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Abstract 

In this study, the shear bond behavior of steel and concrete composite beams under 

axial effects has been investigated using the finite element technique. A 

comprehensive review of various existing theories and finite element models in 

analyzing shear connection in this type of beams in general, has been conducted and a 

summary is presented in this thesis. 

An effort has been made to achieve a proper shear connection under axial effects, by 

using a standard linear frame type finite element. In addition, the conventional method 

of using linear spring elements to model the shear connection in steel and concrete 

structural elements has also been considered. 

SAP90 finite element software has been used for developing all the finite element 

models presented in this thesis. The finite element models developed have been 

verified against experimental work conducted by others on a composite stub girder 

floor system where concrete slab is subjected to bending, shear and axial forces at 

certain locations. 

From the work carried out by this study, it had been concluded that the linear frame 

type finite element has its limitations in modeling the shear connection under axial 

effects. However, acceptable shear force values could be predicted in the shear 

connectors by using this type of finite elements. It has also been found that the 

conventional linear spring elements developed to model the shear connection may not 

be valid in the presence of axial effects. However, it may still be possible to use linear 

spring elements with some modifications to its stiffness. A modification has been 

proposed in the current thesis to the stiffness of the spring element which had been 

developed by Ohelers et al. [15]. 
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