Smart water meter for Decision Support

J I Pitiyage 149223U

Faculty of Information Technology
University of Moratuwa
May 2017

Smart water meter for Decision Support

J I Pitiyage 149223U

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa,
Sri Lanka for the partial fulfillment of the requirements of the Master of Science in
Information Technology.

Declaration

I declare that this thesis is my own work and has not been submitted in any form for another
degree or diploma at any university or other institution of tertiary education. Information
derived from the published or unpublished work of others has been acknowledged in the text
and a list of references is given.

Name of the Student	Signature of the Student
	Date:
Supervised by	
Name of the Supervisor	Signature of the Supervisor
	Date:

Dedication

This thesis is dedicated to my Mother I K Amarasekara and Wife A H Pitiyage for their endless love, encouragement and support.

Acknowledgements

First and foremost, I would like to offer my sincere gratitude to my research supervisor Mr. B. H. Sudantha, for his guidance, supervision, encouragement and support throughout this study.

I would not know what research is and how to do research if the lecture series of thesis writing and research methodologies is not offered. So I would like to offer my sincere gratitude to the Prof. Asoka S. Karunananda for feeding the knowledge and guidance for doing researches.

I would also like to thank all the lecturers of Faculty of Information Technology – University of Moratuwa, for their guidance and encouragement to get maximum use of knowledge and capabilities. So I would like to thank my batch mate Mr. Ravindra Vithange, Mr.Mihiranga Alwis and Mr.Rekha Sandaruwan, for their support.

Finally, I would like to extend my deepest gratitude to Mr. H. M Chandrapala and my class mate Dr. Rangika Halwathura, for their continuous support given in every possible way to make this project a success.

Abstract

In recent years, the demand for water has increased in households. Consumer's awareness regarding daily water consumption is very low. Traditional water meter unable get daily consumption efficient manner and water consumption has been calculating once in a month. It has been calculated by manually. With the advancement of information technology, over the past years there has not been any attempt to enhance manual meter reading to automate within Sri Lanka.

The main objective of this project is to propose and implement system to identify customer behaviors and pattern of consume water using Smart Water Meter System (SWMS). As developing nations, the technology of employing smart water meters new to the society. Cost savings and improved operational efficiency of meter reading personnel was achievable.

In some cases, existing water meters are fixed in the backyards and difficult in granting access to enter the premises. In such a situation, meter reading personal has to wait until the customer opens the gate. There are cases where the customer has locked and out of the premises and unable to get the meter reading. In such a situation the meter reader calculates the bill using an average monthly reading as the current month consumption. Customer's point of view this calculation will not be feasible when the actual reading exceeds the monthly consumption as charges may vary according to the tariff category they belong. These customers have been instructed to read their meters themselves and inform to a substation after receiving the monthly bill for alteration. This will be an extra cost to the billing as an officer has to be appointed to solve these matters.

The proposed system consists of Smart Water Meter (Developed using The Arduino Uno - microcontroller board, Flow Sensor, GSM Modem SIM900A and Wi-Fi Shield) native Android mobile application and a Web application. Instant meter reading has been saved to memory in the control board and periodical time interval data will be uploading to the cloud system. Customer can be logging to the cloud system and able to view daily consumption and analytical information during the given period. As additional feature meter reader can download meter reading via Wi-Fi to hand held device using Meter Reader mobile application.

With this system, it is expected to facilitate consumer to make better service and save the water as resource and reduce meter reading cost of the National Water Supply and Drainage Board.

Table of Contents

Chapter 1	1
Introduction	1
1.1 Prolegomena	1
1.2 Background and Motivation	1
1.3 Problem statement	2
1.4 Hypothesis	2
1.5 Objectives	2
1.6 SWMS approach	2
1.7 Structure of the Thesis	3
1.8 Summary	3
Chapter 2	4
Developments and Challenges in Smart Water Meter System	4
2.1 Introduction	4
2.2 Early developments	4
2.3 Modern Trends	5
2.4 Future challenges	6
2.5 Problem Definition	6
2.6 Summary	8
Chapter 3	9
Technology Adopted of SWMS	9
3.1 Introduction	9
3.2 Technologies Available	9
3.3 Web application (User interface and Backend Service)	13
3.4 Data model	13
3.5 Mobile Application	13

3.6 Secure way of Data Transfer	13
3.7 Cloud computing	14
3.8 Technology Stack	14
3.9 Summary	15
Chapter 4	16
An approach to SWMS	16
4.1 Introduction	16
4.2 Hypothesis	16
4.3 Users	16
4.4 Input	16
4.5 Output	16
4.6 Process	16
4.7 Features	17
4.8 Summary	17
Chapter 5	18
Design of SWMS	18
5.1 Introduction	18
5.2 Top Level Architecture of Smart Water Meter	18
5.3 Digital Water Meter	19
5.4 Customer Mobile Application	20
5.5 Meter Reader Mobile Application	21
5.6 Water Board Billing web application	21
5.7 Summary	21
Chapter 6	22
Implementation of SWMS	22
6.1 Introduction	22
6.2 Overall solution	າາ

6.3 Software and Hardware used	22
6.4 Implantation of UDP Sever	23
6.5 Implantation of water flow sensor	25
6.6 Implantation of Real Time Clock	26
6.7 Implantation of Micro SD Card Module	27
6.8 Interconnection of Micro SD Card Module and Arduino Uno Boa	ard28
6.9 Integrated different module to the main system	29
6.10 Customer and Meter Reader Mobile Application	30
6.11 Summary	32
Chapter 7	33
Evaluation of SWMS	33
7.1 Introduction	33
7.2 Evaluation Methodology	33
7.3 Evaluation Forms	34
7.4 Final Evaluation Results	34
7.5 Summary	36
Chapter 8	37
Conclusion and further work of SWMS	37
8.1 Introduction	37
8.2 Conclusion	37
8.3 Further work	38
8.4 Summary	38
Appendixes	43
Appendix A - Configuration and installing modules	43
Appendix B – Configuration of ESP8266 (Different Method)	47
Appendix C – User interfaces for Customer and Meter Reader Mobile	
Application	53

Appendix D – User interface designs for Water Board Billing Application	55
Appendix E – ER Diagram	57
Appendix F – Sequence Diagram	58
Appendix G – Use Case Diagram	59
Appendix H – Flow Chart	60
Appendix I – System Evaluation Forms	62
Appendix J - Data Analysis - Evaluation of Customer Mobile App	67
Appendix K - Data Analysis - Evaluation of Meter Reader Mobile App	69
Appendix L - Analysis of Evaluation – Water Board Billing App	71
Appendix M – Source code for Water Meter Device	73
Appendix N – Source code for Customer and Meter Reader Mobile	
Application	79
Appendix O – Source code for Water Board Billing Web Application	85
Appendix P – Text File of Water Meter Reading	89

List of Figures

Figure 3.1 – Turbine of Flow Meter	9
Figure 3.2 - YF-S201 water flow sensor	10
Figure 3.3 - Arduino Uno - microcontroller board	11
Figure 3.4 - Arduino Uno - Microcontrollers Pin Plan	12
Figure 3.5 - ESP8266 Wi-Fi Module	12
Figure 3.6 Cloud architecture	15
Figure 5.1 Component diagram with input and output	18
Figure 5.2 Top Level architecture of SWMS	19
Figure 6.1- USB TTL converter and ESP8266	23
Figure 6.2 - Create UDP Sever using ESP8266	24
Figure 6.3 - Universal asynchronous receiver and transmitter	24
Figure 6.4 - describe UART code in ESP8266	24
Figure 6.5 Initialize Calibration Factor of the Flow Sensor	26
Figure 6.6 - DS3231 Real Time Clock	27
Figure 6.7 - Preparation of Data Logger	28
Figure 6.8 - Formatting SD card	29
Figure 6.9 - Data writing to SD card	29
Figure 6.10 – Water Meter Full Diagram	30
Figure 6.11 – WifiManager ScanResults	31
Figure 6.12 – User Login	31
Figure 7.1 – Evaluation Chart	35

List of Table

Table 2.1 - Consolidated comparison of all the systems	5
Table 2.2 - Consolidated comparison of Smart and Traditional Meter	6
Table 2.3 - Summary of literature of Smart Water Meters	7
Table 3.1 - Specifications of water flow sensor	10
Table 6.1 - Interconnection of ESP8266 Module and Arduino Uno Board	25
Table 6.2 - Pin layout of the flow sensor	25
Table 6.3 - Calibration factor of the flow sensors	25
Table 6.4 - Interconnection of DS3231 Real Time Clock Module and Arduino	
Uno Board	27
Table 6.5 - Interconnection of Micro SD Card Module and Arduino Uno Board	rd
	28
Table 7.1 – Summary of Evaluation on Customer Mobile Application	34
Table 7.2 – Evaluation of Meter Reader Mobile Application	35
Table 7.3 – Evaluation of Meter Reader Mobile Application	35