LB/DON/10/04

46 A

DESIGN OF COST EFFECTIVE COMPOSITE REINFORCED BRICK WORK-FERRO CEMENT WATER TANKS

THESIS SUBMITED TO THE DEPARTMENT OF CIVIL ENGINEERING IN FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF MASTER OF ENGINEERING

624 "03" 624.953 (548.7)

SUPERVISED BY DR. S.M.A.NANAYAKKARA

UM Thesis coll

79575

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA FEBRUARY 2003

79575

DECLARATION

I herewith declare that the work included in the thesis in part or whole, has not been submitted for any other academic qualification at any institution.

08/01/04 Date

نے ا

R.A.T.N.Ranawaka

Certified by

Date

Dr. S.M.A.Nanayakkara (Supervisor)

ABSTRACT

In Sri Lanka, the most of the farmers are in dry rural areas and due to lack of water they can't cultivate in an effective manner. Therefore, there is a great need of designing and constructing of water tanks for rainwater harvesting purposes. This research was carried out to formulate design and construction of water tanks by using low cost materials with easy methods of construction and sufficient strength. Then water tanks can be constructed as fully underground, partially under ground as well as above ground, tanks.

Since Sri Lanka is developing country and these tanks are going to be constructed in the rural area, the construction method should be cost effective as well as simple. Ferro-cement is low cost material and it does not require some formwork like in concrete. And also it does not require skilled workers and supervision and also the maintenance is very much easy.

Electronic Theses & Dissertations www.lib.mrt.ac.lk

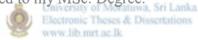
The design is based on analytical results obtain from a computer programme. An experimental investigation was carried out to find the properties of the construction materials required for the design. The computer programme had been already developed for the two types of water tanks, which are cylindrical tanks with spherical roof and flat bottom and cylindrical tanks with spherical roof and spherical bottom. This computer programme was further developed to analise the cylindrical tank with conical roof and spherical bottom. All the tank types can be analyzed using this software for fully under ground, partially under ground and above ground tanks. The linear elastic theory of shells is used to develop this programme.

The optimum dimensions for the water tanks, which gives the highest strength can be found by using the computer programme. It was found that there are three main parameters, which influence to the combined stress in the tank. The main parameters are, limiting angle of the spherical roof, limiting angle of the spherical bottom and radius of cylindrical tanks. The sensitivity analysis was carried out by varying only one parameter at a time while keeping all the others constant. The analysis was done for all the load cases.

According to the results of the parametric study, optimum tank shape was selected for 25m³ capacity tank. The structural design was carried out for the optimum tank shape. A construction process is also presented for the selected tank shape.

4

¥


ACKNOWLEDGEMENT

I am indebted to my supervisor Dr. S.M.A.Nanayakkara for his devotion, guidance, support and encouragement given to me in order to make my MSc. Degree a success.

I would like to extended my gratitude and appreciation towards;

¥

Vice Chancellor, Dean Faculty of Engineering, the Senate Research Committee of Moratuwa University and the Asian Development Bank, Prof. (Mrs) N. Ratnayake, (Director Postgraduate Studies), Prof. A.K.W.Jayawardana (Head of the Department of Civil Engineering), Dr. G.W.Kodikara (Former Head of the Department of Civil Engineering), Dr. S.A.S. kulathilake (Research Coordinator of the Department of Civil Engineering), Dr.(Mrs.) P.Hettiarachchi (Senior Lecturer of the Department of Civil Engineering) and all the other staff members of the Postgraduate Department of their role in conducting the work related to my MSc. Degree.

All the staff members of the computer lab, construction materials lab, structural testing lab, mechanics of materials lab and the workshop of the Department of Civil Engineering for their assistance and provided necessary facilities in order to carry out the research work.

All the research assistance in the Department of Civil Engineering for the support given to me in various ways.

Finally, I would like to thank all those who provided their assistance, support and guidance to the success of this research project.

TABLE OF CONTENTS

1

-1

ABSTRACT		II
ACKNOWLEDGEMENT		
TABLE OF CONTENTS		V
		VIII
LIST OF FIGURES		
	IOTOGRAPHS	XIV
NOTATION		XV
	1	1
	CTION	1
	BACK GROUND	1
1.2	OBJECTIVE OF THE STUDY	2
	2	3
	RE SURVEY	3
2.1	INTRODUCTION.	3
2.1	FERRO CEMENT WATER TANKS	3
2.2	STRUCTURAL ANALYSIS OF THE TANK	4
	3	6
	LOGY OF STUDY	6
3.1	INTRODUCTON	6
3.1		6
	LITERATURE SURVEY STRUCTURAL ANALYSIS AND DEVELOPMENT OF	U
3.3		6
2.4	COMPUTER PROGRAMME	6
3.4	EXPERIMENTAL INVESTIGATIONS	7
3.5	SENSITYVITY ANALYSIS	7
3.6	STRUCTURAL DESIGN OF THE OPTIMUM SHAPE OF THE	-
	TANK	7
3.7	COST ESTIMATION	7
CHAPTER 4		8
STRUCTUR	RAL ANALYSIS AND DEVELOPMENT OF COMPUTER	
PROGRAM	ME	8
4.1	INTRODUCTION	8
4.2	CONICAL SHELLS	8
4.3	GEOMETRY OF THE TANK	9
4.4	EXTERNAL LOADING	10
4.5	INTERNAL FORCES	11
4.6	SIGN CONVENTION	11
4.7	ANALYSIS OF THE JOINT BETWEEN OPEN CONICAL SHELL	
	AND CYLINDRICAL SHELL JOINT	11
4.8	ANALYSIS OF THE JOINT BETWEEN CYLINDRICAL SHELL	
	AND INVERTED CLOSE SPHERICAL SHELL	13
4.9	THE COMPUTETR PROGRAMME	15
4.9	0.1 OBJECTIVES OF THE PROGRAMME	16
CHAPTER 5		
SENSITIVITY ANALYSIS 17		
5.1		17

5.2	METHODOLOGY
5.3	OPTIMUM SOLUTION FOR THE 50m ³ WATER TANK
5.3	ANALYSIS OF 50m3 CYLINDRICAL WATER TANK WITH
	SPHERICAL BOTTOM AND SPHERICAL ROOF
5.3	ANALYSIS FOR 50m ³ CYLINDRICAL WATER TANK WITH
	SPHERICAL BOTTOM AND CONICAL ROOF
5.4	VARIATION OF COMBINE STRESSES THROUGH OUT THE
5.1	WATER TANK
5.5	VARIATION OF COMBINE STRESSES WITH THE ROOF
5.5	OPENING RADIUS
5.6	CONCLUSION
	NTAL INVESTIGATION
6.1	INTRODUCTION
6.2	TENSILE STRENGTH OF FERRO CEMENT
6.2	
6.2	
6.3	
6.3	
6.3	
6.3	
6.4	
6.4	
6.4	
	A.3 PROCEDURE YOUNG'S MODULUS OF FERRO CEMENT
6.5	YOUNG'S MODULUS OF FERRO CEMENT
6.5	
6.6	CONCLUSION
CHAPTER 7	
DESIGN OF	25m3 WATER TANK
7.1	INTRODUCTION
7.2	METHODOLOGY
7.3	PARAMETRIC STUDY
7.3	
7.3	3.2 SPHERICAL ROOF WATER TANK
7.4	
7.5	DESIGN OF THE WATER TANK
7.5	
	B
	TION ROCEDURE
8.1	MATERIAL SPECIFICATION
8.1	
8.1	
8.1	
8.1 8.1	
8.1 8.1	
8.1	
8.1	
8.1	
8.2	SELECTION OF SITE

.)

۲.

¥

8.3	SETTING OUT AND EXCAVATIONS	106
8.4	CONSTRUCTION OF TANK BOTTOM	108
8.5	CASTING OF RING BEAM	110
8.6	CONSTRUCTION OF CYLINDRICAL BRICK WALL	110
8.7	CONSTRUCTION OF THE CONICAL ROOF	111
CHAPTER	9	113
CONCLUSI	ON	113
BIBLIOGR	АРНҮ	116
APPENDIX	A – MEMBRANE SOLUTIONS	117
APPENDIX	B – INTERACTIVE INTERFACE FORMS OF THE COMPUTER	
	PROGRAMME	123
APPENDIX	C – VARIATION OF COMBINED STRESSES	131
APPENDIX	D – ANALYSIS OF TEST DATA	153
	E – MATERIAL QUANTITIES	209
	F – STRUCTURAL DRAWING	213

¥

4

¥

÷

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

VII

LIST OF TABLES

7

¥

Table 5.1	Variation of the combined maximum tensile and compressive stresses	
	with the limiting angle of the spherical roof	21
Table 5.2	Variation of the stresses with the bottom angle when the limiting	
	angle is 70deg and the cylindrical radius is 2m	22
Table 5.3	Variation of the stresses with the radius when the limiting angle is	
	70deg and the bottom angle is 50deg	23
Table 5.4	Variation of the stresses with the limiting angle when the radius is	
	2.5m and bottom angle is 50deg	25
Table 5.5	Variation of the stresses with the bottom angle when the limiting	
	angle is 70deg and radius is 2.5m	26
Table 5.6	Variation of the stresses with the limiting angle when the radius is 2m	
	and 2.5m and the bottom angle is 50deg	27
Table 5.7	Variation of the stresses with the bottom angle when the radius is 2m	
	and 2.5m and the limiting angle is 70deg	29
Table 5.8	Variation of the stresses with the conical roof angle for load case 1	31
Table 5.9	Variation of the stresses with the top angle under load case 2	32
Table 5.10	Variation of the stresses with the top angle under load case 3	33
Table 5.11	Variation of the stresses with the top angle under load case 4	34
Table 5.12	Variation of the stresses with the top angle under load case 5	35
Table 5.13	Variation of the maximum stresses with load cases when the limiting	
	angle is 70deg, bottom angle is 50deg and radius is 2.5m	37
Table 5.14	Maximum stresses for extreme inner and outer fiber for the meridian	
	direction in the cylindrical water tank with spherical roof	37
Table 5.15	Maximum tensile and compressive stresses for extreme inner and	
	outer fiber for the hoop direction in the cylindrical water tank with	
	spherical roof	39
Table 5.16	Maximum compressive and tensile stresses for extreme inner and	
	outer fiber for the meridian direction in the cylindrical water tank	
	with conical roof	41

Table 5.17	Maximum compressive and tensile stresses for extreme inner and	
	outer fiber for the hoop direction in the cylindrical water tank with	
	conical roof	43
Table 5.18	Maximum and minimum combined meridian stresses for spherical	
	roof and conical roof under all the load cases	4
Table 5.19	Maximum and minimum combined hoop stresses for spherical roof	
	and conical roof under all the load cases	4
Table 5.20	Meridian stresses for the conical roof at extreme inner fiber with	
	respect to the opening radius of the water tank	47
Table 5.21	Meridian stresses for the conical roof at extreme outer fiber with	
	respect to the opening radius	48
Table 5.22	Variation of the hoop stresses for the conical roof at extreme inner	
	fiber with respect to the opening radius	49
Table 5.23	Variation of the hoop stresses for the conical roof at extreme outer	
	fiber with respect to the opening radius	50
Table 5.24	Variation of the meridian stresses with the opening radius	51
Table 5.25	Variation of the meridian moments with the opening radius	52
Table 5.26	Variation of the meridian forces with the opening radius	54
Table 6.1	Details of the flexural specimens	65
Table 6.2	Flexural strength of ferro-cement panels	67
Table 6.3	Summary of the flexural test results with respect to the cost	68
Table 6.4	Tensile strength of ferro cement	75
Table 6.5	Results of the Young's modulus	77
Table 7.1	Variation of the stresses with the angle α under load case 1	81
Table 7.2	Variation of the stresses with the top angle under load case 2	82
Table 7.3	Variation of the stresses with the cylindrical radius under load case 1.	83
Table 7.4	Variation of the stresses with the cylindrical radius under load case 2.	85
Table 7.5	Variation of the stresses with the spherical bottom angle under load	
	case 3	87
Table 7.6	Variation of the stresses with the spherical bottom angle under load	
	case 4	88
Table 7.7	Variation of the stresses with the spherical roof under load case 1	91
Table 7.8	Variation of the stresses with the spherical roof under load case 2	93

>

¥

List of tables

Table 7.9Details of the roof	97
Table 7.10Variation of the combined stresses for conical and spherical roof	
under all the load cases	97
Table 7.11 Total combined stresses under all the load cases	100
Table 7.12Construction material used in each part of the tank	102
Table 7.13 Quantities of materials	102
Table 7.14Total material quantity and estimated total cost	103

>

¥

LIST OF FIGURES

7

¥

Figure 4.1	Geometry of the shell	,
Figure 4.2	Geometry of the tank	1
Figure 4.3	Open conical- cylindrical shell joint	1
Figure 4.4	Forces acting on the ring beam of open conical shell – cylindrical	
	shell joint	1
Figure 4.5	Cylindrical shell- inverted close spherical shell joint	1
Figure 4.6	Forces acting on the ring beam of cylindrical shell – inverted close	
	spherical shell joint	1
Figure 5.1	Geometry of the tank	1
Figure 5.2	Flow chart	1
Figure 5.3	Spherical shell	2
Figure 5.4	Combine stress Vs limiting angle at top	2
Figure 5.5	Combined stress Vs bottom angle when limiting angle is 70 ⁰	2
Figure 5.6	Stress Vs radius when roof angle is 70° and bottom angle is 50°	2
Figure 5.7	Stress Vs limiting angle at roof when the radius is 2.5m and bottom	
	angle is 50 ⁰	2
Figure 5.8	Stress Vs bottom angle when the radius is 2.5m and limiting angle 70^{0}	2
Figure 5.9	Stress Vs limiting angle when the radius is 2 and 2.5m and when	
C	the bottom angle 50 ⁰	2
Figure 5.10	Stress Vs bottom angle when radius is 2 and 2.5m and the limiting	
-	angle is 70 ⁰	2
Figure 5.11	Stress Vs top angle under load case 1 for meridian and hoop	
	directions	3
Figure 5.12	Stress Vs top angle under load case 2 for meridian and hoop	
-	directions	3
Figure 5.13	Stress Vs top angle under load case 3 for meridian and hoop	
~	directions	3
Figure 5.14		
~	directions	3

. .

Figure 5.15	directions	3
Figure 5 16	Stress Vs load cases	3
Figure 5.16		4
Figure 5.17	Selected positions from the apex	4
Figure 5.18	The graph of the position Vs stress for meridian direction for	4
-	extreme inner fiber	4
Figure 5.19	The graph of the position Vs stress for meridian direction for	
	extreme outer fiber	4
Figure 5.20	The graph of the position Vs stress for hoop direction for extreme	
	inner fiber	4
Figure 5.21	The graph of the position Vs stress for hoop direction for extreme	
	outer fiber	5
Figure 5.22	The graph of the combined meridian stress Vs opening radius	5
Figure 5.23	The graph of the moments Vs opening radius	5
Figure 5.24	The graph of the forces Vs opening radius	5
Figure 6.1	Ferro cement panel with single layer	5
Figure 6.2	Ferro cement panel with double layer	5
Figure 6.3	Ferro cement panels with four layer	5
Figure 6.4	Four point loading system	6
Figure 6.5	The graph of load Vs deflection	6
Figure 6.6	Cost Vs serviceability flexural strength	7
Figure 6.7	Cost Vs ultimate flexural strength	7
Figure 7.1	Selected conical roof water tank	8
Figure 7.2	Effect of conical roof angle on stresses of the tank under load case	
	1	8
Figure 7.3	Effect of conical roof angle on stresses in the tank under load case	
	2	8
Figure 7.4	Stress Vs cylindrical radius under load case 1	8
Figure 7.5	Stress Vs cylindrical radius under load case 2	8
Figure 7.6	Stress Vs spherical bottom angle under load case 3	8
Figure 7.7	Stress Vs spherical bottom angle under load case 4	8
Figure 7.8	Selected spherical roof water tank	9
Figure 7.9	Stress Vs spherical roof angle under load case 1	9
115410 /.7	Stress vis spiretion foor angle under foud euse finnennen in the	

J

¥

Figure 7.10	Stress Vs spherical roof angle under load case 2	94
Figure 7.11	Optimum dimensions of roof of water tanks	96
Figure 8.1	Setting out for the excavation	106
Figure 8.2	Set out the off set pegs	107
Figure 8.3	Maintain the correct level at the spherical bottom	107
Figure 8.4	Set out the center of the spherical bottom by using off set pegs	108
Figure 8.5	Prepare the skeletal steel cage for the spherical bottom	109
Figure 8.6	Construction of bottom layer	109
Figure 8.7	Casting of ring beam	110
Figure 8.8	Preparation of working platform	111

7

¥

¥

.

LIST OF PHOTOGRAPHS

,

Photo 6.1	Mould for tensile test ferro cement panels	59
Photo 6.2	A mesh layer at the mid point of the panel	60
Photo 6.3	Ferro cement tensile test panels	61
Photo 6.4	Testing for the flexural test specimens	65
Photo 6.5	Measurement of strain using electrical strain gauge	72
Photo 6.6	Measurement of strain using manual strain gauge	73
Photo 6.7	Testing of tensile strength	74

Notations

NOTATIONS

water a serie of a state to the series of a state of a

- Angle between the central axis of the conical shell and axis which is perpendicular to Φ the middle surface of the conical shell at the consideration point. - Angle between any define two lines in the base. θ - Angle between the base and the angular surface. α_{o} R_0 - Maximum radius of the conical shell (Radius at base) R - Distance from any point on the middle surface to the axis of rotation along the normal to the middle surface. Х - Sloping distance measured from the apex of the conical shell. L - The maximum sloping length of the conical shell. L - Vertical height El - Vertical height of the opening conical shell from its base. - Normal inplane force in the meridian direction Nx · - Normal inplane force in the hoop direction Nθ - Bending moment in the meridian direction Mφ M_θ - Bending moment in the hoop direction - Transverse shear Q Κ - Shell constant Δ - Horizontal displacement - Rotations at the boundaries ß Η - Edge restraining horizontal force - Poisons ratio μ - Depth of ring beam d - Modulus of elasticity E h - Height of the cylinder - Edge restraining moment Μ - Thickness of the shell t