DEVELOPMENT OF A SOLID FEED BLOCK FORMING MACHINE FOR CATTLE

Sembukutti Arachchige Prajith Shalinda Silva

Master of Engineering

Department of Mechanical Engineering

University of Moratuwa
Sri Lanka

May 2017
DEVELOPMENT OF A SOLID FEED BLOCK FORMING MACHINE FOR CATTLE

Sembukutti Arachchige Prajith Shalinda Silva

(138123V)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Engineering in Manufacturing Systems Engineering

Department of Mechanical Engineering

University of Moratuwa
Sri Lanka

May 2017
DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where due reference is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature : …………………… Date : ……………………

The above candidate has carried out research for the Master’s thesis under my supervision.

Dr. H.K.G.Punckihewa

Signature : …………………… Date : ……………………
Development of a solid feed block forming machine for cattle

Abstract

Livestock statistics show that there are 1.2 million milking cows and 0.4 million buffaloes in Sri Lanka and the Department of Census and Statistics shows an annual per capita consumption of milk and milk products of about 4.6 kg/year. However, these values are comparatively low compared to the developed countries. Therefore, achievement of the self-sufficiency levels in dairy industry of Sri Lanka needs significantly both in growth and productivity. The issues which are slowing down or hampering the growth and productivity can be categorized on milk production related, distribution and marketing related, extension and support service related, consumer concern related, policy related and feeding related. Although, the nutrition is a key factor for the performance, health and welfare of dairy cattle, the prevailing cattle feeding has become an issue today for growth and production became of mostly primitive nature of practice, which is a challenge for the increased commercialization of dairy industry. Consequently, it has been identified that the well-recognized method of feeding cattle in commercial dairy industry is solid nutritious feeding blocks which are made of hygienically prepared agricultural residues.

Aim of this research were producing suitable feed block and developing block making machine for the cattle in Sri Lanka. The objectives of this research were to identifying the requirements for cattle feed blocks and their manufacturing, to examine suitable shapes and sizes for feed blocks, and to design and manufacture a feed block machine and to test the machine for verifying the results.

Suitable block forming methods, technologies and the suitable machineries were recognized through literature survey, brainstorming sessions and experimental procedures. Accordingly, design and fabrication of a novel block making machine was successfully completed. Suitable size and weight of the block, recommended recipes, production capacity of the machine, block forming method and type of power source were identified. Finally a machine was fabricated to suit the parameters identified above and was tested. Results revealed that the fabricated machine can address the design requirements of the machine. The production capacity of the machine was 100 blocks/h with 200 mm × 200 mm ×110 mm size and 2 kg weight.

The solid cattle feed blocks can be used to fulfill the nutritional requirements of dairy cattle under safe conditions with affordable cost. Further, adoption of this technology supports to make an easy feeding mechanism and enhance milk production through available agricultural residues and available technology in Sri Lanka. Adding automatic raw material preparation system and the automatic feeding system to the compaction machine are proposed as further improvements.

Keywords: Agriculture, dairy development, cattle feed, feed blocks, feed block machine
ACKNOWLEDGEMENTS

I would like to thank my project supervisor Dr. H.K.G. Punchihewa, Senior Lecturer Department of Mechanical Engineering, University of Moratuwa and Dr. R.A.R.C. Gopura, Head of the Department and Senior Lecturer Department of Mechanical Engineering, University of Moratuwa and Dr. Manoj Ranaweera, Senior Lecturer and the course coordinator Department of Mechanical Engineering, University of Moratuwa and all the people who provided me with the facilities being required and conductive conditions for my project.

I express my warm thanks to Eng. D.D.A. Namal (Director General), Eng. G.G.K.A. De Silva (Deputy Director General), Eng. K.Y.H.D. Shantha (Director of Agricultural Engineering and Postharvest Technology), Mrs.Y.M.M.K. Ranatunga (Principal Research Engineer), Eng. (Mrs) P.M.Y.S. Pathiraja (Senior Research Engineer), Dr. (Mrs.) K.M.W. Rajawatta (Senior Research Scientist), Mr. P.A.U.W.K. Paranagampola (Engineer) and the staff of the Department of Agricultural Engineering and Postharvest Technology for their support and guidance at Department of Agricultural Engineering and Postharvest Technology in National Engineering Research and Development Centre of Sri Lanka and Mr. M. G. Chandrasena (Executive Director) from Pelwatte dairy industries (Pvt) Ltd, Pelwatte, Buttala.

I am using this opportunity to express my gratitude to everyone who supported me throughout the special studies project in Manufacturing Systems Engineering. I am thankful for their aspiring guidance, invaluably constructive criticism and friendly advice during the project work. I am sincerely grateful to them for sharing their truthful and illuminating views on a number of issues related to the project.
TABLE OF CONTENTS

DECLARATION i

ABSTRACT ii

ACKNOWLEDGEMENT iii

TABLE OF CONTENTS iv

LIST OF FIGURES viii

LIST OF TABLES xi

1 INTRODUCTION 1

1.1. Background 1

1.2. Aim & Objectives 4

1.3. Methodology 4

1.4. Chapter overview 4

2 LITERATURE REVIEW 6

2.1. Introduction 6

2.1.1. Livestock Industry in Sri Lanka 6

2.1.2. Agro-climatic zones in Sri Lanka 7

2.1.3. Dairy farming systems in Sri Lanka and available feed resources 7

2.1.4. Feeding strategies in Sri Lankan dairy industries 10

2.2. Nutritional requirement of dairy cows 11

2.2.1. Energy 11

2.2.2. Protein 12

2.2.3. Fibre 13

2.2.4. Vitamins 13

2.2.5. Minerals 15

2.2.6. Essential macro-minerals 15

2.2.7. Essential micro-minerals 15
2.3. Problem identification
 2.3.1. Main problem
 2.3.2. Engineer’s perspective
 2.3.3. Dependant problems
 2.3.4. Secondary problems

2.4. Agricultural by-products used in feed block technology
 2.4.1. Paddy straw
 2.4.2. Rice milling by-products
 2.4.3. Coconut poonac
 2.4.4. Molasses
 2.4.5. Mineral-rich ingredients

2.5. Preparation of blocks
 2.5.1. Process flow chart
 2.5.2. Raw material preparation
 2.5.3. Raw material mixing
 2.5.4. Introduction of feed-block technology
 2.5.5. Pelletised blocks
 2.5.6. Fodder block
 2.5.7. Chemically hardened blocks and cubs
 2.5.8. Low moisture (cooked) cubs
 2.5.9. Post processing of feed blocks

2.6. Chapter Summary

3 METHODOLOGY

3.1. Brainstorming session conducted for finding the suitable block forming methods by using Agro-waste
 3.1.1. Organisations/Institutes invited for the brainstorming session
3.2. Types of recipes
 3.2.1. Selecting a suitable ration
3.3. Solution sets
3.4. Experimental setup
 3.4.1. Preparation of raw materials
 3.4.2. Pre-treatment of raw materials
 3.4.3. Homogenising of raw materials
 3.4.4. Forming of fodder blocks
 3.4.5. Post processing
3.5. Results
 3.5.1. From the brainstorming session
 3.5.2. Selection of the suitable block forming method
 3.5.3. Selection of the recipes
 3.5.4. From the experiment
3.6. Discussion
 3.6.1. For brainstorming session
 3.6.2. Selection of suitable block forming method
 3.6.3. Selection of the recipes
 3.6.4. For experiment
3.7. Conclusion
3.8. Chapter summary
4 DESIGN, FABRICATION AND RESULTS VERIFICATION
 4.1.1. Introduction
 4.1.2. Details of the proposed machine
 4.1.3. Block making process sequence
 4.2. Designing of the hydraulic system
4.2.1. System design 71
4.2.2. Calculations for finding hydraulic oil flow rate 72
4.2.3. Calculation for motor power 74
4.2.4. Hydraulic circuit diagram 74
4.2.5. Calculations for production flow rate 75

4.3. Designing the electrical system 77

4.4. Designing of the compaction machine 78
4.4.1. Introduction 78
4.4.2. Size determination of the input chute 78
4.4.3. Calculations for compression ratios 79
4.4.4. Calculations for main frame 80
4.4.5. Calculations for the first-stage frame 81
4.4.6. Calculations for main cylinder fixings 81
4.4.7. Calculations for second-stage piston 82
4.4.8. Developed compaction machine 83

4.5. Result verification 84

4.6. Results from field testing 86

4.7. Discussion 87

4.8. Conclusion 88

4.9. Chapter summary 88

5 DISCUSSION 89

6 CONCLUSION & RECOMMENDATIONS 91

7 REFERENCES 92

ANNEXES 95

Annex 01: Specifications of the hydraulic system and the controlling method 95
Annex 02: Ladder diagram for PLC programming 96
List of Figures

Figure 2.1 : Mineral mixture 15
Figure 2.2 : Agriculture waste 18
Figure 2.3 : Paddy Straw 19
Figure 2.4 : Rice bran 20
Figure 2.5 : Coconut Poonac 20
Figure 2.6 : Molasses 21
Figure 2.7 : Urea 22
Figure 2.8 : Salt 23
Figure 2.9 : Process flow chart of making solid feed block 23
Figure 2.10 : Motorized Hay Cutter 24
Figure 2.11 : Different types of hay cutters 24
Figure 2.12 : After cutting the Hay 25
Figure 2.13 : Solar dryer 25
Figure 2.14 : Crushing machine 25
Figure 2.15 : Grinding machines 26
Figure 2.16 : Raw material mixer developed by NERDC 26
Figure 2.17 : Pellet making machine 29
Figure 2.18 : Pelletized animal feed 30
Figure 2.19 : Feeding fodder blocks 31
Figure 2.20 : Fodder blocks 31
Figure 2.21 : Manual block making machine 36
Figure 2.22 : Medium scale manual operated hydraulic fodder block making machine 36
Figure 2.23 : Hay block making machine 37
Development of a solid feed block forming machine for cattle

Figure 2.24: Chemically harden block

Figure 2.25: Sink wrapping

Figure 2.26: Wrap using stretch films

Figure 3.1: Sample preparation

Figure 3.2: Prepared samples

Figure 3.3: Cut paddy straw and the cutting machine

Figure 3.4: Crushing of poonac and the maize

Figure 3.5: Sun drying of some raw materials

Figure 3.6: Manually operated hydraulic press

Figure 3.7: Block foaming using square and cylindrical molds

Figure 3.8: Foamed blocks

Figure 3.9: Square shape foamed blocks

Figure 3.10: After doing the post processing to the blocks

Figure 3.11: Licket scale

Figure 3.12: Block height after one day vs applied load and sample moisture content in recipe B1

Figure 3.13: Block height after one day vs Applied load levels in different block shapes and different Sample moisture levels in recipe B1

Figure 3.14: Block height after one day vs Sample moisture level in different block shapes and different load levels in recipe B1

Figure 3.15: Block height after one day vs applied load and sample moisture content in recipe B2

Figure 3.16: Block height after one day vs Applied load levels in different block shapes and different Sample moisture levels in recipe B2

Figure 3.17: Block height after one day vs Sample moisture level in different block shapes and different load levels in recipe B2

Figure 3.18: Block height after one day vs applied load and sample moisture content in recipe B3
Figure 3.19 : Block height after one day vs Applied load levels in different block shapes and different Sample moisture levels in recipe B3 62

Figure 3.20 : Block height after one day vs Sample moisture level in different block shapes and different load levels in recipe B3 62

Figure 3.21 : Block height after one day vs applied load and sample moisture content in recipe B4 63

Figure 3.22 : Block height after one day vs Applied load levels in different block shapes and different Sample moisture levels in recipe B4 63

Figure 3.23 : Block height after one day vs Sample moisture level in different block shapes and different load levels in recipe B4 64

Figure 4.1 : 3D view of the proposed machine 68

Figure 4.2 : Illustrations of pressure adjusting system 69

Figure 4.3 : Raw material is loading 69

Figure 4.4 : Hopper door is closing 70

Figure 4.5 : First stage is in process 70

Figure 4.6 : Second stage in process 70

Figure 4.7 : Schematic diagram of a main hydraulic cylinder 73

Figure 4.8 : Hydraulic Circuit Diagram 75

Figure 4.9 : Schematic diagram of the hopper 78

Figure 4.10 : Cross section of the main frame 80

Figure 4.11 : Cross section of the first stage frame 81

Figure 4.12 : Main cylinder fixings 82

Figure 4.13 : Front and side elevation of the second stage cylinder piston 83

Figure 4.14 : 3D view of the compaction machine 84

Figure 4.15 : The machine was in field testing 85
List of Tables

Table 2.1 : Cattle and Buffalo Systems: Topography, Climate and Animal Husbandry 8
Table 2.2 : Energy requirement of dairy cows with weight gain of 500g 12
Table 2.3 : Crude protein requirement of a cow at different stages of lactation 13
Table 2.4 : The minimum percentage of fiber needed in a cow’s diet for healthy rumen function (using three different measures of fiber). 13
Table 2.5 : Recommended nutrient content of diets for dairy cattle 16
Table 2.6 : Nutritional status of Agricultural waste materials 21
Table 2.7 : Advantages of using blocked animal feeds 27
Table 3.1 : Recipes used for formulation of feed blocks at laboratory scale 42
Table 3.2 : Solution sets 43
Table 3.3 : Applied pressure to blocks during the experiment 47
Table 3.4 : Average scored values for screening the block forming method (Analytical comparisons) 51
Table 3.5 : Proximate composition & minerals of feed blocks 52
Table 3.6 : Observations for recipe B1 53
Table 3.7 : Observations for recipe B2 54
Table 3.8 : Observations for recipe B3 55
Table 3.9 : Observations for recipe B4 57
Table 4.1: Actual results of the fabricated machine including the final block size and the production 86