper automating mechanism for most of the tasks

which are not yet automated using available open source projects and to combine a set

of task specific automating tools to act as a complete solution. Although there are some

systems available which developers are using to reduce repetitive work, and can

manage their work using these systems, it can be improved further and save days to

weeks from their development time. This way it can avoid concerns over the cost

involved with the implementation because of the time spent on these repetitive tasks.

This project proposes a customized solution for avoiding repetitive tasks in software

implementation. Reducing the time spent on these tasks is the main objective of this

project which ultimately leads to a software prototyping application. Since the modern

approach of software implementation is model driven, proposed system will also

consist the model driven approach with its solution. The proposed system is capable of

source code generation. Pre-generated source code can reduce the time spent on coding,

vi

use a model driven approach, automate validations, maintain coding standards as well

as the generate UI elements which are required to display data on frontend. Using only

2 schema files written in JSON format which describes the flow of the application,

models and validation systems are capable of understanding and generating code based

on these definition files. Since the application is using a very high level of definition of

the user requirement, it is a forward engineering approach. Keeping in mind of the latest

technologies and the mobile technology evolvement, the generated code will consist of

2 sections, namely the Front-end and the Back-end. Front end consists of the UI

information and the flow of the application which the final client or the customer will

experience. Back end is consisting of a highly customizable REST API which supports

mobile implementation as well. To ease up the implementation of this project, project

is using set of open-source projects such as angular-seed, expressjs. And the solution is

provided using NodeJs. Model-Driven Application Prototyping and Code Generation

using Forward Engineering System (FES) supports code generating in multiple

languages and supports multiple DBMSs such as MySql, SQL, MongoDB, etc. I have

tested the system with the collogues at my work place which all of them are developers.

And currently using the system for generating first and second level prototypes.

Finally, I have achieved the task of implementing a software solution which generates

model driven, initial project setup, reusable and testable code, supports multiple

databases and greatly reduce time spent on repetitive work. And in the first phase of the

most web application projects in can reduce the project setup time by nearly 1.5 weeks

as well as 4-10 hours of 1 module of the code.

Keywords: prototyping, model driven, code generation, forward engineering, CRUD

automation, multi-language

vii

Table of Contents

1. Introduction .. 1

1.1. Prolegomena .. 1

1.2. Background and Motivation .. 3

1.3. Problem domain .. 5

1.4. Hypothesis ... 7

1.4.1. Expected Features .. 8

1.5. Aim and Objectives ... 8

1.5.1. Aim .. 8

1.5.2. Objectives .. 8

1.6. Structure of the Thesis... 9

1.7. Summery ... 9

2. Current Development and Challenges .. 10

2.1. Introduction ... 10

2.2. Current developments ... 10

2.2.1. Toward automatic generation of mvc 2 web applications 10

2.2.2. A Generator of MVC-based Web Applications 11

2.2.3. A Model-Driven Approach for the Fast Prototyping of Web

Applications .. 12

2.2.4. XFlash–a web application design framework with model-driven

methodology ... 13

2.2.5. Leveraging declarative languages in web application development 14

2.2.6. An Effective Development Environment Setup for System and

Application Software .. 14

2.2.7. Other works .. 15

2.3. The Research Gap ... 16

2.4. Summery ... 18

viii

3. Technology foundation of the solution ... 19

3.1. Introduction ... 19

3.2. Technologies used for the solution.. 19

3.2.1. Server-side JavaScript powered by NodeJs ... 19

3.2.2. ExpressJs framework ... 19

3.2.3. JSON .. 20

3.2.4. Client-side JavaScript powered by AngularJs 20

3.2.5. Multiple DBMS support .. 20

3.2.6. Mocha and Chai ... 20

3.2.7. Bitbucket .. 21

3.3. Development tools... 21

3.3.1. Visual Code .. 21

3.3.2. PhpMyAdmin ... 21

3.3.3. Ampps .. 21

3.3.4. mobaXterm .. 22

3.4. Hosting and Deployment technologies ... 22

3.4.1. AWS EC2... 22

3.4.2. Beanstalk .. 22

3.5. Summery ... 23

4. A new approach to fast prototyping ... 24

4.1. Introduction ... 24

4.2. Requirement Gathering ... 24

4.2.1. Issues faced by the project teams working in the industry 24

4.2.2. Gaps identified which hasn’t been addressed by other researches 25

4.2.3. Limitations with current development tools .. 25

4.3. Hypothesis ... 26

4.3.1. Fast prototyping ... 26

ix

4.3.2. Code generators ... 26

4.3.3. Prototyping services ... 27

4.3.4. Schema based requirement definitions .. 27

4.4. Users of the system ... 27

4.5. Inputs to the system ... 28

4.5.1. Flow Definition Schema .. 29

4.5.2. Data Model Definition Schema ... 29

4.6. Outputs of the system .. 30

4.7. Features ... 30

4.8. Summery ... 31

5. Analysis and Design of the new prototyping solution .. 32

5.1. Introduction ... 32

5.2. Research planning ... 32

5.2.1. Development methodology .. 33

5.2.2. Selection of the software process model .. 33

5.3. Analysis of the current development workflow .. 34

5.4. Requirement analysis .. 34

5.4.1. Functional requirements of the solution .. 34

5.4.2. Non-functional requirements of the solution ... 35

5.5. Top level design architecture .. 35

5.6. Module architecture... 36

5.7. Schema based requirement definition ... 38

5.7.1. Application flow definition .. 39

5.7.2. Data Model Definition ... 39

5.8. Generated Prototype .. 40

5.8.1. Generated client-side application design architecture 41

5.9. Dependency management, ground up work on generated prototype 42

x

5.9.1. Version controlling .. 43

5.9.2. Dependency management .. 43

5.9.3. Compiling and building ... 43

5.9.4. Testing and continuous integration .. 44

5.10. Summery .. 44

6. Implementation ... 45

6.1. Introduction ... 45

6.2. Overall solution ... 45

6.3. Implementation of the Solution ... 45

6.3.1. Preparation ... 46

6.3.2. Programming.. 46

6.4. Requirement definition processing stored in schema files 46

6.4.1. System flow definition mechanism .. 46

6.4.2. Data Model Definition ... 49

6.4.3. Seed projects .. 50

6.5. Language drivers for source code generators .. 50

6.5.1. Multiple server-side languages support ... 51

6.5.2. Modularized architecture ... 52

6.6. Generated sample user interfaces .. 53

6.7. Summery ... 54

7. Evaluation of the solution ... 55

7.1. Introduction ... 55

7.2. Case study 1 – Feasibility for a library management system 55

7.2.1. Problem definition ... 55

7.2.2. Requirement analysis ... 56

7.2.3. Design and Implementation ... 56

7.2.4. Evaluation .. 56

xi

7.3. Case study 2 – Service Oriented Prototyping and Code generation 58

7.3.1. Problem definition ... 58

7.3.2. Requirement specification ... 59

7.3.3. Design and implementation ... 59

7.3.4. Evaluation .. 59

7.4. Other evaluations... 61

7.4.1. Participants ... 61

7.4.2. Testing environment .. 63

7.4.3. Test cases ... 63

7.4.4. Data analysis .. 66

7.5. Aim .. 67

7.6. Objectives .. 68

7.7. Drawbacks and limitations .. 68

7.8. Summery ... 69

8. Conclusion .. 70

8.1. Introduction ... 70

8.2. Conclusion ... 70

8.3. Future works .. 71

8.4. Summery ... 72

References .. 73

Appendix A .. 75

Interfaces of the generated prototypes ... 75

Appendix B .. 77

xii

Table of Tables

Table 2-1 List of evaluation criteria for existing prototyping tools 17

Table 2-2 Evaluation done for existing prototyping tools ... 17

Table 7-1Evaluation conducted in the case study 1 ... 58

Table 7-2 Evaluation Conducted in the case study 2 ... 60

 Table of Figures

Figure 1-1Web application and a mobile application communicating with the same

web server API ... 7

Figure 4-1Inputs to the proposed system ... 28

Figure 4-2Outputs of the proposed system .. 30

Figure 5-1 Execution plan for the proposed system .. 32

Figure 5-2Evolutionary prototyping methodology used for proposed system 33

Figure 5-3 Top level design architecture of the proposed system 35

Figure 5-4Modules contained in the file manager ... 36

Figure 5-5Modules contained in the schema processor ... 36

Figure 5-6Modules contained in the language driver .. 37

Figure 5-7Modules contained in the seed project .. 38

Figure 5-8 Generated prototype top level design ... 40

Figure 5-9 Detailed view of the data communication between generated client-side

and the server-side application ... 41

Figure 5-10Process of the client-side application working with gulp task runner 42

Figure 6-1Sample Application Flow Definition Schema .. 48

Figure 6-2Sample Application Data Model Definition Schema 49

Figure 6-3Generated prototype structure ... 50

Figure 6-4 Language Driver Structure ... 51

Figure 6-5Language Driver Constructor .. 51

file:///F:/Google%20Drive/Studies/Msc%20Project/Thesis%20Restructured.docx%23_Toc486517710
file:///F:/Google%20Drive/Studies/Msc%20Project/Thesis%20Restructured.docx%23_Toc486517710

xiii

Figure 6-6Example of generated modularized architecture ... 52

Figure 6-7Generated UI source code based on data model ... 53

Figure 6-8Sample generated UI ... 53

Figure 6-9 Sample generated UI .. 54

1

Chapter 1

1. Introduction

1.1. Prolegomena

Modern world has already been taken over by technology, as it has come to a point

where it is not even possible to live without it. Before 20 years ago, no one has ever

imagined that technology would become so advanced that technology would play a

major role in areas such as food processing, clothing, medical research, water

management, electricity plants, etc. Considering the complex day to day life of a

human-being and the rapid growth of the world population, it won’t even be able to

cater for basic human needs without the modern-day technology. While technology is

playing a major role in delivering basic human needs, it has also become the ultimate

solution provider for economics, transportation, sales and marketing, banking and lots

of other areas.

As technology started connecting people all around the world with the innovation of

the world wide web, websites and web pages were introduced just for delivering

information. It was initially used for data communication and very rarely for marketing.

When the technology started evolving and becoming more popular, WWW has started

to provide vast variety of solutions to people around the world such as sales and

marketing, entertainment, streaming technologies, mailing services, etc. As the

requirement for these services increased rapidly, software development companies

began getting busier and overloaded with projects. For catering to a large number of

projects and requirements, development speed of the software products had to be

increased respectively. Catering to a large number of projects and requirement means

a larger client base and increased profit for a company.

As a result, addressing a large number of requirements at the same time has become a

problem and was very difficult to maintain. Developers and engineers were keener on

2

experimenting and researching on new things which will make sure each phase of

software development methodology will take less time while maintaining quality which

will benefit for both the client and the company which provides the software solutions.

For this purpose, people have introduced a lot of various software development

methodologies such as Waterfall, Prototyping, Agile, etc. As an example, SRS

documents, Gantt charts, design diagrams, client meeting documents, etc were

introduced for the planning phase. Modern-day software development uses different

methods and tools during each phase of the development life cycle. Specifically, for

implementation phase, they have introduced different programming languages such as

PHP, C#, Java, JavaScript, Python, Ruby, etc. For each of these languages they have

introduced different frameworks, design patterns such as OOP, MVC [1], Singleton,

Model-Driven architecture, Modularized architecture, etc.

Speeding up the development process, improved product quality, improved security,

highly reliable and maintainable code, satisfied clients, satisfied project teams and

increased profits are some benefits of using these technologies. Even though these tools

and methods increased profits and productivity of the software tool it has made the

programing language more complex and experienced personnel only found them useful.

As novice developers are spending more time on researching and learning on each of

these frameworks and best practices, this makes it more difficult to novice developers

who come on board as a team member to catch up with others. Teaching them these

technologies requires more time and effort.

As a result, industry experts are now researching on code generators which is capable

of generating software source code based on a requirement. These generators try to

reduce time spent on repetitive tasks, generate source code with industry accepted

standards, follow widely used design patterns and frameworks.

This research is an effort on implementing a software tool which is capable of

generating a working prototype source code based on a given requirement and

researching on a sophisticated method defining client requirement which is

3

understandable by a computer. Solution is supposed to address set issues faced by

developers and other project members on day to day basis which we will be discussed

further during the problem domain section.

1.2. Background and Motivation

When it comes to software development, there are set of things which team members

do repeatedly. Specifically, teams do lots of client meetings trying to clear up

requirements, system architectures work hard on designing the best possible solution

based on client requirement and this includes large number of iterations and fine tuning.

When the development team initiate the implementation, they are involved in ground

up work which is almost similar for most of the projects. This includes setting up

version controlling, setting up software frameworks, initiating dependency managers,

setting up testing and continuous integration tools, setting up deployment tools.

Modern-day trend is that the programmers divide software solution in to modules and

complete one by one. These modules use different frameworks and programming

practices. Most of the time, final operation of these modules is involved in similar tasks

such as create, read, update, delete which is CRUD [1] regardless of what the business

logic is. Once the implementation is over it is then passed to the testers and they are

responsible in validating the software product. Testing also involves testing CRUD

operations mentioned above which are similar for most of the modules.

These repetitive tasks can be categorized into two sections. Namely short term

repetitive tasks and long term repetitive tasks. Client meetings for requirement

clarifications, System design fine tuning and CRUD operations can be identified as

short term repetitive tasks. Ground up work for each project can be identified as a long

term repetitive task.

With the emerge of web development and software engineering technologies, various

methods and tools were introduced addressing these repetitive tasks. Specifically, these

4

tools included CRUD automation, user interface generation, systems which do ground

up work for developers, systems which can generate the flow of a system, etc.

Webratio [2] is a product which was designed to generate the system flow and the

source code of it. This product is capable of generating source code in Java and it

provided interactive UI which can be used to design the system. PHP grocery CRUD

[3] is a work which can generate CRUD operations for Mysql database tables. yeoman

generator [4] is a collection of source code generators in which developers can use to

do ground up work for them. This tool helps to avoid long term repetitive tasks and

speed up the initial project setup time. And the industry experts report that they have

gained significant improvement in productivity by introducing these tools to their

development process.

Similarly, With the advancement of other programming frameworks such as laravel [5]

and expressJs for Node [6] which follows model-driven MVC architecture,

implementation of Web APIs and Web applications have become much easier than it

was previously. Experts suggests maintainability improvements with respect to the

code-centric implementation, improved efficiency, improved effectiveness and

optimization of development effort using these tools.

Even though these tools were capable of reducing the time taken for repetitive tasks by

generating source code they were generating a generalized code which can then be

modified to work with other modules as well. To overcome this issue there should be a

mechanism to feed the requirement into the system and generate a customized code for

each of these modules which will reduce the time taken further. Research done in Ibn

Tofail University, Kenitra [7] the authors presented an approach based on model

transformations that automatically generates the CRUD operations for a web system

taking class diagrams based on UML (Unified Modeling Language) profiles as an input.

Research done at university of twente Netherlands [8] the authors also evaluated the

productivity improvements obtained by a model-driven code generation approach

which automatically generates the CRUD operations for a Web information system.

5

This approach also takes UML class diagrams as an input. By using these generators,

the authors observed an important development time reduction (up to 90.98%). They

also surveyed the developers about the difficulties found compared to the manual

coding approach and obtained better results for the code generation approach.

A research done at the Department of Engineering University of Sannio, Italy [9]

suggests a class definition using XML language which will then be used to generate the

code. The process and the technologies adopted to implement this approach can be

reused to develop the fast prototyping approach for a different design model and/or a

different target technology platform. Another research done at University of Lisbon,

Portugal [10] also suggest a model definition using XML language and generation

CRUD operations using MVC design patterns.

Even though these tools can play handy in different scenarios, there set of issues which

hasn’t been addressed yet. These will be discussed in the next section.

1.3. Problem domain

Information technologies represent one of the fastest developing business areas [10].

Specifically, Web applications are usually required to be developed and delivered in a

very short period of time and after that to be updated and evolved even faster [9].

Reduce time to market, reduce the cost of development (that depends on time),

standardize software development, improve quality, improve reliability and reduce the

complexity in process management [11] have become the crucial factors for getting a

job done and getting it delivered. This very short development life cycle often forces

developers to focus more on implementation and devote low effort and a short time to

the design phase which in the end negatively affects the quality of the web application.

The question is how these costs can be reduced thus improve productivity and surpass

competition. As discussed previously on the issues faced by modern day developers as

well as the solutions and researches done to overcome these issues, they are still not

capable of solving some of the major scenarios. Namely,

6

CRUD automation

Modern CRUD automation systems are capable of generating high performance source

codes. But most of them are not capable in generating source code which can manage

data integrity and relationships between database tables or models. Source code which

was generated using these tools should be re-modified to work with the existing project

codebase. At the same time, these tools cannot be used as a starting point for a project

as the initial development environment or ground up work should be done before using.

Seed project generators

As discussed before the yeoman generator is a tool which can be used to generate a seed

project. This tool is useful when a new project begins as it is taking care of doing ground

up work such as setting up version controlling, initial project code, setting up testing

framework etc. after using for initiation of the project it has no use. It is not capable of

generating any CRUD operation neither the application flow.

Requirement definition language

Some researchers suggest that using requirement definition, they are capable of

generating source code for a given requirement. Although using requirement definition

mechanism is useful, most of these tools takes an UML diagram or a class definition as

an input. Drawback on this approach is that developers or designers has to spend time

on designing either UML or Classes before using these tools.

Modern technology support

Modern day web applications run on various devices, browsers and platforms. These

includes mobile applications as well. Usually mobile applications are powered by data

services such as REST API [12] or SOAP services [13]. None of the above-mentioned

applications are capable of generating a good data service. According to modern-day

practices there should be a good separation between data layer and the presentation

7

layer. By having a separate data layer makes it possible to use the data service for other

applications such as mobile as standalone applications.

A good research on filling this gap should be conducted to overcome these issues faced

by the project teams.

1.4. Hypothesis

By conducting an extensive research on the issues faced by the project teams, we have

identified set of issues that need to be addressed. In this regards our hypothesis is that,

an implementation of a software tool which can take in a unique customer

requirement as an input defined in a requirement definition file and output a

working prototype source code.

Generated software tool should be able to use easily and should be available anywhere

since the goal is to reduce the time taken for repetitive tasks. Because of this the

proposed solution will be delivered in two variations one as a service and where anyone

can access as they want. And one as a Real-Time application where it watches for

Figure STYLEREF 1 \s 1 SEQ Figure * ARABIC \s 1 1 Web and Mobile applicatios using same data service from the
server

Figure 1-1Web application and a mobile application communicating with the same web server API

8

requirement changes in the requirement definition file and build source code on the fly.

Project is titled according to this hypothesis,

Service Oriented Code Generator for Fast Prototyping using Schema Based

Requirement Definitions

1.4.1. Expected Features

● Automate the CRUD operations

● Should complete the ground up work mentioned

● Generate the flow of the required system as well as the user interfaces

● Separation between data layer and the presentation layer

● Highly Model-Driven

● Generate the source code which follows industry standards with MVC

design pattern

1.5. Aim and Objectives

1.5.1. Aim

Aim of this research is to reduce the time taken on day to day repetitive tasks while

maintaining quality of the project. This leads to happy clients, happy project teams as

well as increased profits.

1.5.2. Objectives

Main objective of this research is to implement a software tool which will generate a

prototype application source code using the provided set of requirement definition

schema files.

9

A good requirement definition mechanism should also be implemented which is should

be able to define the flow and different states of the system, data models and

relationships between them, UI elements, user input validation rules and output

messages.

1.6. Structure of the Thesis

The best of the thesis is organized as follows. Chapter 1 critically reviews the literature

on current prototyping tools and source code generation tools such as CRUD tools.

Chapter 2 is discussing about the current developments. As well as the issues and

technologies different people/ organizations have used to overcome the issues with

prototyping and automated code generation. Chapter 3 is about the technologies used

in implementing the solution. Chapter 4 presents new approach to build fully functional

prototypes using schema definitions. Chapter 5 and 6 describe the design and

implementation respectively. Chapter 7 is on the evaluation of the solution and it

discuss of 2 case studies conducted. Chapter 8 concludes the research with a note on

further work.

1.7. Summery

This chapter described the overall description of the research and introduced the

research problem and the solution. Next chapter is the literature review which will

discuss the work of other researchers on the same domain. it will provide full detailed

information about background information of the project based on a literature survey

as well as it’ll provide information regarding the current development challenges.

10

Chapter 2

2. Current Development and Challenges

2.1. Introduction

Chapter 1 gave a comprehensive description of the overall project described in this

thesis. This chapter provides a critical review of the literature in relation to

developments and challenges in using prototyping tools and automated code generation.

For this purpose, the review of the past researches, software’s and articles have been

presented under three major sections. Namely, early developments, modern trends and

future challenges. At the end, this chapter defines the research problem.

2.2. Current developments

2.2.1. Toward automatic generation of mvc 2 web applications

This paper [1] is more focused on Model Driven Architecture (MDA) for automating

the code generation. And it discusses the advantage of using the MDA. According to

the conclusion,

“They have applied the MDA approach in web applications engineering. This

particularly generates the makings of a web application on the basis of a UML class

diagram. The latter is built on the basis of different attributes of the information system.

The generation process will provide an opportunity for the user to add, edit, delete, and

especially display the various objects he needs. He must be able to display objects of a

given class, based on information from another object of another class provided the two

classes are connected via associations using a class diagram. To achieve this, they first

develop the source metamodel managing UML class diagrams. At the target

metamodel, they have developed all meta-classes needed to be able to generate an

application respecting a MVC2 architecture. The mapping rules were developed and

11

put together in a transformation algorithm. This algorithm makes it possible to browse

the source class diagram and generate through these rules, an XML file containing all

actions, forms, and then forwards jsp pages that can be used to generate the necessary

code of the target application. This is very useful when dealing with related information

between them in a tree structure and the display of information depends on another.

This work can be extended to support advanced aspects of the content of Web pages to

produce a web application from start to finish, i.e. providing the user’s interface part at

a will and appropriate treatment responding to requests. In perspective, this work should

be extended to allow the generation, in addition to the configuration files, of other

components of the Web application: model, view, controller and their constituents.

Emphasis should be placed on the support of other CRUD methods such as create,

remove and update. “

Advantages

Software tool which was built by this research is capable of understanding UML and

class diagrams and generate the required product based on the input. The code which

gets generates follows mvc 2 architecture and model-driven approach.

2.2.2. A Generator of MVC-based Web Applications

This research [2] is also based on generating mvc based web application. as extracted

from the research paper,

The generator presented is developed cater customized source code generation. Based

on a practical experience in designing generator for a commercial application, it

presents a possibility for fast development of a custom generator as a solution for a

specific problem. The generator relies on the Hibernate Tools toolset which is

responsible for a meta model creation. Thus, most of the time was spent on designing

templates which implement specific technologies and structure of an application. The

main characteristics of the presented generator are simplicity of its design, short time

spent on its development and full suitability to application specific requirements.

Despite its simplicity, the generator allows some customizations and controls of the

12

code generation process. It is primarily enabled by using functionality of the

hibernate.reveng.xml file. Testing the generator on The Asset Management System

database which contains 400 tables, 200 functionalities based on 200 dictionary

tables were fully generated without need for additional customization. Coding these

functionalities manually would require approximately 800 hours, assuming that 4

hours are required for coding and testing one simple functionality. Since the enterprise

applications have (or should have) more or less uniform code structure and visual

appearance, the generator was able to produce basis for more complex functionalities,

which were available for later easy upgrading. Some of the specific functionalities such

as login page and supporting program logic could not be produced by the generator and

had to be developed manually.

Advantages

This software tool which was the outcome of the research was also taking few xml files

as an input and outputs a java based web application. uses java hibernate framework as

the programming framework.

2.2.3. A Model-Driven Approach for the Fast Prototyping of Web Applications

This paper [3] presented an approach for the model-driven fast prototyping of Web

applications developed using Eclipse technologies and frameworks such as EMF, GMF

and Xpand 2. The approach consists of a two-step process, modeling-generate, and is

accompanied by two supporting tools. a modeling tool for defining the design of the

application by adopting the Model-View-Controller architectural design pattern, and a

generator tool that transforms the defined design model into a “ready to run” prototype

of the application. The code generation phase is fully automated and produces an

Eclipse Faceted Web dynamic project that uses the J2EE JavaServer Faces

implementation technology and is ready to deploy on a Tomcat-MySQL platform. A

case study conducted on designing and fast prototyping a Web application for online

note taking and sharing has shown that the approach is valid and the supporting tools

work properly. In particular, the approach enables effortlessly repeating the

13

development cycle “modeling-generating-validating” to verify and incrementally

improve the design of the application. The process and the technologies adopted to

implement our approach can be reused to develop the fast prototyping approach for a

different design model and/or a different target technology platform.

Advantages

This tool was built as an eclipse plugin. it allows users to design a class diagram and

generate the source code for Java. case studies show that it can be used for different

scenarios.

2.2.4. XFlash–a web application design framework with model-driven

methodology

This research [4] has developed a model-driven methodology for web application

development. In terms of web user-interfaces development, they have implemented a

generator for generating the user-interfaces components from the XFlash framework.

Different from traditional web user-interface development using different computer

languages, we implement the web user-interfaces using a single computer language -

the ActionScript, and organize the structure of web interfaces using design patterns.

Our approach contributes to the reusability of web user-interface components in

different applications. this approach generates flash components to implement the web

user-interface elements.

Advantages

In xFlash implementation their target is to generate an ActionScript project which is

good for Flash based application. same as most of the researches it also uses xml file

input to generate a model driven flash application.

14

2.2.5. Leveraging declarative languages in web application development

This research [5] is based on unified language programming. the presentation tier is

expanded to cover all three tiers a Web Application. This Allows end-user developers

not only to leverage their existing skills in user interface development, but also to

implement entire Web Applications using a single declarative language and data model.

This research uses XForms DB framework, all application development is done on the

client side. This helps especially Web designers—usually mid-level end-user

developers—to become advanced Web Application developers. The framework is

based on the XForms markup language and proposed XForms DB server-side language

extension. They have implemented the XForms framework based on the derived

requirements, and argued that it could simplify both the development and maintenance

of small and medium-sized Web Applications.

Advantages

According to researches, this approach improved the time to market as well as it

improved the performance of the application. this tool also requires a XML input and

outputs a Java based application

2.2.6. An Effective Development Environment Setup for System and

Application Software

This is a research [6] conducted on how a development environment should be before

starting up a project. the code generator which we use should generate the code with

considerable ground up work which makes developers life easier. according to

researchers,

The Software Development Environment Model proposed in the paper can significantly

improve effectiveness and productivity, and reduce overall costs, as well as improve

the quality of the final product. The section “An Effective Software Development

15

Environment Model Example” offers a combination of standard tools that do not

require much time for setup and administration, and naturally fit to the development

tasks. Once installed and configured, these tools can work for a long time without

needing to be changed.

it also suggests on Automatic build and test procedures, Early defect warning by

continuous build and test execution and Automated continuous integration. it is

preferred that a code generator follows these guidelines when generating the code.

2.2.7. Other works

Apart from the main researches that we have discussed above, we will look bit more

into modern day tools which are being used in the market.

2.2.7.1. Grocery CRUD

Grocery CRUD [7] is an open source library for creating CRUD without any effort of

coding. Using a grocery CRUD, you can create a fully successful CRUD system within

moments. When this code builder is used, you don’t have to rewrite code again and

again. It also provides a platform to use common assets like css and js. With a few lines

of code the CRUD is ready to be used.

2.2.7.2. Angular-fullstack

AngularJS Full-Stack [8] generator is a yeoman generator for creating MEAN/SEAN

stack applications, using ES6, MongoDB/SQL, Express, AngularJS, and Node. It can

quickly set up a project following best practices. With the angular-fullstack you can

create new endpoints for the server side or client side components (like routes,

controllers, services, filters, directives etc. It is easy to install, creates both client and

16

server scaffoldings, introduces good practices in the generated code, server side API

prepared to use authentication, support HTML or jade templating on client side, support

for different CSS preprocessors and commands to scaffold anything.

2.2.7.3. Webratio

Webratio [9] is a Cloud-based Relationship Management system that allows the user to

configure, manage and deliver IoT(Internet of Things)-based business services to the

customers, partners and stakeholders. To stand out in the era of Digital Business, you

need unique and innovative mobile apps and web applications. It must be developed

quickly, often starting with unclear and changing requirements. It provides simple and

intuitive development environments that support the lifecycle throughout the

applications. This is committed to delivering the best mobile and Web development

technologies to allow the users to take full advantage of all the opportunities of the era

of Digital Business.

2.3. The Research Gap

To identify the research gap, we evaluated above mentioned researches and its

generated source codes under following criteria. these criteria were selected based on

the research articles as well as the requirements received from the surveys conducted

with industry experts.

1. Code generation support

2. Customized flow generation

3. Model-Driven architecture

4. Customized data model

generation

5. MVC design pattern

9. Server-side REST api support

10. Separated front end application

11. Modular source code structure

12. Industry accepted framework

usage

13. Multiple language support

17

6. Relationship mapping and ORM

support

7. Real-time code generation

8. JSON support*

14. Customized user input

validation support

15. Interactive application designer

16. Cloud based service support

Table 2-1 List of evaluation criteria for existing prototyping tools

*JSON is recommended for simplifying the requirement definition. justification of

this technology is discussed in the 5th chapter which is the Design of the system.

Research 1 2 3 4 5 6 7 8 9 1

0

1

1

1

2

1

3

1

4

1

5

1

6

Toward automatic

generation of mvc 2 web

applications

✓ x ✓ ✓ ✓ ✓ x

x

x

✓ x

x x

x

x

x

A Generator of MVC-

based Web Applications
✓ x ✓ ✓ ✓ x

x

x x

x

x x x

x

x x

A Model-Driven

Approach for the Fast

Prototyping of Web

Applications

✓ x ✓ ✓ ✓ ✓ x

x

x

x

x

x

x x

x

x

XFlash–a web

application design

framework with model-

driven methodology

✓ x ✓ x

x

x

x x

x

x

x x

x

x x x

Leveraging declarative

languages in web

application development

✓ x ✓ ✓ ✓ ✓ x

x

✓ ✓ P x

x

x

x

x

Grocery CRUD ✓ x x x x x x x x x x x x x x x

Angular Fullstack ✓ x x x ✓ ✓ x x ✓ ✓ ✓ x x x x x

Webratio ✓ ✓ x ✓ x x x x x x x x x x ✓ x

Table 2-2 Evaluation done for existing prototyping tools

*P indicates that the feature is planned

18

2.4. Summery

In this chapter, the previous work of the researchers has been critically evaluated by

reading their research papers and articles. The advantages of each of the models which

were identified has been addressed accordingly and based on that sixteen criteria have

been taken into account to identify the research gap. Based on the research gap an in-

depth analysis has been carried out as to what criteria has been supported by the

previously identified criteria based on the literature review by previous researches. In

the next chapter, we will be discussing about the technology which has been adopted in

the proposed solution mainly focusing on the deliverables.

19

Chapter 3

3. Technology foundation of the solution

3.1. Introduction

In the previous chapter an extensive discussion and reviews of researcher’s work has

been conducted. And we have identified the research gap that needs to be filled. This

chapter is a discussion of the technologies which will be used in the proposed solution.

3.2. Technologies used for the solution

Various technologies were used to increase the performance and to ease up the

development.

3.2.1. Server-side JavaScript powered by NodeJs

Node.js [10] is a platform built on Chrome's JavaScript runtime for easily building fast

and scalable network applications. Node.js uses an event-driven, non-blocking I/O

model that makes it lightweight and efficient, perfect for data-intensive real-time

applications that run across distributed devices.

3.2.2. ExpressJs framework

Express.js [11] is a Node.js framework. Node.js is a platform that allows JavaScript to

be used outside the Web Browsers, for creating web and network applications. This

means that you can create the server and server-side code for an application like most

of the other web languages but using JavaScript.

20

3.2.3. JSON

JSON [12], or JavaScript Object Notation, is a minimal, readable format for structuring

data. It is used primarily to transmit data between a server and web application, as an

alternative to XML.

3.2.4. Client-side JavaScript powered by AngularJs

AngularJS [13] is a structural framework for dynamic web apps. It lets the developer to

use HTML as the template language and lets the developer extend HTML's syntax to

express his application's components clearly and succinctly. AngularJS's data binding

and dependency injection eliminate much of the code he would otherwise have to write.

3.2.5. Multiple DBMS support

Sequelize [14] is a promise-based ORM for Node.js and io.js. It supports the dialects

PostgreSQL, MySQL, MariaDB, SQLite and MSSQL and features solid transactional

support, relations, read replication and more.

3.2.6. Mocha and Chai

Mocha [15] is a JavaScript testing framework, and Chai is a BDD / TDD assertion

library. Both Mocha and Chai [16] can run in Node environments or in the browser. In

Test-driven development, which means you write your tests before your code, is a great

goal to strive for, but takes discipline and planning when you're programming. To make

this whole process a lot easier, you need easy-to-use and powerful testing and assertion

frameworks, which is exactly what Mocha and Chai are.

21

3.2.7. Bitbucket

Bitbucket [17] is a web-based hosting service for source code and development projects

that use either Mercurial (since launch) or Git (since October 2011) revision control

systems that is owned by Atlassian. Bitbucket offers both commercial plans and free

accounts.

3.3. Development tools

When implementing the actual solution set of development tools were used to speed up

the implementation of the solution.

3.3.1. Visual Code

Visual Studio Code [18] is a source code editor developed by Microsoft for Windows,

Linux and macOS. It includes support for debugging, embedded Git control, syntax

highlighting, intelligent code completion, snippets, and code refactoring.

3.3.2. PhpMyAdmin

phpMyAdmin [19] is a free and open source tool written in PHP intended to handle the

administration of MySQL or MariaDB with the use of a web browser. It can perform

various tasks such as creating, modifying or deleting databases, tables, fields or rows;

executing SQL statements; or managing users and permissions.

3.3.3. Ampps

AMPPS [20] is a solution stack of Apache, MySQL, MongoDB, PHP, Perl and Python

for Windows NT, Linux and macOS. It comes with over 300 PHP web applications,

22

over 1000 PHP classes and various versions of PHP. AMPPS is created by Softaculous

Ltd. a company founded in 2009 which makes the Softaculous Auto installer.

3.3.4. mobaXterm

MobaXterm [21] is your ultimate toolbox for remote computing. In a single Windows

application, it provides loads of functions that are tailored for programmers,

webmasters, IT administrators and pretty much all users who need to handle their

remote jobs in a simpler fashion.

3.4. Hosting and Deployment technologies

Since the proposed solution follows service oriented architecture a very sophisticated

hosting and deployment technologies were used.

3.4.1. AWS EC2

Amazon Elastic Compute Cloud (Amazon EC2) [22] is a web service that provides

secure, resizable compute capacity in the cloud. It is designed to make web-scale cloud

computing easier for developers. Amazon EC2's simple web service interface allows

the developer to obtain and configure capacity with minimal friction.

3.4.2. Beanstalk

Beanstalk [23] is the complete code hosting workflow teams or individuals use to write,

review and deploy their code. Beanstalk reduces management complexity without

restricting choice or control. It can simply upload your application, and Beanstalk

automatically handles the details of capacity provisioning, load balancing, scaling, and

application health monitoring.

23

3.5. Summery

This chapter briefed about the technologies and the tools which were used for the

proposed solution and the justification of these technologies will be discussed in the

later part of this thesis. The next chapter will be discussing on the approach of the

proposed solution.

24

Chapter 4

4. A new approach to fast prototyping

4.1. Introduction

Previous chapter briefed about the technologies which were used in the proposed

solution and this chapter will be discussing about the approach to a fast prototyping

tool.

4.2. Requirement Gathering

Prior to the initialization of this thesis a considerable amount of time was spent by

reading previous research papers and articles done by other researchers. The articles

which consisted of great value were taken into account are included in the references.

Secondly based on the personal experiences by working in the industry for the past 8

years I personally have faced issues when developing web applications and mobile

applications which were considered when developing the solution explained in this

thesis. Thirdly ideas were gathered from my working colleagues, project managers,

team leaders and industry experts who are engaged in similar work activities not only

in Sri Lanka but also in Singapore and Australia.

4.2.1. Issues faced by the project teams working in the industry

When it comes to issues faced by the teams working in the industry we can categorize

it into four major sections with respect to software development life cycle. During the

planning phase, they spent more time on gathering the correct requirement from the

client and multiple client interviews and meetings has to be conducted in order to get

the clear picture of the client requirement. A prototyping tool which can generate a

prototype based on the user requirement in real time can play handy in this scenario.

Because with a working prototype during an ongoing meeting can clear up client

25

requirement more easily on the very first meeting itself. This will reduce the number of

meetings which needs to be conducted with the client.

When it comes to the designing phase, system designers and architectures do multiple

database designs, UI and architectural designs for the implementation of the best

product possible. In this case they come up with several numbers of designs as well as

several numbers of fine tuning rounds which consumes more time. As an input from

the planning stage a working prototype would make the designing phase easy and faster

thus resulting number of design alterations to reduce.

During the implementation phase as discussed in the above chapters developers spend

more time on repetitive tasks such as CRUD operations, setting up the based project as

well as writing test cases. With a prototyping tool which is capable of generating the

customized CRUD operations and write test cases automatically will greatly reduce the

time taken on above tasks. Another issue faced by the developers is maintaining the

code base which gets more complex when the program is evolving. A good

programming framework as well as a good design pattern should be followed to come

up with a maintainable code. The software solution which we are implementing is

capable of generating a code like that.

4.2.2. Gaps identified which hasn’t been addressed by other researches

An extensive discussion on gaps identified by other researchers in the same domain has

been conducted and discussed in the literature review chapter.

4.2.3. Limitations with current development tools

We have discussed on the current development tools also in the literature review chapter

and the aim of this research is to address all these major issues faced and identified by

us.

26

4.3. Hypothesis

Hypothesis was built based on the requirements gathered as mentioned above. This

research is focused on bridging the gap between the existing issues which are faced by

the developers when developing web applications and the current available

technologies which were more elaborated in the literature review. Our hypothesis is that

service oriented code generator for fast prototyping using schema based requirement

definitions.

4.3.1. Fast prototyping

According to the requirements gathered our main goal is to reduce the time taken on

development tasks. General Prototyping is only effective during the implementation

phase. With the fast prototyping idea, we hypothetically propose a prototyping tool

which can be used regardless of the software development life cycle phase. As an

example, this tool can be used in a client meeting to generate a prototype in real time.

For people who are not familiar with programming technologies can use the cloud based

version of the proposed system as a service to generate the code.

4.3.2. Code generators

Proposed system should capable of generating a code based on a user requirement. It

should follow a good design pattern such as MVC and generate a source code which

follows industry accepted standards. At the same time, it should also generate a source

code using a software framework which is more powerful and maintainable. Apart from

these features it should also follow a highly model driven architecture which makes it

easy to map relationships between data objects.

27

4.3.3. Prototyping services

Prototyping services usually provide a way of designing the UI and some sort of design

diagrams. In our hypothesis, we proposed a prototyping tool as a service which will

accept user requirements defined in a file and allow users to download the generated

source code of a prototype. Any of the research works that were evaluated did not offer

such functionality.

4.3.4. Schema based requirement definitions

Many of the researches conducted, proposed a requirement definition mechanism which

is capable of describing the user requirements. Most of them were suggested that

defining the content of a UML diagram to a requirement definition file as well as some

researchers suggested defining the content of a class diagram to a requirement

definition file. All most all of them were using XML as the definition language.

Drawback of this approach is that team members have to first design the UML or the

class diagram first before building up the requirement definition file. Since our main

goal in this research is to reduce the time taken on different tasks, our hypothesis is for

a requirement definition schema file which purely focuses on user requirement and not

on how the system architecture would look like. This reduces the complexity of the

requirement definition file as well as it makes it easier for a novice user to start building

up prototypes.

4.4. Users of the system

Target audience of this prototype tool can be ranged from business analysts to software

testers.

● Business Analysts – will be able to gather requirements more accurately since

they have a product in place when the client meeting is going on.

● Project Managers – will save their time estimating effort, team, cost and time.

● Developers – can use the prototype generated from client meeting

straightaway for the development

28

● Clients (End Users) – are satisfied because they know the development team

has got the clear requirement of the system as what they want

● Company owners – By saving developer time owners of the company will

make profits than before.

4.5. Inputs to the system

Figure 4-1Inputs to the proposed system

As we discussed before most of the researches suggested that a customized requirement

definition is helpful in generating the most optimal and customized code for a given

29

requirement. keeping that in mind and based on inputs from the industry experts as well

as based on personal experiences a schema definition model was build. goal of

implementing our own customized requirement definition schema was simplify the

requirement definition process unlike accepting class diagrams or UML diagrams.

making the requirement definition more complex means that it is much harder to use

by a novice user. primary goal of this research is to reduce the time taken on each

development task.

By collecting data from others, we have noticed that set of requirement areas needs to

be fulfilled in order to generate a complete prototype with maximum possible

requirements covered. according to diagram shown above requirement definition

should cover the application flow, data models, relationships between data models as

well as the user input validations. This model leads us to two main definition schema

files. namely flow definition schema and data model definition schema.

4.5.1. Flow Definition Schema

One main feature identified from the literature review which needed to be implemented

was that introducing a customized system flow definition mechanism. in this scenario,

we had to research on previous works as well. without inventing our own thing, we

thought of getting the base idea from angular UI router [24] which is an open source

project. it was modified according to our need lately.

4.5.2. Data Model Definition Schema

Another requirement was to get the user requirement for data models in which by using

we can generate the database of the application. apart from getting only data model

data, we found that data model definition schema can be used define customized user

input validations as well as the relationships between each data models.

30

4.6. Outputs of the system

Output of this prototype generator is a client-side application using single page web

application technology and a backend REST API [25] which provides data to the client

side application to function. database is built automatically when the REST API starts

running as service in server side as it has all the data from the data model definition to

build the complete database. separation between client side application and server side

allows us to support mobile application technologies as well.

Figure 4-2Outputs of the proposed system

4.7. Features

When it comes to features of proposed prototype generator, we can discuss the features

of it in two main categories,

User Specific Features

Novel users can also use the standardized JSON schema for building a prototype

application. simplified requirement definition makes it much more productive than

conventional systems used in the industry. Since all the ground up work is already done

beforehand, project start up time is reduced considerably. Source code which is

31

generated using proposed system meets all the industry standards. And minimal of

errors since the code which it generates is already tested.

 System Specific Features

This prototyping tool planned to support code generation in multiple languages such as

PHP, NodeJs, C#, JSP and ASP.net. Since the generated application uses popular web

technologies, it also supports multiple platforms such as Linux, Windows, Mac.

Multiple DBMS system support

Proposed generated uses popular and intelligent ORM system from the industry which

enables it to support multiple databases such as SQL, MySQL, Postgres and NoSQL

databases such as MongoDB.

additionally, features like secure Authentication and Authorization, Social Media

Integration is in just few customizations away.

4.8. Summery

This chapter explained the approach which allowed us to come up with a solution which

is able to fill the research gap. This enabled up to come up with a hypothesis that, by

using two different client requirement definitions schemas, we can generate the source

code for a fully featured prototype application. And we have discussed the relevant

steps/ approaches as well as the components required for the solution. In the next

chapter will be discussing on the system design in detail.

32

Chapter 5

5. Analysis and Design of the new prototyping

solution

5.1. Introduction

The previous chapter gave a full picture of the approach to a new prototyping tool. This

chapter describes the design of the solution for the process presented in the approach.

We design the solution which will generate a prototype application where it will work

as a client-server system with a backend database. Here we describe the top-level

architecture of the design by elaborating on the role of each component of the

architecture. We will discuss about the System design, platform design, Infrastructure

design of the system throughout this design chapter.

5.2. Research planning

Planning and the scheduling of the project is shown in the table below. Most of the time

were spent on literature survey and the implementation stages

Figure 5-1 Execution plan for the proposed system

33

5.2.1. Development methodology

Evolutionary prototyping methodology was used for implementing the system,

because of the research component involved in the project. Number of fine tuning

rounds were required to get the best possible prototype generated.

Figure 5-2Evolutionary prototyping methodology used for proposed system

5.2.2. Selection of the software process model

Before selecting the process model for this research, a considerable time was spent on

literature review. By that we realized that the suggestions which were given by previous

work was not the same most of the time. Because of that we had to test most of the

suggestions and work on the best possible method.

34

5.3. Analysis of the current development workflow

As discussed in the approach chapter, prior to the initialization of this research good

amount of time spent on examining the previous research papers. Based on the personal

experiences by working in the industry for the past 8 years I personally have faced

issues when developing web applications and mobile applications which were

considered when developing the solution explained in this thesis. Ideas and suggestions

were gathered from my working colleagues, project managers, team leaders and

industry experts who are engaged in similar work activities.

5.4. Requirement analysis

Application usage can be described in few simple steps.

• User defines the flow and the data models using requirement definition

schema. Then user uploads the file to system (cloud based service) or user can

specify the schema files (for real-time version)

• System processes the input files and its requirements.

• System allows user to down load the generated source code of a prototype.

5.4.1. Functional requirements of the solution

Main goal of this research is to implement a code generation for fast prototyping tool,

it should allow users to generate customized application flow. Following the Model-

Driven architecture is a must as it allows relationship mapping and ORM usage. This

allows the system to make it supportable for customized data model generation.

Generated code needs to be in MVC design pattern. Following MVC architecture makes

it easier to generate a app in a modularized fashion. Generated application should be

using industry accepted and widely used frameworks. Backend should be consisting of

a REST API as well.

35

5.4.2. Non-functional requirements of the solution

Real-time code generation is a plus since the goal of the project is to reduce the time

spend on coding. Generated software should be optimized for performance as well as it

should be in the production grade quality. Maintainable code is a must in this case as

the prototype which gets generated can be used as the base code for a project.

5.5. Top level design architecture

As the figure shown in below, top level design architecture of the system consists of 4

main modules. Which is the file manager module, schema processing module, language

driver module and the seed project which contains all the necessary seed files for

generating the prototype.

Figure 5-3 Top level design architecture of the proposed system

36

5.6. Module architecture

As we discussed the proposed prototype generator consisting of 4 main modules. We

will further elaborate on each of these modules

File Manager

Figure 5-4Modules contained in the file manager

File manager consists of 2 major functionalities. System uses file manager module to

watch for file changes and restart prototype building process automatically. This

capability of file manager allows us to introduce real-time prototype generation.

Primary functionality of the file manager is to manipulate files. Namely creating new

files, writing generated code for files, removing temporary files, maintaining the folder

structure, maintain the distribution flow and many other things to file processing.

Schema Processor

Figure 5-5Modules contained in the schema processor

Schema processor is the heart of the proposed system. This consists of 4 main

functionalities. JSON parser, Schema parser, API route generator and the Frontend

37

Route generator. JSON parser is responsible for taking file content from the file

manager as input and process the JSON content inside the file. This involves converting

user defined requirement to specific flow data as well as processing data which can be

used to implement the database on top of an ORM. Processed data is then passed in to

different sections of the system which then decides on REST API URLs as well as the

client-side browser navigation (frontend route generator).

Language Driver

Figure 5-6Modules contained in the language driver

Once the processing the schema which user has provided, its then transferred to the

respective language driver. Proposed system is capable of supporting multiple

languages. Client-side application is powered by angularJs. initially backend REST API

is generated using NodeJS using expressJs framework. Each of these languages have a

different language driver. When it comes to the characteristics of this language driver

each of these drivers contains a seed project. This seed project was taken from the well-

defined and stable product source codes. This makes it bullet proof when it comes to

stability maintainability as well as the quality of the generated output. Language driver

modifies the seed project according to the inputs from the schema processor. It also

builds the requirement specific modules and places inside the seed project. Process is

valid for both client-side and the server-side applications. Language drive is also

responsible for generating the customized UI elements with the user input validation

support.

38

Seed Project

Figure 5-7Modules contained in the seed project

As discussed above, seed project is taken from one of the most stable product sources

codes which is available in the market. These seed projects are highly model driver

while following the MVC design pattern. This makes the generated prototype a MVC

model driven application. System also divides the user requirement in to modules. And

it makes it easier to maintain and understand the code easily. This also provides the

support for modular code base architecture. Seed project is also powered by

5.7. Schema based requirement definition

As we discussed before our solution required to find a user requirement definition this

lead us to research on a better requirement definition mechanism. Most of the

researchers which has been conducted was using XML as the requirement definition

language. this makes it much more complicated for a novice user to understand and

learn, because of this complexity. According to the suggestions, which we have got

from the industry experts, we have decided to use JSON as the requirement definition

language because of the routing module we are using which is angularUI router.

39

5.7.1. Application flow definition

Application flow definition is done using JSON. It can define its different states and by

using this angualarJS UI router. By using this module, we can define the state

parameters then and there. The schema file uses natural language which makes it easier

to understand by a non-technical user. each and every state has its own unique ID. user

can define its title as well. if user requires a customized template user defined as well.

another feature which includes in this is that use of child states. Each parent state can

have any number of child states. this makes it the prototype highly customizable. apart

from that users can define on how the data should be displayed in the client side. related

data models can also be defined using flow definition mechanism. We will be

discussing further more on how the application flow definition is implemented in the

implementation chapter.

5.7.2. Data Model Definition

Proposed system requires a data model definition which can be used to generate the

database. according to the research which we have conducted, we identified that not

only data models but also user input validations can also be defined. as well as

appropriate messages and the data types of each of these models can be defined using

data model. another advantage of this data model over previous researches conducted

is that we can also specify the UI element which needs be used on each of the data field

by using this data model. you scan specify the database connection string which will be

used in the generated prototype. Additionally, users can define the relationships

between different data models. at the initial phase, this supports has-one, has-many and

belongs-to relationships.

40

5.8. Generated Prototype

Figure 5-8 Generated prototype top level design

As we discussed previously generated prototype consists of two major sections. first

one is the client-side application the second one is rest API which provides data to

function the client-side application. both of these applications use latest technologies

which allows users to focus more on implementation rather than focusing on different

Technologies. The generated rest API supports mobile authentication as well. this

enable developers a hassle free mobile application implementation. as we discussed

before generated frontend is also powered by Angular JS which is the most popular

single page application Framework for JavaScript nowadays. If users require the front

end in a different Framework it's just a language driver away. initially backend is

powered by node JS. The generated prototype API is built on top of Express JS

framework and also it uses sequelize as the ORM. because of its clever query builder,

we don't have to worry about on how the data is read and retrieved from the database

41

Figure 5-9 Detailed view of the data communication between generated client-side and the server-side application

5.8.1. Generated client-side application design architecture

Following diagram describes on how the client side angularJs application works with

its dependencies as well as the modularized code.

42

Figure 5-10Process of the client-side application working with gulp task runner

5.9. Dependency management, ground up work on generated prototype

A good prototype generator should be able to the most of the ground of work on behalf

of the developer. primary goal of a prototype application is to reduce time taken on

different tasks. when we discuss over good prototyping tool, we can characterize it over

set of highlighted functionalities which it should provide,

43

5.9.1. Version controlling

Proposed solution provides out of the box version controlling system which supports

integration with popular services such as bitbucket or GitHub. It is always

recommended to use version controlling on a project before even starting up the project.

This is one of the features which was not included in most of the researches which we

have read on.

5.9.2. Dependency management

For this product, we have used npm as our dependency manager. because this solution

is built using node JS. apart from that the prototypes which gets generated are also using

its own dependency managers. client-side application uses bower as its dependency

manager. this is the most popular dependency manager for client-side web applications

with Angular JS version 1. generated rest API is built using node JS and it uses npm as

the dependency manager. usually setting up these dependency managers, installing as

well as deciding on the required dependencies takes around 5 to 12 hours depending on

the project complexity. We have bundled up all the required dependencies inside these

generated prototypes. this makes sure developers can focus on implementing the

solution rather than spending extra time on initial set up time.

5.9.3. Compiling and building

Even though we use JavaScript with node JS, JavaScript is outdated now and the new

version of the JavaScript is the ES 6. To support ES6, we use babel as the superscript

of JavaScript which later automatically gets compiled into JavaScript. For the client

side application, we use typescript which is also a superscript JavaScript and industry

accepted coding standard for front end web applications. Using typescript, we get an

easily maintainable code.

44

5.9.4. Testing and continuous integration

For making the building and continuous integration process faster we use gulp task

runner [26] in the generated prototype. And as the testing framework on generated

prototype, it gets generated using mocha and chai testing frameworks.

5.10. Summery

In this chapter, a detailed description the system design has been discussed. Usage of

different technologies was also mentioned in this chapter. In the next chapter, we will

be discussing about the implementation of the proposed system according to the designs

which we have discussed

45

Chapter 6

6. Implementation

6.1. Introduction

In the previous chapter, we discussed about the full picture of the entire solution and

we discussed system architecture of the proposed solution. In this chapter, we look in

to our solution implementation. Proposed solution consists of four major modules and

we will be discussing on how these modules are implemented as well as this chapter

will be discussing on the implementation of the generated prototype.

6.2. Overall solution

Overall solution has been implemented as an open source application that can be

accessed by any client running on any OS including Windows, Linux or MacOS. The

built prototype applications are based on client-server architecture. And it supports

multi language as well as multi-platform code source generation.

6.3. Implementation of the Solution

Proposed solution is a collection of software modules, in which each module consisting

different sub modules. These modules are using different technologies, mentioned in

the technology chapter (chapter 3) to achieve its goal and pass the results to the next

module. Final outcome of the solution is a prototype web application source code

which is generated using user defined output language (PHP, NodeJS, etc.).

46

6.3.1. Preparation

Before starting of the implementation all the ground up work was done as we discussed

in the previous chapters. Such as setting up version controlling setting up build

processes, setting up testing mechanism, etc. Finding good seed projects for language

drivers was also a pre-preparation task as the generated prototype needed number of

fine tuning rounds. Study on REST APIs was also conducted before beginning the

implementation of the proposed solution. This helped us on designing fully featured

and secure seed project for server-side application.

6.3.2. Programming

For programming, we have used the Visual Code IDE which provides set of

comprehensive tools to work with in open source projects. And it runs on any platform.

System was implemented using node js. Nodemon plugin was to automatically restart

the servers on code changes. For easy data manipulation on database we have used

PHPMyAdmin which provides easy access to the database. For running mysql server

we have used ampps server.

6.4. Requirement definition processing stored in schema files

As we discussed during design chapter, two requirement definition schema files were

proposed. According to the design of the system we have implemented the schema

structure. One for defining the flow of the system. And another one for defining the

data models of the system. Both are described in detail below,

6.4.1. System flow definition mechanism

As shown in the following code snippet, it shows a sample application flow definition

for a small library management system. Using this file user can define its different states

47

also we can define the state parameters. The schema file uses natural language which

makes it easier to understand by a non-technical user. each and every state has its own

unique ID. user can define its title as well. if user requires a customized template user

defined as well. another feature which includes in this is that use of child states. Each

parent state can have any number of child states. this makes it the prototype highly

customizable. apart from that users can define on how the data should be displayed in

the client side. related data models can also be defined using flow definition

mechanism.

48

{

 "id": "main",

 "title": "Welcome to FES (Forward Engineering System)",

 "template": "welcome.html",

 "linksTo": [

 "main.home"

],

 "children": [

 {

 "id": "home",

 "title": "Library System Home",

 "template": "home.html",

 "linksTo": [

 "main.authors",

 "main.books",

 "main.users"

]

 },

 {

 "id": "authors",

 "title": "Book Authors",

 "linksTo": [

 "main.home"

],

 "sections": [

 {

 "title": "Users",

 "useModel": "user",

 "for": "list",

 "display": "list"

 }

]

 },

 {

 "id": "books",

 "title": "Library Books",

 "linksTo": [

 "main.home"

]

 },

 {

 "id": "users",

 "title": "System Users",

 "linksTo": [

 "main.home",

Figure 6-1Sample Application Flow Definition Schema

49

6.4.2. Data Model Definition

{

 "name" : "FES DB Schema",

 "connectionString": "mysql://root:mysql@localhost/fes",

 "models": [

 {

 "name": "user",

 "fields": [

 {"name": "firstname", "type": "String", "element":"text", "vali-

dation": {"required":"Firstname is required"} },

 {"name": "lastname", "type": "String" , "element":"text"},

 {"name": "address", "type": "Text" , "element":"textarea"},

 {"name": "email", "type": "Text" , "element":"textarea", "valida-

tion": {"email":"Valid email should be entered", "required":"email is re-

quired"}},

 {"name": "age", "type": "Number" , "element":"text"},

 {"name": "gender", "type": ["Male","Female"] , "element":"check-

box"},

 {"name": "city", "type": ["Colombo", "Moratuwa", "Panadura",

"Mount Lavinia", "Kandy"] , "element":"select" }

]

 },

 {

 "name": "permission",

 "fields": [

 {"name": "name", "type": "String" },

 {"name": "value", "type": "String" }

],

 "relationships": [

 {

 "type": "hasOne",

 "model": "user",

 "as": "user",

 "reversAs": "permission"

 }

]

 },

 {

 "name": "author",

 "fields": [

 {"name": "firstname", "type": "String" },

 {"name": "lastname", "type": "String" },

 {"name": "country", "type": "String" },

 {"name": "male", "type": "Boolean" }

]

 },

Figure 6-2Sample Application Data Model Definition Schema

As shown in the above figure we have implemented a model definition mechanism

which is capable of defining the data models related as well as each field of it, data

type, UI element which needs to be used in UI generation, input validation as well as

50

the proper messages for input validations. according to the sample code provided

relationship between data models can also be defined.

6.4.3. Seed projects

Figure 6-3Generated prototype structure

Shown above is the generated application structure. You can see that generated

prototype for frontend consist of source folder dependency management folder which

are node_modules and bower_components. inside the source folder we have the

modules folder which need to be modified by the developer for customized business

logic. language driver copies generated modules inside the model’s folder. additionally,

generated prototype Support Technologies such as SASS, webpack, HTML5 and

translations as well.

6.5. Language drivers for source code generators

Language driver plays a major role in generating the source code for the prototype.

51

6.5.1. Multiple server-side languages support

Our implementation support for multiple languages though initially it supports for

NodeJS only. Following figure is the structure of the language driver.

Figure 6-4 Language Driver Structure

As you can see language driver consists of seed project, UI element generator as well

as the module builder.

Figure 6-5Language Driver Constructor

Constructor of each of these language drivers takes the processed schema files as inputs

and uses them for code generation.

52

6.5.2. Modularized architecture

Generated prototype follows the modularized architecture.

Figure 6-6Example of generated modularized architecture

As you can see for each of the state which has been defined in the flow definition file,

it has created a separate folder as a module. Each of these modules contains the routing

data UI elements as well as styling information with it.

53

Figure 6-7Generated UI source code based on data model

This figure shows how the UI input elements are generated based on the definition of

the data model schema.

6.6. Generated sample user interfaces

Figure 6-8Sample generated UI

54

Figure 6-9 Sample generated UI

6.7. Summery

This chapter was about implementation of the proposed solution. It described about the

implementation of the major modules that it has and about the functionalities which

each module is equipped with. Next chapter will describe on how the evaluation was

done of implemented system and the details of whether the objectives have been

achieved using test cases. Further it’ll discuss on drawbacks and limitations of the

implemented system.

55

Chapter 7

7. Evaluation of the solution

7.1. Introduction

In this chapter, we will be discussing about how the implemented solution was

evaluated using two case studies namely case study 1 feasibility for a library

management system and case study 2 – service oriented prototyping support stated

below. These two case studies were developed in order to evaluate the implemented

solution. Apart from evaluation based on case studies, another observation based

evaluation was also conducted among set of developers. This chapter will also discuss

on how the data was gathered and how it was analyzed using the observation method

and has been compared with previous daily work carried out by the developers and their

experience after implementing with our system.

7.2. Case study 1 – Feasibility for a library management system

7.2.1. Problem definition

The first case study which we have conducted is a generation of a simple library

management system. This library management system is consisting of users, books,

authors as well as staff. Users should be able to borrow 1 or more books. Each book

has an author. And staff can manage users, books. Staff plan to implement a mobile

application in the future. For the same purpose.

56

7.2.2. Requirement analysis

Above mentioned system and its requirement should be full filled. Proposed system

should contain CRUD functionality for users, books and its authors. Relationships

should properly be mapped and data integrity should be maintained. According to the

scenario it is a plus point if the generated prototype can be used with mobile application

development as well. To support this, it should generate a REST API.

7.2.3. Design and Implementation

Building up the prototype process was observed under three circumstances. which are,

hand coding the library management system. Using a crud automation system and

thirdly using our fast prototyping tool. Observation on each implementation approach

was conducted. And results were collected based on predefined evaluation criteria.

7.2.4. Evaluation

Method

To complete the evaluation, set of evaluation criteria were decided which was used to

evaluate the solution. After that a critical evaluation based on these evaluation points

were being conducted.

57

Results

Evaluation Manual Coding Popular CRUD

automation

systems

Our fast

prototyping tool

Customized flow

generation

Customized flow

generation is not

possible.

But any flow can

be hand coded.

Time taken on this

task is pretty high

Customized flow

generation is not

possible.

Only CRUD

operation interfaces

are generated

Yes. Customized

flow can be

generated.

Model-Driven

architecture

Yes. Model driven

approach is

possible.

Again, the time

taken on

programing to

support model-

driven architecture

is high.

Yes.

Was very fast in

generating the code

with necessary data

models

Yes.

Was very fast in

generating the code

with necessary data

models

MVC design

pattern

Yes. time taken on

programing is

high.

For Some CRUD

generators, Yes.

Was very fast in

generating the code

Yes.

Was very fast in

generating the code

Relationship

mapping and

ORM support

Yes. time taken on

programing is

high.

For Some CRUD

generators, Yes.

Was very fast in

generating the code

Yes.

Was very fast in

generating the code

Server-side

REST api

support

Yes. Research and

following best

practices takes a

very long time.

And experienced

developers

No Yes.

Was very fast in

generating the code

Industry

accepted

framework usage

Yes. Again,

developer needs to

research on coding

and best practices

as well as setting

up the initial

development work

No. except very few

researches

Yes.

Was very fast in

generating the code

58

Time spent on

the project

3 days. This

included initial

ground up work.

Setting up and

installing

dependencies.

And various other

initial state tasks

which we have

discussed in this

thesis

Generation of crud

completed in about

2 hours. But again,

time had to spend

on setting up the

project as well as

customizing the

generated code to

support related data

manipulation. This

extended the time

taken by using a

CRUD automation

time to 1.5days

Using the

prototyping tool

which we have

developed. Complete

system was able

generate in 20

minutes.

Customization to the

UI as well as fine

tuning the generated

code took about

another 1 hour.

Which makes it a 2

hours maximum to

generate the required

prototype.
Table 7-1Evaluation conducted in the case study 1

As expected manual code took the longest time which is about to complete the project.

Because they worked in a traditional way and was not using the modern technology.

CRUD automation systems were quick in automating the CRUD automations but they

were lagging behind when it comes to

7.3. Case study 2 – Service Oriented Prototyping and Code generation

Case study 2 was conducted based on service oriented prototyping capability of the tool

which we have proposed. Main goal of this research is to reduce the time taken of

different tasks. Apart from that it should be able to use by a novice user. And simplicity

is the key.

7.3.1. Problem definition

Usually a client meeting is conducted by a business analyst or a project manager where

they get the requirement from the client and pass it on to tech leads and developers. To

clear up the requirement multiple client meetings are conducted. Some times when a

developer is available they can take the developer with them. Where the developer also

59

gets requirement and check for the technical feasibility of the client requirement. Goal

is to achieve this without spending the time of a developer on a client meeting. In this

purpose, there should be a prototyping mechanism where anyone can generate a

prototype using a simple tool and show it to the client and get the confirmation then

and there. Even without setting up a prototyping tool in the local machine itself. Cloud

based solution is preferred.

7.3.2. Requirement specification

According to the scenario, there should be a prototyping tool which runs on the cloud.

Which should allow people to prototype and download the generated source code which

can then be run on a local machine.

7.3.3. Design and implementation

Same as the previous case study, an evaluation was done by comparing two available

products. We tried to create prototypes using available cloud based solutions and tested

the capabilities. Generation of above mentioned library management system is the goal.

7.3.4. Evaluation

Method

Evaluation was done by evaluating the 2 available products under different criteria’s

which are mentioned below.

• Invision [27]

• ProtoIo [28]

• MockUps [29]

60

Results

Unfortunately, none of the research papers which we have evaluated in the literature

review does not support cloud based prototyping. In this case we will be evaluating our

tool with other prototyping tools which are available in the market with cloud support.

Evaluation Other available tools Our fast prototyping tool

Support for automatic

code generation

No. any of the available

online prototyping tool

does not provide a

functionality to

generate automatic

code generation

Yes

Support for customized

flow definition

Yes. Even though they

don’t have automated

code generation tools

which are available,

capable of handling

customized flow

generation. This is only

for client-side

Yes. For both client-side and

server-side

Automating CRUD

operations

No Yes

Interactive designer Yes. All of these tools

interactive designer

which mostly focuses

on customized UI

No. our proposed system

doesn’t include an interactive

designer at the moment

All the evaluations

from the case study 1

No Yes

Time taken on

generating a prototype

Users were able to

generate a prototype in

about 3 hours and they

mostly spend time on

designing the UI.

People were able to generate

and download the application

in about 20 mins.

Though they needed to install

dependencies separately once

the project is downloaded.

UI was not customizable as

much the other tools which we

used.
Table 7-2 Evaluation Conducted in the case study 2

We identified that a prototyping tool which works on cloud is a requirement which

needs to be fulfilled. None of them were able to generate a REST API or CRUD

61

operations which is a must for developers who are working in the industry. Research

improvements also identified such as interactive designer.

7.4. Other evaluations

Here we will discuss on evaluating the implemented solution in other ways. And the

evaluation method is observing the usage of real world developers using the system to

generate the first level (application prototypes) of the code of their client projects. This

will go through the test cases which were used to evaluate the system. Further we will

discuss whether the system meets the goal and objectives that we have discussed earlier.

In addition, we will discuss about the performance and the time reduced by the

developers of their day to day repetitive work and how it has contributed to their work

positively while increasing the efficiency and effectiveness of the projects they have

undertaken.

7.4.1. Participants

Redot Pvt Ltd

Redot Pvt Ltd was founded in 2012 in Sri Lanka and is a blooming IT firm which

delivers services to its clients in the fields of web applications and mobile applications

virtually. It serves SME around the world and satisfies customers around the globe.

Since most of the clients are from Singapore it has been already registered in Singapore

as well. The services they deliver includes developing, designing, integrating and

maintaining web services, mobile applications, Search engine optimizing, network and

security and graphics.

The main participant of the evaluation of the project was a team of 10 developers from

Redot Pvt Ltd in which most of them were from web application development

background and working on web application projects by the time this evaluation was

done. All the participants are having an experience ranging from 2-8 years in the

62

industry and five developers out of ten are currently reading for their Master of

Information technology having completed their first degree. The above-mentioned

developers constantly expose themselves to the new updates and knowledge circulated

in the industry and tries to incorporate these in their related work fields to make their

work more user-friendly and convenient for the customers they serve.

Effro Pte Ltd

Effro is an on-demand talent marketplace which helps searchers who look for talents in

different performances to find the required talent easily. It helps event planners find

specific talents for every event, whether it’s the conventional, emcees, dancers, models

or singers or the unique tarot card readers, parkour performers or fire eaters. Effro is

basically a registered company in Singapore and now serves it clients virtually allowing

many people to access talents all over the world.

The software system which was generated using prototyping tool was tested by four

testers from Effro Pte Ltd thus helped to evaluate it from different perspectives and

allowed to bring different ideas and suggestions to make this project a success.

Ranomark Pvt Ltd

Ranomark International Pvt Ltd is a medium scale total IT solution providing company,

working to help small, medium and large size businesses to be successful on the web.

With expertise in all aspects of online business, they help to create a plan to make the

web site a highly effective aspect of the business.

Ranomark has passionate designers, developers, and strategists with an insatiable thirst

for building amazing products. They work with clients to develop new products, rebuild

older applications and create prototypes. Their primary proficiencies are in HTML,

PHP, CSS user experience design and mobile development.

A group of two developers and a tester was used to check the validity of the software

system generated using our prototyping tool and their feedback on the same was taken

into account when making the final adjustments to the prototyping too

63

7.4.2. Testing environment

Development Environment

The software systems generated using the prototyping tool was developed by the

developers of both Redot Pvt and Ranomark Pvt Ltd. The two teams tried to generate

different software systems and also tried to figure out the scenarios in which the systems

were capable of delivering the desired output and also the scenarios which failed to

deliver the desirable outputs. They tried using the systems to test different test cases in

different projects so that it will help the system to be evaluated in different aspects.

Testing Environment

Testing was done in office work environment. And the pre-installation of the project

(cloning GIT repository powered by bit bucket) was done before the beginning of the

project and no language specific setups or modification was done since FES handles

these tasks.

Testing was done by Effro Pte Ltd and they tested the adaptability, quality, installation,

real time performance of the generated software which was generated using FES.

7.4.3. Test cases

Deferent test cases and methods were used while doing the research evaluation.

Time Saving

• 2 project teams were chosen from redot pvt ltd with same capabilities and

knowledge.

64

• Each team was given set of tasks to perform

o Task 1 - Setting up the project

▪ Enabling version controlling

▪ Initiation of the project

▪ Setting up the dependency managers

▪ Installing dependencies

▪ Setting up environments

o Task 2

▪ Add a CRUD operation for user module

▪ Write test cases for each endpoint

▪ Follow industry accepted coding standards

o Task 3

▪ Modify the CRUD operations to support data manipulation

with relationships while maintaining data integrity. Ex: user

hasMany permissions

• Team 1 was equipped with Our Prototyping tool and the other team was

following their day to day development tasks to achieve the same goals

• After 20 mins, team 1 was able to complete all 3 tasks and team 2 was still at

setting up dependency managers.

• To complete all 3 tasks team 2 took more that 5+ hours

This test case shows us that the prototyping tool reduces the time taken for day to day

and repetitive tasks by very high amount. This saves lot of time and money for the

company.

Cost Saving

As mentioned above time taken for programming has reduced by 3000% which is a

considerable amount and the man hours which was saved is around 10 since 2

developers were in a team.

Estimated cost saving for the company is around 14000LKR from those 3 tasks only.

65

Generated code quality check

Developers from ranomark pvt ltd was examining the generated source code and agreed

that the generated source code follows industry standards. But it was generating some

segments which wasn’t required by the client. It had to remove manually by the

developer.

Error free/ minimal error code

The prototyping tool generates the test cases for each of the endpoint which it generates.

Developers tried to run these test cases and most of the time all of the test cases passed

which suggest that the prototyping tool is generating code with minimal errors.

Handling data integrity

This tool is capable of generating model relationships and it had no issues in generating

the required UI which involved multiple data models. It was capable of handling data

integrity and run validation based on these data model dependencies

Data collection

Data was mainly collected through observations while the developers were engaged in

developing the systems using the prototyping tool in the above mentioned developing

environment. They were being mainly observed on the below categories such as

• the time they spent on coding the initial set up

• cost linked to the development

66

• employee engagement when using the systems developed using the prototyping

tool

• efficiency and effectiveness of the projects carried out

• the extent of errors and malfunctions of the systems developed.

Personal Feedbacks

Personal feedbacks were taken from developers and testers from Redot Pvt Ltd,

Ranomark Pvt Ltd and Effro Pte Ltd since they were the main developers who tested

the systems which were generated using the prototyping tool. Their personal feedbacks

also helped a lot to improve this project as they are also familiar with the latest

technology used in the industry and also equipped with knowledge and the skills needed

to develop the required sophisticated web applications and mobile applications.

7.4.4. Data analysis

Time spent on initial Set Up

It was observed that it would normally take a minimum of two weeks to finish off the

initial set up of a project through manual coding depending on the requirements of a

project. But by using the prototyping tool, the developers would be able to generate the

initial Set Up in no time since that work is done by the prototyping tool automatically.

Because of this, the time spent on the projects can be reduced and the developers can

focus on other important functions of a project related to web development and mobile

applications and save time for more complex problems arising in a project.

67

Cost related to the development

Since the manual coding requires a lot of time, resources and human capital when a

project is being evaluated, a substantial amount of cost would be assigned to developers.

But by using the prototyping tool the time taken can be reduced immensely thus allow

the organizations to reduce the cost as well, because in a business time is considered as

cost. And if the time can be reduced the cost also can be reduced. Since the developer

can show the initial setup of the project to the end user during the first meeting itself it

reduces the number of revisits to the end user and it helps to maintain a good

relationship with the customer as well since it allows for both parties to be clear on the

end deliverables from the first meeting itself.

Reduction of repetitive work

When a software system is developed, it involves lot of repetitive manual coding which

can be different from project to project depending on the requirements of the project.

The repetitive work will negatively affect the programmer as well since the same code

has to be repeated over and over again. This will lead to monotonous work and it will

directly affect the efficiency and the effectiveness of the project itself. Prototyping tool

generates the CRUD operations of the generated system intelligently and as we have

mentioned earlier, through the prototyping tool number of repetitive work has been

reduced considerably and programmers were able to focus more on other important

development and deployments tasks such as handling business logic, optimizing source

code, optimizing performance and improving the UI generated of the project.

7.5. Aim

The main aim of this project is to reduce the time taken for repetitive development tasks

while maintaining a good healthy code. Which ultimately lead to successful projects.

68

7.6. Objectives

• Generate the software source code same as a web application generator

• Automate the CRUD source code generating system

• Generate the flow of the system

• Support multiple front end and back end languages

• Support multiple databases

• Generate the source code which follows industry standards

• Generate test cases

• Allows project team members a cloud based prototyping solution

7.7. Drawbacks and limitations

Since the prototyping tool generates code automatically for the software required, it

leaves less or no room for syntax errors and the codes generated are in par with the

industry standards. It helps the developers to be more flexible and helps them to be

more innovative and to go for that extra mile to satisfy their customers since it allows

them feel more relaxed.

One drawback which was noticed from the developers was that it generates API

Endpoints for all possible scenarios which sometimes is unnecessary. Developers had

to remove these code segments manually to improve code quality further.

Another drawback which was noticed was that it cannot handle much complex

scenarios since this project is an initial foundation a prototyping tool in which

improvements can be laid on going forwards.

69

7.8. Summery

This chapter fully discussed about the evaluation and the testing of the system according

to the aim and objectives defined. Results of this evaluation were given to managing

director at Redot Pvt Ltd. Next chapter will discuss on the conclusion and further works

of the project.

70

Chapter 8

8. Conclusion

8.1. Introduction

Overall achievement of the Service Oriented Fast Prototyping based on requirement

definition schema is completed and successful. Following are the tasks which was

targeted by the system.

• Automated CRUD generation

• Automated application flow generation

• Automated user input validation for the generated code

• Automated application UI elements

• Automated application routing mechanisms

• Supporting multi-platforms and multiple databases

• Generate multi-language code

• Generation of testable and reusable code

• Allow cloud based prototype generation

8.2. Conclusion

Building a Service Oriented Fast Prototyping based on requirement definition schema

was achieved successfully. By studying how the users of the system is interacted we

can see that it can reduce their project starting up time greatly.

I’m pleased to mention that I’ve gone through various validation mechanisms, open-

source code generation tools, software code best practices. Latest technologies such as

angular4. As a result, I’m now an experienced angular4 developer and getting a high

demand at my work place as well.

71

By doing this research, my coding skills improved since the code which was generated

by the system had to match the industry standards and developer friendly. I’ve learnt

about open source testing tools which was used to test the generated code.

When it comes to the prototyping tool, it was a really useful project for me as a

developer and for other developers as well. And this prototyping tool quickly became

a popular tool among my fellow colleagues. Three systems are already built by using

this prototyping tool, and 1 project was deployed recently which is

http://www.effro.com .

As a conclusion, Service Oriented Fast Prototyping based on requirement definition

schema was a successful research and achieved its goals. Reducing around 1 – 4 weeks

of work from the development phase.

8.3. Future works

Even though the prototyping tool is generating the code which developers needed,

developer should have some knowledge of programming and write the code in JSON

format as non-technical users require some learning to use this tool. We can introduce

a Designing tool for this project which will generate the JSON schema required by the

prototyping tool. which will make the FES usable for even by a non-technical person.

And this will highly be useful for Business Analysists, Project managers as well as

system designers. And can be introduced for generating fully functional small-scale

applications.

As I mentioned above this prototyping tool requires only 2 JSON schemas and it uses

a simplified language to define the system. We can make it more user friendly by

introducing voice recognition and low-level API which will generate the required JSON

schema for the client requirement. And this will lead to an application which can listen

to user’s requirement and generate a prototype based on that.

Another improvement planned on this is that the interactive designer similar to what

we have found during the evaluation. This will allow users to design their systems more

easily.

http://www.effro.com/

72

8.4. Summery

This chapter provided a conclusion of overall solution achieved by the Research project

named Service Oriented Fast Prototyping code generation based on requirement

definition schema done at faculty of IT at University of Moratuwa and further work as

an enhancement of the current project.

73

References

[1] S. Mbarki and M. Erramdani, “Toward automatic generation of mvc2 web

applications,” ResearchGate.

[2] S. Lazetic, D. Savic, S. Vlajic, and S. Lazarevic, “A generator of MVC-based

web applications,” World Comput. Sci. Inf. Technol. J. WCSIT, vol. 2, no. 4, pp.

147–156, 2012.

[3] M. L. Bernardi, G. A. Di Lucca, and D. Distante, “A model-driven approach for

the fast prototyping of web applications,” in Web Systems Evolution (WSE),

2011 13th IEEE International Symposium on, 2011, pp. 65–74.

[4] R. Cheung, “XFlash–a web application design framework with model-driven

methodology,” Int. J. U- E-Serv. Sci. Technol., vol. 1, no. 1, pp. 47–54, 2008.

[5] P. Vuorimaa, M. Laine, E. Litvinova, and D. Shestakov, “Leveraging declarative

languages in web application development,” World Wide Web, vol. 19, no. 4, pp.

519–543, Jul. 2016.

[6] A. Bulajic, S. Sambasivam, and R. Stojic, “An effective development

environment setup for system and application software,” Issues Informing Sci.

Inf. Technol., vol. 10, pp. 37–66, 2013.

[7] “Auto PHP Codeigniter CRUD | Grocery CRUD.” [Online]. Available:

http://www.grocerycrud.com/. [Accessed: 28-Aug-2016].

[8] “Angular Full-Stack.” [Online]. Available: http://angular-

fullstack.github.io/generator-angular-fullstack/. [Accessed: 28-Aug-2016].

[9] “Rapid mobile app and web application development platform.” [Online].

Available: http://www.webratio.com/site/content/en/home. [Accessed: 28-Aug-

2016].

[10] “Node.js.” [Online]. Available: https://nodejs.org/en/. [Accessed: 18-Dec-2016].

[11] “Express 4.x - API Reference.” [Online]. Available:

https://expressjs.com/en/4x/api.html. [Accessed: 08-Sep-2016].

[12] “JSON Schema.” [Online]. Available: http://json-schema.org/. [Accessed: 18-

Dec-2016].

[13] “Angular.” [Online]. Available: https://angular.io/. [Accessed: 17-Dec-2016].

[14] “Sequelize | The Node.js / io.js ORM for PostgreSQL, MySQL, SQLite and

MSSQL.” [Online]. Available: http://docs.sequelizejs.com/en/v3/. [Accessed:

21-Apr-2017].

[15] “Mocha - the fun, simple, flexible JavaScript test framework.” [Online].

Available: https://mochajs.org/. [Accessed: 21-Apr-2017].

[16] “Chai.” [Online]. Available: http://chaijs.com/. [Accessed: 21-Apr-2017].

[17] Atlassian, “Bitbucket | The Git solution for professional teams,” Bitbucket.

[Online]. Available: https://bitbucket.org. [Accessed: 03-May-2017].

[18] “Visual Studio Code - Code Editing. Redefined.” [Online]. Available:

http://code.visualstudio.com/. [Accessed: 03-May-2017].

[19] phpMyAdmin contributors, “phpMyAdmin,” phpMyAdmin. [Online]. Available:

https://www.phpmyadmin.net/. [Accessed: 03-May-2017].

[20] “WAMP, MAMP and LAMP Stack : Softaculous AMPPS.” [Online]. Available:

http://www.ampps.com/. [Accessed: 03-May-2017].

[21] Mobatek, “MobaXterm free Xserver and tabbed SSH client for Windows.”

[Online]. Available: http://mobaxterm.mobatek.net/. [Accessed: 03-May-2017].

74

[22] “Elastic Compute Cloud (EC2) – Cloud Server & Hosting – AWS,” Amazon

Web Services, Inc. [Online]. Available: //aws.amazon.com/ec2/. [Accessed: 03-

May-2017].

[23] “AWS Elastic Beanstalk – Deploy Web Applications,” Amazon Web Services,

Inc. [Online]. Available: //aws.amazon.com/elasticbeanstalk/. [Accessed: 03-

May-2017].

[24] “angular-ui/ui-router,” GitHub. [Online]. Available: https://github.com/angular-

ui/ui-router. [Accessed: 21-Apr-2017].

[25] “What is RESTful API? - Definition from WhatIs.com,” SearchCloudStorage.

[Online]. Available:

http://searchcloudstorage.techtarget.com/definition/RESTful-API. [Accessed:

28-Mar-2017].

[26] “gulpjs/gulp,” GitHub. [Online]. Available: https://github.com/gulpjs/gulp.

[Accessed: 18-Dec-2016].

[27] “Digital Product Design, Workflow & Collaboration,” InVision. [Online].

Available: https://www.invisionapp.com/. [Accessed: 03-May-2017].

[28] “Proto.io - Prototypes that feel real.” [Online]. Available: https://proto.io.

[Accessed: 03-May-2017].

[29] “Moqups · online mockups made simple.” [Online]. Available:

https://moqups.com. [Accessed: 03-May-2017].

75

Appendix A

Interfaces of the generated prototypes

Figure Dashboard UI view

Figure UI view of a CRUD operation

76

Figure UI components generated for customer listing

77

Appendix B

Source code Segments

import { FileManager } from './file.manager';

import { angularjs } from '../language-drivers/angularjs';

export class FES {

 constructor() {

 this.f = new FileManager();

 }

 init() {

 this.initAppGenerationFlow();

 }

 initAppGenerationFlow() {

 this.getFileList();

 if (this.schemaFiles.indexOf('flow.schema.json') == -1) {

 throw new Error("flow.schema.json not found in schema directory");

 }

 if (this.schemaFiles.indexOf('models.schema.json') >= 0) {

 this.parseModels();

 }

 if (this.schemaFiles.indexOf('models.schema.json') >= 0) {

 this.parseModels();

 }

 this.parseFlow();

 var frontEnd = new angularjs(this.flowJSON, this.modelsJSON);

 }

 getFileList() {

 this.schemaFiles = this.f.getList('schema');

 }

 parseModels() {

 this.modelsJSON = this.f.getJsonFileContent('schema/models.schema.json');

 this.modelsJSON.relationships = [];

 for (var model of this.modelsJSON.models) {

Figure Application initiation code

78

var path = require('path');

var fs = require('fs-extra');

var ejs = require('ejs');

export class FileManager {

 constructor() {

 this.checkForPreviousBuilds();

 }

 checkForPreviousBuilds() {

 try {

 console.log(this.fileMnager.getFileContent('dist/front-

end/package.json'));

 this.doFrontendReplace = true;

 } catch (e) {

 this.doFrontendReplace = false;

 console.log("No Previous Fronend Builds");

 }

 try {

 this.fileMnager.getFileContent('dist/back-end/package.json');

 this.doBackendReplace = true;

 } catch (e) {

 this.doBackendReplace = false;

 console.log("No Previous Backend Builds");

 }

 }

 getList(location) {

 return fs.readdirSync(path.resolve(__dirname, '../../' + location));

 }

 getFileContent(location) {

 return fs.readFileSync(path.resolve(__dirname, '../../' + location),

'utf8');

 }

 getJsonFileContent(location) {

 return JSON.parse(this.getFileContent(location));

 }

 rename(oldname, newname){

 fs.renameSync(path.resolve(__dirname, '../../' + oldname),

path.resolve(__dirname, '../../' + newname));

 }

Figure File Manager Code

79

import { FileManager } from '../../lib/file.manager';

import { ViewGenerator } from './view.generator';

export class angularjs {

 constructor(flow, models) {

 this.flow = flow;

 this.models = models;

 this.app = {

 modules: []

 };

 this.topLevelModules = [];

 this.viewGenerator = new ViewGenerator(this.models);

 this.fileMnager = new FileManager();

 if (!this.fileMnager.doFrontendReplace) {

 this.copySeed();

 }

 this.generateModuleFiles();

 }

 copySeed() {

 this.fileMnager.copyFiles('src/language-drivers/angularjs/seed/project/',

'dist/front-end/');

 }

 generateModuleFiles() {

 this.generateModule(this.flow);

 //this.fileMnager.delete('dist/front-end/src/client/app/modules/');

 //write module files

 for (let m of this.app.modules) {

 if (m.id != 'main') {

 for (let f of m.files) {

 this.fileMnager.createOrOverwrite('dist/front-

end/src/client/app/modules/' + m.path.replace(m.id, '') + '/' + m.id + '/' +

f.file, f.content);

 }

 }

Figure Language Driver for Angular (sample code)

