LB/DON/10/04

APPLICATION OF UNSATURATED SHEAR STRENGTH PROPERTIES IN SLOPE STABILITY ANALYSIS

Ranukkandage Mahinda Rathnasiri

Thesis submitted in partial fulfillment of the requirements for the Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

UM Thesis coll.

79574

624 ^N 03 "

623.121

Sri Lanka

December 2003

DECLARATION

.

5

rir

5

بع

The work included in this thesis in part or whole has not been submitted for any other academic qualification at any institution.

P. Shuain

Signature of the Candidate

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Certified

UOM Verified Signature

Signature of the Supervisor

ABSTRACT

Unsaturated soil mechanics is becoming increasingly popular in the world of Geotechnical Engineering due to the additional shear strength that unsaturated soils possess compared to saturated soils and specific problems that are associated with unsaturated soils. In this thesis, unsaturated shear strength properties of a selected residual soil are derived and their effects on the stability of slopes are investigated.

The shear strength function and the Soil Water Characteristic Curve (SWCC) of the soil found at Pussallawa landslide are developed through a laboratory testing programme. Thereafter, the Pussallawa landslide is analysed under saturated and unsaturated conditions depending on the location of the water table, using shear strength parameters obtained from the laboratory testing programme. In addition, the Kahagalla landslide and a hypothetical cut slope are analysed similarly assuming different locations of water table. An EXCEL spreadsheet is developed to analyse stability of slopes using saturated and unsaturated shear strength of soils.evel Morenews. Sti Lanka

a unsaturated shear strength of solls, estivor Moraluwa, sri Lanka.

Results obtained for the hypothetical cut slope by the spreadsheet application developed here are compared with those given by the SLOPE/W software, using different methods available to analyse stability of slopes. This yields a comparison among the different methods of slope stability analysis. Results are presented in graphical and tabular form.

As it is difficult to measure insitu suction values in local slopes at present, the parametric study done here gives an insight into the problem of landslides. This method can be refined to find a reliable factor of safety for slopes once methods are developed locally for insitu measurement of suction.

The analysis shows that there is a significant improvement in the factor of safety when the slopes are unsaturated, compared to that when they are saturated and the factor of safety under unsaturated conditions increases as the depth to water table from the failure surface increases. It also shows how slopes can fail upon saturation.

I

ACKNOWLWDEMWNT

7

Among those who deserve credit for the assistance extended during the research programme, Dr. U.G. A. Puswewala, who proved an excellent supervisor to work with, has given me encouragement and inspiration throughout the process. Dr. Puswewala has been thorough and supportive as a supervisor and has been an excellent guide as well. His devotion in the subject of unsaturated soil mechanics is also acknowledged. I wish to acknowledge and express my gratitude to Dr. T. A. Peiris, who found time to supervise me throughout the study period notwithstanding the duties he is performing as the head of the Department of Computer Science and Engineering in the University of Moratuwa. My gratitude is extended to Professor B.L. Tennakoon and Dr. S.A.S. Kulathilaka from whom I garnered insights and suggestions during the progress reviews and in some specific areas.

The assistance received from Mr. K.R. Pitipanaarachchi, technical officer, Mr. D.G.S. Vithanage, technical officer and Mr. D. Bandulasena, lab assistant, of the Soil Mechanics Laboratory of the University of Moratuwa, during the laboratory-testing programme is acknowledged. I would like to acknowledge the assistance extended by Mr. D.C. Karunarathna and Mr. R. Kugan, research assistants and Mr. H.A.A.Gunawardane, lab assistant of the Surveying Laboratory for performing the field survey at Pussallawa landslide.

University of Moratuwa, Sri Lanka Electronic Theses & Dissertations www.lib.mrt.ac.lk

Credits need to go to Mr. D.L.C. Welikala, Director, Geotechnical Engineering Division, in the National Building Research Organization (NBRO) for allowing and facilitating the performance of consolidated undrained triaxial tests in NBRO. Thanks are also due to Mr. Asiri Karunawardhana, engineer Mr. Chandima Ahangama, lab assistant, Mrs. Gayani Samaradiwakara, scientist, and all the staff in the soil mechanics laboratory in NBRO for the assistance extended during the testing programme.

During the field visits to see the landslides and remedial measures that have been adopted to stabilize them, Mr. Aamarasekara, the Provincial director of RDA for the Uva province did an excellent job by providing transport and giving all the necessary data.

Many thanks are due to University of Moratuwa for the services provided during the research and to the Asian Development Bank and the Ministry of Science and Technology, Sri Lanka for funding this research through the Science and Technology Personal Development project.

Ranukkandage Mahinda Rathnasiri 06/01/2004

CONTENTS

Page

ABSTRACT	i
ACKNOWLEDGEMENT	ii
CONTENTS	iii
List of Figures	iv
List of Tables	vi
List of Annexes	vii

1.0 INTRODUCTION

۰.

¥

4

+

1.1	Emergence of Unsaturated soil Mechanics	1
1.2	Unsaturated soils and Stability of Slopes	2
1.3	The Scope of Work and Objectives	9
1.4	The Organization of Research and Thesis	11
	However, and the second sec	

2.0 LITERATURE REVIEW

2.1	Theory of Unsaturated Soils	12
2.2	Phases in Unsaturated Soils	12
2.3	Stress State Variables	14
2.4	Shear Strength Failure Criterion of Unsaturated Soil	14
2.5	Soil Water Characteristic Curve	16
2.6	Background to Slope Stability Analysis Using Unsaturated Soil	
	Strength Properties	20

3.0 DEVELOPMENT OF SHEAR STRENGTH FUNCTION AND SWCC FOR SOIL AT PUSSALLAWA LANDSLIDE SITE

3.1 Testing Programme	28
3.1.1 Sample Selection	28
3.1.2 Basic Soil Tests	28
3.1.3 Triaxial Testing Programme on Unsaturated Samples	28
3.1.4 Triaxial Testing on Saturated Samples	31
3.2.0 Analysis of Results	31
3.2.1 Results of Basic Soil Tests	31
3.2.2 Results of Triaxial Tests on Saturated Samples	29
3.2.3 Developing Unsaturated Shear Strength Function	32
3.2.4 Developing Soil Water Characteristic Curve (SWCC)	34

4.0 SLOPE STABILITY ANALYSIS

r

4

4.1Analysis of Pussallawa Landslide	38
4.2 Analysis of Kahagalla Landslide	46
4.3 Analysis of Hypothetical Cut Slope	51
5.0 CONCLUSIONS	57
6.0 REFERENCES	61
7.0 ANNEXES	
7.1 ANNEX A	64
7.2 ANNEX B	88

	LIST OF FIGURES	page
Figure 1.1	Suction measurements in a weathered rhyolite in Hong Kong	3
Figure 1.2	Illustration of relationships between water content, soil suction and	
	coefficient of permeability	5
Figure 1.3	Removing water from landslide hazardous area in Beragala landslide	6
Figure 1.4	Naketiya landslide site	7
Figure 1.5	Remedial measures that have been taken to stabilize Walhaputhenna	
	(RoseGuarden) a landslide	7
Figure 2.1	Surface tension phenomenon at the air water interface.	
	(a) Inter-molecular forces on contractile skin and water;	
	(b) pressure and surface tension acting on a curved two-dimensional	
	surface.	12
Figure 2.2	The effect of pore pressure on soil suction	13
Figure 2.3	Extended Mohr-Coulomb failure criterion for unsaturated soil	
	(a) Failure plane in 3D space	
	(b) shear strength vs matric suction relationship.	16
Figure 2.4	Approaches that can be used in the laboratory to determine the	
	unsaturated soil properties.	18
Figure 2.5	Definitions of variables associated with the soil water characteristic curve.	19
Figure 2.6	Forces acting on a slice in Jambu's simplified method.	23
Figure 2.7	Chart to get the correction factor in Jambu's method of slope stability	
	analysis.	24
Figure 2.8	Forces acting on each slice for a slope stability analysis. (a) Circular	
	failure surface (b) Composite failure surface	25
Figure 3.1	Modified triaxial setup to test unsaturated soil samples.	
	(a) Full triaxial apparatus	
	(b) a sample mounted on triaxial apparatuse.	30
Figure 3.2	Grading Curve	32
Figure 3.3	Deviator stress vs axial strain graphs for five matric suction values	33
Figure 3.4	Failure patterns of triaxial samples	33

٦

Figure 3.5	Deviator stress vs axial strain graphs for three tests done at matric	
	suction value of 200kPa.	34
Figure 3.6	Failure surface projected onto the shear strength vs net normal stress	
	plane	35
Figure 3.7	Intersection line between the failure envelope and the shear stress vs	
	matric suction plane at zero net normal sterss	36
Figure 3.8	Soil Water Characteristic Curve (SWCC) for soil at Pussallawa	
	Landslide	37
Figure 4.1	Schematic diagram of Pussallawa landslide	38
Figure 4.2	Section showing subsurface profile of Pussallawa landslide site	40
Figure 4.3	Factor of safety variation with depth to water table from failure surface	
	for parameters obtained from lab tests for Pussallawa landslide.	43
Figure 4.4	Combination of shear strength parameters that give factor of safety of 1	44
Figure 4.5	Factor of safety variation with depth to water table from failure surface	
	for assumed parameters for Pussallawa landslide	45
Figure 4.6	Section showing the subsurface profile of the Kahagalla landslide	46
Figure 4.7	Factor of safety variation with depth to water table from assumed failure	
	for parameters from laboratory tests for Kahagalla landslide	48
Figure 4.8	Combination of c' and ϕ ' that give FOS of 1	49
Figure 4.9	Factor of safety variation with depth to water table from trial failure surface	e
	for assumed parameters for Kahagalla landslide	50
Figure 4.10	Hypothetical cut slope and the failure surface given by SLOPE/W	
	computer package when analysed under saturated conditions	52
Figure 4.11	Variation of factor of safety with the percentage of negative hydrostatic pressure for hypothetical cut slope.	54
Figure 4.12	Factor of safety variation with the matric suction profile for a cut slope At Fung Fai Terrace in north central part of Hong Kong Island	55
Figure 4.13	Factor of safety variation with depth to water table for hypothetical cut	55
	slope	56

X

VI

LIST OF TABLES

L

4

-

+

Table 3.1	Set of stresses used in triaxial tests	31
Table 3.2	Results of the basic soil tests	32
Table 3.3	Moisture Contents and Corresponding Matric Suction Values	36
Table 4.1	Variation of factor of safety with the location of water table for saturated	
	Analysis	41
Table 4.2	Factor of safety variation of the assumed failure surface when the water table	
	is at different levels for Pussallawa landslide for shear strength parameters	
	obtained from lab tests.	42
Table 4.3	c' combinations that give factor of safety value of 1 from back analysis	44
Table 4.4	Factor of safety variation of the assumed failure surface when the water table	
	is at different levels for Pussallawa landslide for shear strength parameters	
	obtained from back analysis.	44
Table 4.5	Variation of factor of safety with the location of water table for saturated	
	analysis for Kahagalla landslide and these a Dissertations	47
Table 4.6	Factor of safety variation of the assumed failure surface when the water table	
	is at different levels for Kahagalla landslide for shear strength parameters	
	obtained from lab tests.	47
Table 4.7	Combination of c' and ϕ ' that give a FOS of 1 from back analysis	49
Table 4.8	Factor of safety variation of the assumed failure surface for Kahagalla	
	landslide when the water table is at different levels for assumed shear strength	
	parameters	50
Table 4.9	Summary of the analysis of the hypothetical cut slope.	51
Table 4.10	Factor of safety variation for the hypothetical cut slope with Depth to water	
	table.	56

Page

ANNEXES

1

+

-

-

-

ANNEX A

Results of triaxial tests on saturated samples	64
Results of triaxial tests on unsaturated samples	65
Graphical analysis of triaxial results	80

Page

ANNEX B

Derivation of the factor of safety equation for unsaturated soils	88
Saturated analysis of Pussallawa landslide	92
Unsaturated analysis of Pussallawa when water table is 5m below water table	95
Unsaturated analysis of Pussallawa when water table is 10m below water table	98
Unsaturated analysis of Pussallawa when water table is 15m below water table	101
Cross section of Kahagalla landslide the of Mershwa. Sti Lanka	104