LB/DON/10/04

MODELLING OF SHEAR BOND BEHAVIOUR OF COMPOSITE SECTIONS WITH AXIAL LOADS

This thesis submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science of Engineering

There was a more than a mi

624°03° 624.04.6

P.S.S. DE SILVA

um Thesis coll.

79577

DEPARTMENT OF CIVIL ENGINEERING UNIVERSITY OF MORATUWA SRI LANKA DECEMBER 2003

79577

Declaration

The work described in this thesis has carried out in the Department of Civil Engineering, University of Moratuwa, Sri Lanka, under the supervision of Dr. (Mrs.) Manoja Weerasinghe.

The author wishes to declare that, except for commonly understood ideas, or where specific reference has made to the work of other authors, the contents of this thesis has his original work and include nothing, which is the outcome of work done in collaboration. The work has not been previously submitted, in part or in whole to any other University for any degree, diploma or any other qualification.

P. Sandun Sameera De Silva December 2003

s,

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

First of all I would like to pay deep gratitude and indebted to my research supervisor Dr. Manoja Weerasinghe, Senior Lecturer of Structural Engineering, Department of Civil Engineering, University of Moratuwa for her precious guidance, encouragement and support all the way through the duration of study.

The study would not have been possible without the Asian Development Bank (ADB) sponsored Science and Technology Personnel Development Project and the immense assistance of Professor (Mrs.) N. Ratnalyake, Postgraduate Director, University of Moratuwa.

Also, I would like to acknowledge the advice of Dr. A.D.C. Jayanandana, Senior Lecturer and Dr. S.A.S. Kulathilaka, Postgraduate Coordinator of Department of Civil Engineering.

Also I would like to express my deepest gratitude to Professor A.K.W. Jayawardene, Head of Department of Civil Engineering, University of Moratuwa and all the Senior Staff members for their support.

University of Moratuwa, Sri Lanka.

Also express special thanks Amalgamated Building Systems (ABS) for their gratefulness for providing the test specimen without any charge.

Finally many thanks to the non-academic staff members at the Mechanics of Materials Laboratory and Structural Testing Laboratory of Department of Civil Engineering, University of Moratuwa.

Abstract

In this study, the shear bond behavior of steel and concrete composite beams under axial effects has been investigated using the finite element technique. A comprehensive review of various existing theories and finite element models in analyzing shear connection in this type of beams in general, has been conducted and a summary is presented in this thesis.

An effort has been made to achieve a proper shear connection under axial effects, by using a standard linear frame type finite element. In addition, the conventional method of using linear spring elements to model the shear connection in steel and concrete structural elements has also been considered.

SAP90 finite element software has been used for developing all the finite element models presented in this thesis. The finite element models developed have been verified against experimental work conducted by others on a composite stub girder floor system where concrete slab is subjected to bending, shear and axial forces at certain locations.

From the work carried out by this study, it had been concluded that the linear frame type finite element has its limitations in modeling the shear connection under axial effects. However, acceptable shear force values could be predicted in the shear connectors by using this type of finite elements. It has also been found that the conventional linear spring elements developed to model the shear connection may not be valid in the presence of axial effects. However, it may still be possible to use linear spring elements with some modifications to its stiffness. A modification has been proposed in the current thesis to the stiffness of the spring element which had been developed by Ohelers et al. [15].

Content

1

2

كقتأ

11

٠

.

- نقى

Decla	aration	i	
Ackn	iowledgements	ii	
Absti	ract	iii	
Cont	Contents		
List o	of Figures	vii	
List (of Tables	xi	
Nota	tion	xii	
INT	RODUCTION	1	
1.1	Shear Transfer in Steel and Concrete Composite		
	Structural Elements	1	
	1.1.1 Stiffness of Shear Connector	2	
	1.1.2 Shear Connector Resistance	2	
	1.1.3 Shear Connector Ductility	2	
	1.1.4 Shear Transfer Mechanism	3	
1.2	Axial Effects in Composite Beams	4	
	1.2.1 Composite Floors	4	
	1.2.2 Vierendeel Openings	5	
1.3	Objectives of the Present Study	5	
1.4	Methodology	6	
1.5	Outline of the Thesis	7	
REV	VIEW OF PREVIOUS WORK	10	
2.1	Composite Sections with Axial Loads	10	
	2.1.1 Composite Stub-Girders	10	
	2.1.2 Structural Configuration of a Stub Girder Floor System	m 12	
2.2	Modeling of Shear Connector under Influence of Axial Force	s 14	
	2.2.1 Modeling of Shear Bond of Composite		
	Beams (Without Axial Forces)	14	
	2.2.2 Modeling of Shear Bond of Composite		
	Beams (With Axial Forces)	17	

iv

	2.3	Shear Stud Strength	18
	2.4	Summary	20
3	FIN	ITE ELEMENT MODEL	25
	3.1	Introduction	25
	3.2	Finite Element Model Configuration	26
		3.2.1 Modeling of Main Beam	27
		3.2.2 Modeling of Stub	27
		3.2.3 Modeling of Deck Slab	28
	3.3	Modeling of Shear Connector	29
		3.3.1 Model 1	30
		3.3.2 Model 2	30
		3.3.3 Model 3	31
		3.3.4 Model 4	32
		3.3.5 Model 5	33
		3.3.6 Analysis without Axial Loads	34
	3.4	Restraints and Applied Loads for Models	34
		3.4.1 For Model 1, Model 2 and Model 3	34
		3.4.2 For Model 4 and Model 5	35
	3.5	Test Assembly for Verification Study	35
		3.5.1 Loading for the Test Assembly	36
	3.6	Summary	36
4.	RES	SULTS AND VERIFICATIONS	51
	4.1	Verification of Models with Axial Loads	51
	4.2	Verifications of Models without Axial Loads	52
	4.3	Verification between with and without Axial Loads	53
	4.4	Shear Strength of a Stud	54
		4.4.1 BS 5950: Part 1: 1985 [2]	54
		4.4.2 BS 5950: Part 3: Section 3.1: 1990[3]	55
		4.4.3 Method presented by Ollgaard et al. [17]	55
		4.4.4 Method presented by Johnson, and Oehlers [8]	55
		4.4.5 Method presented by Rex et al. [16]	56

v

4.5 P	roposed factor for the Stiffness for the Spring Element	57
	4.5.1 Methodology	57
	4.5.2 Calculation of the Factor	57
4.6	Relative Slip between Steel and Concrete	58
4.7	Summary	59

. -

-+

ķ

5. SUMMARY, CONCLUSIONS & RECOMMENDATIONS 86

5.1	Summ	nary	86
5.2	Conclusions		86
	5.2.1	Modeling the Shear Connection with Frame Elements	86
	5.2.2	Modeling the Shear Connection with Linear Spring	
		Elements	87
5.3	Recor	nmendations for Future Works	88

Bibliography 91 Appendix A 94 University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

-Se

~

¥

Figure	e No.	Page
1.1	Stud Shear Connector of a Beam	8
1.2(a)	Shearing Tabs System type Shear Connector	8
1.2(b)	Spiral Connections type Shear Connector	8
1.2(c)	Channels type Shear Connector	8
1.2(d)	Welded Studs type Shear Connector	8
1.3	Dowel Action by Ohelers et al.[14]	8
1.4	DELTA Composite Floor Beam System	9
2.1	Composite Stub Girder Floor System	21
2.2	Elevation of a Typical Stub Girder (One Half is Shown)	21
2.3	Hidehiko et al. [7] FEM Model	22
2.4	Typical Steel/Concrete Composite Beam	22
2.5	Typical Finite Element Idealization Hirst et al. [8]	22
2.6	Connecting Elements and Principal Notation for the Stiffness of the	
	Shear Connector for the Finite Element Idealization by Hirst et al. [8]	23
2.7	Composite Bridge Beam [15]	23
2.8	Composite Beam Element for Composite Bridge Beam for the	
	research by Takami [23]	24
2.9	End forces (Upper Case) and Displacements (Lower Case) for Stub	
	Shear Connector Element Sebastian et al. [21]	24
2.10	Weak and Strong Position of Shear Stud Locations, Easterling et al. [5]	24
3.1	Local Coordinate System of a SAP 90 Beam Element [24]	37
3.2	Local Coordinate System of a SAP 90 Plain Stress ASOLID Element [24] 37
3.3	Local Coordinate System of a SAP 90 Plain Stress SHELL Element [24]	38
3.4	Equivalent Area of a Stud Shear Connector for the Model 1 & Model 3	38
3.5	Orthogonal View of the Finite Element Model 1 & Model 3	
	of the Stub Girder	39
3.6	Section View along the Mid Center Line of the	
	Stub Girder Model 1 & Model 3	39

3.7	C5, C6, C8, C10 – Strain Gauge Reading Positions on the Top of the	
	Slab for Model 1 & Model 3	40
3.8	Stud Shear Connector for the Model 2	40
3.9	Orthogonal View of the Finite Element Model 2 of the Stub Girder	41
3.10	Section View along the Mid Center Line of the Stub Girder Model 2	41
3.11	C5, C6, C8, C10 – Strain Gauge Reading Positions on the Top of the	
	Slab for Model 2	42
3.12	Orthogonal View of the Finite Element Model 4 & Model 5	42
3.13	C5, C6, C8, C10 – Strain Gauge Reading Positions on	
	the Top of the Slab for Model 4 & Model 5	43
3.14	Restraint Definitions at Supports in the SAP90 [24]	43
3.15	Model 1 and Model 3 Restraints	44
3.16	Model 2 Restraints	44
3.17	Model 4 and Model 5 Restraints	45
3.18	Strain Gauge Placing along the Main Girder [13]	45
3.19	Test Assembly [12]	46
3.20	Test Assembly Stub Breakdown [12]	46
3.21	Strain Gauge Instrumentation on the Concrete Slab Surface [13]	46
3.22	Plan View of Stub Girder Jack Arrangement [13]	47
3.23	Sectional View of Stub Girder Jack Arrangement [13]	47
4.1	Strains Verification with Axial Loads – Position C5	60
4.2	Strains Verification with Axial Loads – Position C6	60
4.3	Strains Verification with Axial Loads – Position C8	61
4.4	Strains Verification with Axial Loads – Position C10	61
4.5	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 1: with Axial Force	62
4.6	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 2: with Axial Force	62
4.7	Typical Longitudinal Stress in the Concrete Slab Top Surface -	
	Model 3: with Axial Force	63
4.8	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 4: with Axial Force	63

7

-

)

-+

بر

viii

4.9	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 5: with Axial Force	64
4.10	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 1: without Axial Force	64
4.11	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 2: without Axial Force	65
4.12	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 3: without Axial Force	65
4.13	Typical Longitudinal Stress in the Concrete Slab Top Surface	
	Model 4: without Axial Force	66
4.14	Typical Longitudinal Stress in the Concrete Slab Top Surface –	
	Model 5: without Axial Force	66
4.15	Strains Verification between with & without Axial Loads	
	for the Model 1: Position C5	67
4.16	Strains Verification between with & without Axial Loads	
	for the Model 2: Position C5	67
4.17	Strains Verification between with & without Axial Loads	
	for the Model 3: Position C5 ^{mm ac lk}	68
4.18	Strains Verification between with & without Axial Loads	
	for the Model 4: Position C5	68
4.19	Strains Verification between with & without Axial Loads	
	for the Model 5: Position C5	69
4.20	Strains Verification between with & without Axial Loads	
	for the Model 1: Position C6	69
4.21	Strains Verification between with & without Axial Loads	
	for the Model 2: Position C6	70
4.22	Strains Verification between with & without Axial Loads	
	for the Model 3: Position C6	70
4.23	Strains Verification between with & without Axial Loads	
	for the Model 4: Position C6	71
4.24	Strains Verification between with & without Axial Loads	
	for the Model 5: Position C6	71
4.25	Strains Verification between with & without Axial Loads	
	for the Model 1: Position C8	72

-

ł

8.

ix

4.26	Strains Verification between with & without Axial Loads	
	for the Model 2: Position C8	72
4.27	Strains Verification between with & without Axial Loads	
	for the Model 3: Position C8	73
4.28	Strains Verification between with & without Axial Loads	
	for the Model 4: Position C8	73
4.29	Strains Verification between with & without Axial Loads	
	for the Model 5: Position C8	74
4.30	Strains Verification between with & without Axial Loads	
	for the Model 1: Position C10	74
4.31	Strains Verification between with & without Axial Loads	
	for the Model 2: Position C10	75
4.32	Strains Verification between with & without Axial Loads	
	for the Model 3: Position C10	75
4.33	Strains Verification between with & without Axial Loads	
	for the Model 4: Position C10	76
4.34	Strains Verification between with & without Axial Loads	
	for the Model 5: Position C10	76
5.1(a)	Proposed Test Specimen Arrangement	89
5.1(b)	Proposed Test Specimen Arrangement	90
5.2	Proposed Test Specimen Loading Arrangement	90

· 7-

. في

List of Tables

٦

+

ţ.

-

Table No.		Page
3.1	Bending Moment, Shear Forces and Axial Forces applied	
	in finite element Model 1, Model 2 & Model 3 [13]	48
3.2	Bending Moment, Shear Forces and Axial Forces applied	
	in finite element Model 4 & Model 5 [13]	49
3.3	Experimental Strain Gauge Measurements on the Top of the Slab [13]	50
4.1	Shear Forces (kN) Distribution for the Equivalent Frame Element	
	with and without Axial Loads for Model 1	77
4.2	Shear Forces (kN) Distribution for the Equivalent Frame Element	
	with and without Axial Loads for Model 2	78
4.3	Relative Vertical Displacement between Nodes of the Frame	
	Element in Model 1 (in mm)	79
4.4	Relative Slip between Steel and Concrete, with and without	
	Axial Loads for Model 1 with mr. ac lk	80
4.5	Relative Slip between Steel and Concrete, with and without	
	Axial Loads for Model 2	81
4.6	Relative Slip between Steel and Concrete, with and without	
	Axial Loads for Model 3	82
4.7	Relative Slip between Steel and Concrete, with and without	
	Axial Loads for Model 4	83
4.8	Relative Slip between Steel and Concrete, with and without	
	Axial Loads for Model 5	84
4.9	Test Strength of Concrete [11]	85
4.10	Test Strength of Steel [11]	85

Notation

A Area of the section under consideration

 A_s , A_{sh} Area of the shank of the stud shear connector

 A_{sc} Area of the shear stud based on the nominal stud diameter

E Young's Modulus of material considered

- E_c Young's Modulus of Concrete
- *E_s* Young's Modulus of Steel
- F_{sh} Longitudinal shear force in steel flange/concrete slab interface (or stud shank/concrete slab interface)
- F_{use} Shear stud tensile strength
- G Shear Modulus concerned
- H_s Shear stud height after welding
- *I* Second Moment of Inertia

*K*_{dwl} Shear stiffness

M_{sh} Flexural forces in steel flange/concrete slab interface

N_r Number of shear studs per deck rib

 P_{cb} Characteristic strength of stud shear connectors in longitudinally uncracked composite beams

$$P_{pr}$$
 Strength of pair of stud shear connectors

 P_{ps} Dowel strength of stud shear connectors

P_s Shear Strength obtained from Table 32 of BS 5950 [2]

 P_{st} Static Strength of the Stud Shear Connector of BS 5950 [2]

- Q_p Capacity of shear connector in a solid slab to resist longitudinal shear for positive moments; BS 5950 [3]
- Q_k Characteristic resistance of the shear connector obtained from Table 5: BS 5950 [3]
- Q_{sol} Strength of single shear stud
- *SRF* Stud Reduction Factor (Calculated by Equation (9))
- T Axial force in the element considered
- *Z* Section Modules (I/y)

 d_{sh} , d_s Diameter of the shank of the stud shear connector

- f_c Cylinder compressive strength of concrete
- f_u Tensile strength of stud material
- h_r Height of the deck rib

1

- *n* Proposed factor to the Stiffness of Spring Element
- n_r Number of connectors that can be assumed to fail as a group
- w_r Width of the deck rib
- t Web thickness of an 'I' beam
- t_s Lateral spacing of a stud shear connector in a composite beam
- *y* Distance to the Centroid form the N/A
- μ Poisson's Ratio of material considered
- σ_x Direct stress in the X direction
- τ_{xy} Shear Stress associated with sides parallel to XY
- ϵ_1, ϵ_2 Principal strains at a section considered

