
 

SOLVING VEHICLE ROUTING PROBLEM USING  

MULTI AGENT TECHNOLOGY 

 

 

 

Amith Chanaka Mendis 

129106V 

 

Degree of Master of Science in Artificial Intelligence 

 

 

 

 

Department of Computational Mathematics 

 

University of Moratuwa 

Sri Lanka 

 
November 2016   



 

SOLVING VEHICLE ROUTING PROBLEM USING  

MULTI AGENT TECHNOLOGY 

 

 

 

Amith Chanaka Mendis 

129106V 

 

 

Thesis submitted in partial fulfillment of the requirements for the 

degree of Masters of Science in Artificial Intelligence 

 

 

 

Department of Computational Mathematics 

 

University of Moratuwa 

Sri Lanka 

 

November 2016 



 

i 
 

Declaration 
 
I declare that this interim report does not incorporate, without acknowledgment, any material 

previously submitted for a Degree or a Diploma in any University and to the best of my 

knowledge and belief, it does not contain any material previously published or written by 

another person or myself except where due reference is made in the text. I also hereby give 

consent for my interim report, if accepted, to be made available for photocopying and for 

interlibrary loans, and for the title and summary to be made available to outside organization. 

 
 
 
 
 
 
 
 
 
 
Name of Student   Signature of Student  

W. A. C. Mendis Date: 

 

 

 

 

 

Supervised by 

 

Name of Supervisor(s) Signature of Supervisor(s) 

Prof. Asoka S. Karunananda Date: 

   
 



 

ii 
 

Acknowledgements 

I will be failing my duty if I do not thank the people who have given me remarkable support 

and help to make my project a successful one. At the outset, I wish to thank MillenniumIT 

Software (Pvt) Ltd for giving me the idea to come out of project this nature. Also I wish to 

offer my humble gratitude to Prof. Asoka Karunananda for the guidance and encouragement 

given to me. At last but not least, I wish to thank all my friends who have shared their 

knowledge and helped me in several ways to complete this process. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

iii 
 

Abstract 
 
 

In today’s world transportation plays an important role in logistics and it appears in various 

sections of logistics processes. It occupies one-third of the amount in the logistics costs and 

influence the performance of logistics system hugely. Therefore through better transportation 

planning businesses can improve their customer experience (service level) and reduce the 

overall logistic cost. Companies are using people to do this task manually. When number of 

destinations and number of transport vehicles are high, route planner has to find lots of 

information (information about roads, distance between destinations, traffic condition of 

roads, etc.…) and synthesize them manually to find the solution. Therefore this task is 

became very time consuming and produces inefficient solutions most of the time. Because of 

these factors, it requires lots of human intervention and wasting lot of time and money 

because of in-efficient route designs.  

 

This research studies how multi agent technology can be used to overcome the above 

identified issue. Existing automated solutions for vehicle routing problem like Tabu search 

(TS), genetic algorithm (GA), and evolutionary algorithms (EA) uses destination point and 

vehicle details as data points, but with multi agent technology these data points convert to 

agents who can negotiate and take decisions collaboratively. Because it has features like 

autonomy, negotiation and emergent property, it introduces autonomy to the system and 

comes up with best or near best solutions as emergent properties through negotiations. 

 

As the subject of this study 8.00 pm transport planning of MillenniumIT Software (Pvt) Ltd 

was chose and process of planning routes is automated using multi agent technology. 8.00 pm 

transport requests are different for each day.  Therefore route plan should change day by day 

to cater the requirement. As a solution operation team of MillenniumIT generates manual 

route plans for each day and it is a challenging task because of the high number of passengers 

and vehicle are increasing the complexity of the problem. In automated system it used 

information about vehicles (number of vehicles, capacity of each vehicle) and passengers 

(passenger name, latitude of destination. longitude of destination) as inputs. After the 

requesting process is over system generates agents for each passenger and vehicle. Then 

those agents are developing a solution as an emergent property through negotiation and as 

output it generates route plans for 8.00 pm transportation of given day. 



 

iv 
 

Then shuttle request data for 10 days were selected randomly as sample dataset to evaluate 

the automated solution.  Then manually generated and automated shuttle plans for those 

shuttle requests were collected, calculated the total route distance and compared against each 

other. 

 

The results show that 8 times out of 10 automated route plan is cost effective than the 

manually generated plan. Therefore it was concluded that Vehicle routing problem can solve 

by multi agent technology.   

 

 



1 | P a g e  
 
 

Table of Content 

Chapter 1  6 

1.1 Prolegomena 6 

1.2 Aim & Objectives 7 

1.3 Background and Motivation 8 

1.4 Problem in Brief 9 

1.5 Novel approach for Vehicle Routing Problem 9 

1.6 Structure of the thesis 9 

1.7 Summary 10 

Chapter 2  11 

2.1 Introduction 11 

2.2 Vehicle Routing Problem – Current practice and issues 11 

2.4 Summary 14 

Chapter 3  15 

3.1 Introduction 15 

3.2 Multi Agent Technology 15 

3.3 Traditional Systems vs. Multi-Agent Systems 16 

3.4 Key features 17 

3.5 Benefits of using MAT to solve Vehicle Routing Problem 18 

3.6 Summary 19 

Chapter 4  20 

4.1 Introduction 20 

4.2 Hypothesis 20 

4.3 Input 20 

4.4 Output 21 

4.5 Process 22 

4.6 Features 23 

4.7 Users 24 



2 | P a g e  
 
 

4.8 Evaluation 24 

4.9 Summary 24 

Chapter 5  25 

5.1 Introduction 25 

5.2 Message Space Agent 26 

5.3 Passenger Agents 26 

5.4 Vehicle Agents 27 

5.5 Inform Agent 28 

5.6 Group Agent 28 

5.8 Summary 29 

Chapter 6  30 

6.1 Introduction 30 

6.2 Technologies used 30 

6.3 System Implementation Design 32 

6.4 Process 33 

6.5 Create Agents 33 

6.6 Passenger agents form into groups 36 

6.7 Negotiation process 37 

6.8 Summary 39 

Chapter 7  40 

7.1 Introduction 40 

7.2 Experimental Design 40 

7.3 Evaluate Results 42 

7.3 Summary 44 

Chapter 8  45 

8.1 Introduction 45 

8.2 Conclusion 45 

8.3 Limitations and Further Work 46 



3 | P a g e  
 
 

8.4 Summary 46 

References  47 

Appendix A  49 

A.1 Introduction 49 

A.2 Sample ource code of the system 49 
 

 
  
 
 
 
 
  



4 | P a g e  
 
 

List of Figures 

 Page 

Figure 5.1: Design of the system 

Figure 6.1: System Implementation Design 

25 

32 

Figure 6.2: Steps of the system process 33 

Figure 6.3: Initial user interface– Normal Mode 34 

Figure 6.4: After agent creation – Normal Mode 34 

Figure 6.5: Add passenger details – Administrator Mode 35 

Figure 6.6: After agent creation – Administrator Mode 35 

Figure 6.7: After passenger agents form into groups– Normal Mode 36 

Figure 6.8: After passenger agents form into groups – Administrator Mode 

Figure 6.9: After negotiation process– Normal Mode 

Figure 6.10: After negotiation process– Administrator Mode 

Figure 7.1: Number of passenger based on the date 

Figure 7.2: Comparison of two solutions 

Figure 7.3: Total kms saving by system generated solution 

Figure A.1: Structure of the project 

Figure A.2: Class Structure 

 

37 

38 

38 

42 

43 

43 

49 

50 

 

 

 

 

 

 

 

 

 
 



5 | P a g e  
 
 

 

List of Tables 

 Page 

Table 3.1: Differences between Traditional systems and Multi Agent systems 

Table 3.2: Key features and benefits of Multi Agent systems 

Table 7.1: Sample Data Summary 

Table 7.2: Route Distance Comparison 

 

16 

17 

40 

41 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



6 | P a g e  
 
 

  Chapter 1 

Introduction 

1.1 Prolegomena  

Vehicle Routing Problem (VRP) is an optimization problem and it generalizes the well-

known Travelling Salesman Problem (TSP) [3]. VRP is about designing least cost routes from 

one depot to a set of geographically scattered points. The routes must be designed in such a way 

that each point is visited only once by exactly one vehicle within a given time interval and the 

total demands of all points on one particular route must not exceed the capacity of the vehicle. 

The objective of this problem is to minimize the number of vehicles required, minimize the total 

cost of all routes and to maximize the number of demands transported [15].  

 

Dantzig and Ramser (1959) were the first to introduce the “Truck Dispatching Problem", 

modeling how a fleet of homogeneous trucks could serve the demand for oil of a number of gas 

stations from a central hub and with a minimum travelled distance [1]. Five years later, Clarke 

and Wright  (1964)  generalized  this  problem  to  a  linear  optimization  problem  that  is  

commonly encountered in the domain of logistics and transport: i.e., how to serve a set of 

customers, geographically diffused around the central depot, using  a fleet of trucks with varying 

capacities [2]. This became known as the “Vehicle Routing Problem” (VRP), one of the most 

widely studied topics in the field of Operations Research. 

 

The current VRP models, however, are immensely different from the one introduced by Dantzig 

and Ramser (1959) and Clarke and Wright (1964), as they increasingly aim to incorporate real-

life complexities, such as for instance, time-dependent travel times (reflecting to traffic 

congestion), time windows for pickup and delivery, and input information (e.g., demand 

information) that changes dynamically over time . These features bring along substantial 

complexity. As the VRP is an NP-hard problem [4], exact algorithms are only efficient for small 

problem instances. Heuristics and metaheuristics are often more suitable for practical 

applications, because real-life problems are considerably larger in scale (e.g., a company may 



7 | P a g e  
 
 

need to supply thousands of customers from dozens of depots with numerous vehicles and 

subject to a variety of constraints). 

 

The number of solution methods introduced in academic literature (for old as well as new 

variants of the VRP) has grown rapidly over the past decades. However, most of the solutions are 

specific for special scenario of Vehicle Routing Problem and they can be only used to solve 

those specific problems. Since there are no generalized and cost effective VRP solving software 

solutions in the market, most of the transporting companies are trying to solve this issue 

manually. However, the approach is very costly and time consuming.  Due to the complex and 

dynamic nature of this problem humans and traditional computer programs are unable to give the 

most efficient solution. 

 

This research proposes a solution to the above issue using Multi Agent Technology. The main 

objective of this research is to design routes for the Vehicle Routing Problem which is efficient 

while fulfilling individual needs of engaging parties. 

1.2 Aim & Objectives 

Aim : The aim of this project is to develop a Multi Agent based solution to solve the 

Vehicle Routing Problem (VRP) while considering the uniqueness of the needs of 

parties that are involved. 

Objectives:  

 Study the Vehicle Routing Problem and existing solutions. 

 Study of technologies that can solve the problem (Multi Agent Systems). 

 Design and develop a system which solves the problem. 

 Evaluation of the proposed solution. 

 Preparation of the final documentation. 

 



8 | P a g e  
 
 

1.3 Background and Motivation 

In today’s world transportation plays an important role in logistics and it appears in various 

sections of logistics processes [18]. It occupies one-third of the amount in the logistics costs and 

influence the performance of logistics system massively. Therefore, well planned transportation 

could reduce operation cost, and promote service quality. The Vehicle Routing Problem (VRP) is 

one of the NP-hard problems which can be seen throughout various areas of transport and 

operational domain. Globally most of companies and organizations are struggling with similar 

issues and they are trying to solve it manually. Nevertheless, these issues are dynamic, complex 

and they can have many solutions. Due to this nature of the issue, generating a solution manually 

is difficult and it consumes a lot of time and effort. As a result, it can have multiple possible 

answers, finding the best solution can be challenging. Additionally, at times the solution which is 

chosen as the best solution will not be the best solution at all.  

MillenniumIT Software (Pvt) Ltd is one of the leading software development Companies in Sri 

Lanka which develops and maintains softwares for international capital markets (i.e.: Colombo 

Stock Market, London Stock Exchange Group). It provides transportation service at 8.00 pm for 

employees who work after 6.00 pm. additionally; employees can request for transport through an 

internal system before 7.45 pm. Till 7.45 pm an employee can change his or her request or cancel 

the request. After 7.45 pm employees cannot change their request and the operational team starts 

to create transportation plans manually for 8.00 pm transportation. At 8.00 pm, the transportation 

plan is shared across drivers. Due to the higher number of requests and limited time, it is very 

challenging to manually generate a cost effective and employee satisfying vehicle routing plan. 

Therefore, most of the time manually generated solutions are not cost effective as it should be. 

Further it adds unnecessary costs such as wastage of money and time. Employees who use the 

8.00 pm transport service are not satisfied with the service received, frequently complaining 

about the time they have to waste resulted by poor transportation planning. Yet there is no easy 

and straight forward solution, which can satisfy all the involving parties while giving the solution 

to vehicle routing problem. Thus, finding a solution for the issue becomes a motivation for this 

research which led to the learning about existing solutions, their usages and drawbacks.  



9 | P a g e  
 
 

1.4 Problem in Brief 

Although there has been approaches made towards solving this issue there are minor setbacks 

which are still present. Finding the most cost effective solution for Vehicle Routing Problem 

with customer satisfaction is one of the major problems in the transportation and operation area. 

This issue will be analyzed and solved by the proposed solution. The chapters will provide the 

necessary content of the research together with the proposed solution. 

1.5 Novel approach for Vehicle Routing Problem 

Existing approaches for solving Vehicle Routing Problem are based on search algorithms and 

mathematical algorithms. These solutions theoretically give accurate results for specific 

scenarios of Vehicle Routing Problem within a set of predefined conditions. When it comes to 

real world problems, these have multiple involving parties with dynamically changing 

environments and a complex set of requirements from each individual who participate for 

Vehicle Routing Problem. This matter makes real world Vehicle Routing Problems more 

complex, making it harder to solve using traditional search and mathematical based solutions. 

Multi Agent technology can be used to overcome this difficulty by enabling all stockholders as 

agents and giving negotiation power to influence the solution.  The power of agent technology is 

based on the autonomy of agents, negotiations between them and finds solution as an emergent 

property. Application of such technology to the problem identified above, will give autonomy as 

well as best results. So the system is able to give efficient solutions consuming less time and 

cost. Since it cares about the all the aspects of the problem this will be a total solution for 

Vehicle Routing Problem. 

1.6 Structure of the thesis 

The rest of the thesis is structured in the following order. Chapter 2 critically reviews the domain 

of Vehicle Routing Problem by highlighting current solutions, practices, technologies, and 

limitations defining the research problem. Chapter 3 describes essentials of Multi Agent 

Technology showing its relevance to implement a solution for Vehicle Routing Problem. Chapter 



10 | P a g e  
 
 

4 presents the content of the Multi Agent Technology based approach to solve Vehicle Routing 

Problem. Chapter 5 discusses about the design of the proposed solution. Chapter 6 contains 

details of implementation of the system. Chapter 7 concludes the outcome of the research with 

the note on further work. 

1.7 Summary 

This chapter provides the complete picture of the whole project presenting the research problem, 

objectives, hypothesis and the novel solution. The following chapter will be based on the 

literature review of Vehicle Routing Problem in terms of practices, technologies and issues for 

defining the research problem. 

 

 

 

 

 

 

 

 

 

 

 

 

 



11 | P a g e  
 
 

Chapter 2 

Current Issues and Practices in Vehicle Routing Problem 

2.1 Introduction 

In order to present a solution to the research topic, it is vital to identify the existing practices 

associated with Vehicle Routine Problem. Additionally, an insight about the analysis on the 

current issues that are present in Vehicle Routine Problem will create the foundation that is 

necessary to present the upcoming solution. The following chapter provides the content about the 

current issues and practices in Vehicle Routing Problem. Initially, it discusses about the history 

of Vehicle Routing Problem providing an insight of its inception and the attempts taken by the 

pioneers. Additionally, it will include the definition of the Vehicle Routing Problem and varieties 

of Vehicle Routing Problem. Later it will provide a discussion and critical reviews about the 

existing solutions and technologies for VRP. Finally it will describe current problems and 

limitations in explained techniques. 

 

2.2 Vehicle Routing Problem – Current practice and issues 

2.2.1 Vehicle Routing Problem    

The Vehicle Routing Problem (VRP) has been extensively studied in optimization literature. 

VRP was introduced by George Dantzig and John Ramser in 1959 as a generalization of the 

well-known Travelling Salesman Problem (TSP) [1]. The specific paper was an attempt to solve 

the VRP using a linear programming formulation which was for obtaining a near optimal 

solution [1]. In 1964, it was continued by G. Clarke and J. R. Wright who tried to develop an 

iterative procedure which enables the rapid selection of an optimum or near-optimum route [2]. 

After late 60’s many researchers became interested in the Vehicle Routing Problem which led 

them to come up with various solutions. These solutions can be divided into 4 main categories as 

Exact, Heuristics, Meta-heuristics and Hybrid methods [3]. Vehicle Routing Problem is divided 



12 | P a g e  
 
 

in to several variations and specializations such as the Vehicle Routing Problem with Time 

Windows (VRPTW), Capacitated Vehicle Routing Problem (CVRP), Vehicle Routing Problem 

with Multiple Trips (VRPMT), Open Vehicle Routing Problem (OVRP) and Vehicle Routing 

Problem with Pickup and Delivery (VRPPD).  

Currently VRP is widely studied because of its wide applicability and its importance in 

determining efficient strategies for reducing operational costs in distribution networks. For 

example, according to Geir Hasle, Knut-Andreas Lie and Ewald Quak [11] computer 

optimization programs can give savings of 5% to a company as transportation is usually a 

significant component of the cost of a product (10%). According to financial statistics the 

transportation sector makes up 10% of the GDP of the European Union. Consequently, any 

savings created by the VRP, even less than 5%, is a significant value. Giving a solution for the 

stated issue will result in saving a large amount of money which is vested without purpose. 

 

2.2.2 Exact Algorithm Based Solutions 

The branch-and-bound, the branch-and-cut and the branch-and-price are some exact algorithms 

which are proposed by researchers to solve VRP [3].  The Authors of [7] proposed an exact 

branch-and-price algorithm for solving the multiple vehicle routing problems with time 

windows. F.J.Bard, G. Kontoravdis and G. Yu have developed a branch-and-cut procedure for 

the VRPTW [6]. They addressed the problem of finding the minimum number of vehicles to visit 

a set of nodes subjected to time window and capacity constraints. The fleet is homogeneous and 

is located at a common depot. Each node requires the same type of service. An exact method is 

introduced based on branch-and-cut.  

The objective of the VRPTW is to serve a number of customers within predefined time windows 

at a minimum cost (in terms of distance travelled), without violating the capacity and total trip 

time constraints for each vehicle. Combinatorial optimization problems of this kind are non-

polynomial-hard (NP-hard) [4] and are hence best solved by using Heuristics. The most 

important Meta-heuristics used to solve the VRPTW are Tabu Search (TS), Genetic Algorithm 

(GA), Evolutionary Algorithms (EA) and Ant Colony Optimization Algorithm (ACO). Meta-



13 | P a g e  
 
 

heuristics controlling local search processes such as Tabu Search, simulated annealing genetic 

algorithms, evolution strategies, large neighborhood search, and guided local search [3].  

Homberger and Gehring introduced a two-phase hybrid metaheuristic for the Vehicle Routing 

Problem with Time Windows (VRPTW) and a central depot [5]. In the stated solution they 

proposed to combine two methods which focus on minimization of the number of vehicles 

(primary criterion) and total travel distance (secondary criterion) [5]. To minimize the number of 

vehicles they used (μ,λ)-evolution strategy and to minimize the total travel distance Tabu Search 

algorithm was used. G. B. Alvarenga and team suggest a genetic and set partitioning two-phase 

approach for the VRPTW. The VRPTW is formulated as a set partitioning problem (SP). The 

GA is based on natural reproduction, selection and evolution of Darwin’s theory. Ever since, GA 

has been popular on this problem domain because it can contribute to find better solutions for 

complex mathematical problems, such as the VRP and other NP-hard problems, in a reasonable 

amount of time. 

P. Shaw from the University of Strathclyde proposed a local search method known as the Large 

Neighbourhood Search (LNS) for solving Vehicle Routing Problems [9]. The technique explores 

a large neighborhood of the current solution by selecting a number of customer visits to remove 

from the routing plan, and re-inserting these visits using a constraint-based tree search.  

M. Gandreau and team proposed a neighborhood search heuristics to optimize the planned routes 

of vehicles in a context where new requests, with a pick-up and a delivery location, occur in real-

time [10]. This is a Dynamic Vehicle Routing Problem (DVRP). Within this framework, new 

solutions are explored through a neighborhood structure based on ejection chains.  

All of the above existing researches suggest various methods to solve Vehicle Routing Problem. 

They use exact algorithms, heuristic methods, metahuristic methods and combination of these 

techniques (hybrid) as solution to Vehicle Routing Problem. These methodologies are based on 

search and mathematical algorithms and those algorithms are considering stakeholders of 

Vehicle Routing Problem as numerical or categorical data points with properties. When it comes 

to real world problems, those problems are having multiple involving parties with dynamically 

changing environments and complex set of requirements from each individual who participate 

for Vehicle Routing Problem. This makes real world Vehicle Routing Problems more complex 



14 | P a g e  
 
 

and difficult to solve using traditional search and mathematical based solutions. Most of these 

solutions are focused merely to find a solution to the cost of the transportation and without 

concern for the uniqueness of the needs of other parties (client, vehicle owner, passenger …), 

who are part of the problem.  

Multi Agent Technology can be used to overcome this difficulty by enabling all stakeholders as 

agents and giving negotiation power to influence the solution.  The power of agent technology is 

based on autonomy of agents, negotiation between them and finds solution as an emergent 

property. Application of such technology to the problem identified above, will give autonomy as 

well as best results. So the system will give efficient solutions with less time and cost. As it cares 

about all the aspects of the problem this will be a total solution for Vehicle Routing Problem. 

2.4 Summary 

As the beginning chapter, this chapter explained about current practices in VRP simultaneously 

providing a critical review of these current practices by their highlighting issues. The details 

stated in the chapter provide the groundwork to understand the following chapters of the 

research. It will become the basis for the research and will be a reference to see how the Vehicle 

Routine Problem is solved with the Multi Agent System. In next chapter, it will discuss about 

Multi Agent Technology and how it is more suitable to solve VRP. 

 

 

 

 

 

 

 



15 | P a g e  
 
 

Chapter 3 

Multi Agent Technology  

3.1 Introduction 

The previous chapter was based on how the Vehicle Routine Problem was solved through the 

current practices. The following chapter will be based on introducing the Multi Agent System, 

which can be used as a feasible method to solve the Vehicle Routine Problem.  It will be further 

expanded with a discussion as to why the Multi Agent System is suitable to solve the VRP. For 

the purpose of comprehending the Multi Agent System, examples are discussed and applied in 

the manner that will show how it is applicable to solve the Vehicle Routine Problem. 

Additionally, a comparison is done to distinguish the differences between the traditional systems 

and the Multi Agent Systems. The key features of the Multi Agent system will provide the 

knowledge as to why it is more suitable to solve the VRP. 

3.2 Multi Agent Technology 

Multi Agent Technology is composed of multiple agents who possess the ability to pass 

messages to each other and achieve a certain goal. A single agent in a multi agent system is a 

small program that execute when required, do the assigned task and terminates [14]. While single 

agent does not make any sense, a collection of agents are capable of achieving many things. An 

Ant Colony is an example of a real world multi agent system, where each ant does a particular 

work to achieve a certain goal. While passing messages to other ants, they achieve this goal. In 

the software viewpoint, multi agent system is a collection of small programs that passes 

messages to each other to achieve a certain goal. For individual agent, that agent has a small 

knowledge, this little piece of knowledge is known as Ontology. The ontology may contain how 

the agent should act towards certain inputs from the environment. Unlike other Artificial 

Intelligence technologies, the software agent has an input from the environment, and the agent’s 

reactions will change the environment. These agent systems have certain features such as 

autonomous, proactive and emergent associated with it. 



16 | P a g e  
 
 

 

Autonomous agent means that the agent does its work automatically without human intervention. 

The lifecycle of an agent (start, process and exit) is automatic. Proactive agent means that an 

agent does some sort of work related to achieving a desired goal when the agent is idle. 

Emergent feature (Collective Intelligence) is not associated with an individual agent; it’s 

associated with the whole multi agent system. Emergent is the property where an idea or some 

suggestion suddenly pops up due to the communication among each other [14]. For example, a 

group of people discusses about buying a vehicle. At the beginning, they discuss about buying a 

car. Different people engage in a conversation about different brands, prices etc. however, at the 

end of the discussion they all decide to purchase motorcycles. In the above example, buying 

motorcycles is the emergent property. 

3.3 Traditional Systems vs. Multi-Agent Systems 

In particular, two large software systems, one traditional and the other agent-based are compared. 

The following table shows the differences between traditional systems and multi-agent systems. 

  

Traditional systems Multi-Agent systems 

 Hierarchies of large programs  

 Sequential execution of operations  

 Instruction from top to bottom  

 Centralized decision  

 Data driven  

 Predictability  

 Stability  

 Striving to reduce the complexity  

 Total control 

 

 Large networks of small agents 

 Parallel execution of operations 

 Negotiations 

 Distributed decisions 

 Knowledge driven 

 Self-organization 

 Evolution 

 Striving to thrive with the complexity 

 Support for growth 

 

Table 3.1: Differences between Traditional systems and Multi-Agent systems 



17 | P a g e  
 
 

3.4 Key features 

This following table shows key features and benefits of multi-agent systems together with usage 

examples for each feature. 

 

No Key Feature Benefits Usage examples 

1. Agent design supports full 

life cycle: perception, 

planning and execution. 

 

Support of real time solutions 

and applications. 

Dynamic dispatching, 

planning and optimization of 

mobile resources. 

2. Adaptive p2p networks of 

real-time schedulers 

demonstrating coevolution 

of self-organized systems. 

 

Openness, high performance, 

scalability and reliability of 

enterprise-ready system. 

Supply chain management. 

For example, factory and 

transport plans coordination. 

3. Dynamically formed 

bottom-up ontologies 

constantly renewed in the 

process of interaction with 

user. 

 

Opportunity to fill the 

knowledge base on the fly 

without reprogramming. 

In the process of interaction 

with a driver the system 

learns about events such as 

snowfall, road closure, etc. 

4. Emergence property. 

(Collective Intelligence)  

 

Increase of business 

performance, efficiency, 

productivity and 

competitiveness. 

 

A taxi driver using his 

mobile phone can pass 

signals about the groups of 

potential passengers. 

5. Sophisticated interaction 

with the system to find a 

solution to the problem. 

 

Intellectualization of dialog 

with the user. 

Allows the user to play with 

the solution and adjust it on 

the fly accordingly. 



18 | P a g e  
 
 

6. Support of work in case of 

uncertainty or errors in 

initial data. 

 

Lack of data or errors is not a 

restriction for the system to 

work. 

Stability and reliability of 

results in case of incorrect 

data. 

7. Support of parallel 

processing. 

 

Significant increase of 

performance. 

Planning and scheduling of 

large amount of resources. 

8. Combination of work in 

real-time with classical 

batch algorithms of 

resource planning and 

scheduling. 

 

Improvement of planning 

quality when orders and 

resource are known in 

advance. 

Strategic long-term factory 

scheduling. 

 

Table 3.2: Key features and benefits of Multi-Agent systems 

 

3.5 Benefits of using MAT to solve Vehicle Routing Problem 

As stated, current solutions for Vehicle Routing Problem are not satisfactory. To address this 

situation, Multi Agent Technology can be used. Due to the requirements and features that 

address each requirement Multi Agent Technology is the most suitable technology to solve the 

given problem.  

 

 Find optimal route 

Main concern of Vehicle Routing Problem is to find the optimal route, which minimizes 

the traveling cost. There is a possibility to find the optimal route using features of multi 

agents such as Autonomy, Communication, Negotiation, Adaptation and Emergent 

property. 

 



19 | P a g e  
 
 

 Considering needs of each individual 

In multi-agent systems each agent can have their own Beliefs, Desires, and Intentions 

(BDI). Therefore each individual can be represented by an agent and they will negotiate 

with other agents to satisfy their needs, while contributing to create the solution. 

 

 Finding and sharing required knowledge 

Each agent has their own ontology and they can access the shared ontology as well. Since 

agents are autonomous they can be programmed to find the knowledge they need. 

Through the communication they can share knowledge and they can create a new 

knowledge which the individual members do not have (emergent property). This will 

help to improve the quality of the solution. 

 

3.6 Summary 

In this chapter, the discussion was based on Multi Agent Technology. The discussion contained 

features of the software agents. Furthermore, it portrayed how this technology is capable to solve 

Vehicle Routing Problem more efficiently as opposed to the traditional systems that have been 

used in practice in the current VRP context. The benefits of the MAT were listed to provide an 

insight to the system. In next chapter, the discussion will be based on the approach to solve 

Vehicle Routing Problem. 

 

 

 

 

 

 



20 | P a g e  
 
 

Chapter 4 

Solve Vehicle Routing Problem using Multi Agent 

Technology 

4.1 Introduction 

The previous two chapters defined the research problem: the inefficiency and incompetency in 

current approaches to solve Vehicle Routing Problem. Furthermore, the discussion was extended 

as to why the Multi Agent Technology is the potential technology to develop novel method to 

solve VRP. With a clear understanding of the VRP and the MAT, the next approach would be 

how the two can be connected to bring out a solution. This chapter is based on the approach 

which is suggested by the proposed system to solve the VRP. Based on the hypothesis, the 

system input, system output and the process are discussed with the non-functional requirements 

of the system. Furthermore, the features of the system are explained. At the end of the chapter 

and evaluation is stated through comparison and justifying the thesis.   

 

4.2 Hypothesis 

Vehicle routing problem be can solved by the Multi Agent systems. 

 

4.3 Input 

Acquiring required information from environment is one of the main features in Multi Agent 
Technology. For agent creation process, system should know passenger details and vehicle 
details. In negotiation process passenger agents and vehicle agents should have ontology with 
required information. Following are the inputs, which collect through user inputs and integrated 
systems.  
 

 Destination Points Details  

 Vehicle Information 



21 | P a g e  
 
 

 Constraint Values 

 Route Information 

 

Destination points will contains details regarding passenger drop off points and passenger 
details.  Properties of destination point include passenger name, latitude of the drop off point and 
longitude of the drop off point. The system will collect the vehicle name (unique ID) and number 
of seats of the vehicle to create vehicle agents. The number of vehicles is a constraint variable for 
this system. Agents of the system can interact with Google API to get route information that is 
required. As an example, if passenger agents need to know the estimated travel time from 
departure location to the drop off location on 8.00 pm traffic conditions, it can directly call 
Google API and acquire the required information. Input sources can be divided into two main 
categories. One is User Inputs (Destination Points, Vehicle Information and Constraint Values) 
and other one is Web Services (Route Information using Google API). Using both these input 
types, the system will generate a solution for Vehicle Routing Problem. 

This system runs based on two modes, 

 Administrator Mode 

 Normal Mode 

For Administrator Mode, user input to the system should be added to the system by the user of 
the system. In the Normal Mode, the system will take all the information required through 
integrated systems, where this user has already added their requests. 

4.4 Output 

Output of this system will be routes which design to minimize the cost and maximize passenger 

satisfaction. Output format and representation is playing a major role in any solution. It affects 

how user derives information and how user interpreted the solution. For this system output is 

representing in two formats. 

 Geographical map 

 Table of representing how passengers assign to vehicles 

Because of this solution is providing a route plan it is good to use geographical map as one of 

outputs, which help user to understand overall plan at a glans. Furthermore it is using a table to 

represent how vehicles allocated for passengers. This will help to share information among 

stakeholders with clear meaning. 



22 | P a g e  
 
 

4.5 Process 

By using passenger details, the system will generate a passenger agent for each destination point 

while setting a passenger name as passenger identification name. When passenger agent comes 

to life, it will connect with Google API and retrieve minimum travel duration estimation from 

departure location to drop off location with 8.00 pm traffic condition. Based on minimum travel 

duration estimation it will generate maximum travel time threshold value for itself, which is 20% 

addition to minimum travel duration.  

 

 i.e.  If passenger no: 1’s   minimum travel duration estimation   = 100 min 

Then his generate maximum travel time threshold value = 100 + (100* 20/100) 

            = 120 min 

Using a percentage of minimum travel time estimation as the buffer for maximum threshold 

value helps to generalize user specific threshold values based on distance between departure 

locations to passenger drop off location.  

 

Vehicle agents will be created based on vehicle name and number of seats that are included. 

After passenger agents are created each passenger agent broadcasts a message with its location 

details (longitude and latitude) to all other passenger agents to identify nearby agents. When a 

passenger agent receives a nearby request message from another passenger agent it will connect 

to Google API and based on their location coordinates it will get travel time duration estimation 

between them. If that duration is less than 30% (this percentage can be configured) of its 

minimum travel time, receiver agent adds requested passenger agent as its nearby agent. 

Passenger agents identify nearby agents and create groups using this process. After the creation 

of groups for each group, group agent comes to life and it starts to negotiate with vehicle agents 

on behalf of its members. 

  

When a vehicle agent receives a request from a passenger agent or group agent, first it checks 

whether it has the required number of seats or not. If the required number of seats is not 

available, it sends a message to request agent informing that the capacity is not enough. If the 

required number of seats is available, it checks whether adding this agent or group will affect 



23 | P a g e  
 
 

badly for existing passengers. If it does not affect accepting passengers, the vehicle agent sends 

the minimum travel time it can allocate for the requested passenger or group. Then the passenger 

or group agent collects all the responses and selects the proposal which has minimum travel time 

and checks it against his maximum travel time threshold. If it is satisfied by selected proposal, 

passenger agent sends acknowledgment to the vehicle agent. Using this process passenger 

agents, group agents and vehicle agents negotiate among each other and creates a solution as an 

emergent property.  

 

This process can be summarized as following. Passengers and vehicles assigned to agents and 

passenger agents create group agents by grouping with nearby agents. Through the negotiation 

process vehicles choose their passengers and routes (passenger agents will try to get their 

maximum comfort and vehicles will try to reach minimum distance). A solution is generated as 

an emergent property of that negotiation and that solution satisfies requirements of all involving 

parties while being cost effective. 

 

4.6 Features 

Being Vehicle Routing Problem a NP-hard problem makes it is difficult to use exact algorithms 

when it has large number of problem instances. Because of Multi Agent Technology features this 

system will facilitates following features which are most suitable for solving Vehicle Routing 

Problem. 

 Complexity of the problem will be handled by MAS. 

Multi Agent Systems are not ruled top-down by centralized system control. Instead, 

complexity is distributed across simplified agents, which are capable to interact with each 

other and provide emergent solutions.  

  

 Adaptation to dynamic situations 

Due to the de-centralized and emergent solution behavior, this system will adapt to the 

situation and find the best solution based on it.  



24 | P a g e  
 
 

 

 Autonomy of the system 

This system will find solutions without intervention of the user. 

 

4.7 Users 

People who need to design routes for transportations will be the users of this system. 

 

4.8 Evaluation 

Comparison of the system provided solutions against manually generated (existing) solutions for 

a selected data set. If solutions generated by MAS are cost effective against manually created 

solutions, the hypothesis is acceptable. 

 

4.9 Summary 

This chapter was based on the approach of the project. It included a discussion about the 

hypothesis of the research together with the input, process, the output process, users and the 

evaluation. The features that the system facilitates were also added in order to provide a detailed 

analysis on the approach. It further justifies the reason as to why the system was specifically 

chosen as a solution. The next chapter will describe about the design of the system. 

 

 
 

 



25 | P a g e  
 
 

Chapter 5 
 

Design of Multi Agent System to Solve VRP 

5.1 Introduction 

It is vital to have a clear design that would enable to use the Multi Agent System efficiently to 

solve the Vehicle Routine Problem. The following chapter will showcase the design that has 

been implemented for the mentioned purpose. The system will focus on a specific problem; such 

it will need to find the most cost effective routes for dynamically allocated passengers at a given 

period of time. Vehicles’ details and passengers’ details are provided for the benefit of having a 

clear approach. Furthermore, there is a constraint on the maximum ride time of each passenger, 

which should not be exceeded.  The medium of communication used by the agents is defined. 

Additionally, each role of each agents of the system is separately defined for the purpose of 

understanding their importance in the system.  

 

Figure 5.1: Design of the system 



26 | P a g e  
 
 

 

The system is designed as such that it will automatically generate an agent for each individual 

stakeholder (passenger, vehicle) to represent their requirements. Passenger agents are designed to 

request vehicles by giving their information to other agents and to negotiate for a minimum ride 

time for them. Vehicle agents are designed to negotiate for most cost effective routes without 

exceeding their capacity. Likewise passenger agents will negotiate for quality of the service 

while vehicle agents will negotiate for cost effectiveness of the solution.  Therefore, the system 

will be able to find a cost effective solution while providing required level of service quality to 

the passenger. 

5.2 Message Space Agent 

The field of Multi-Agent Systems (MAS) is driven by the key metaphor of interaction between 

multiple autonomous agents whose micro-behavior produces the perceived over-all system 

behavior. Therefore Communicating and sharing intelligence among agents is an important facet. 

To fulfill this requirement message space plays a major role in Multi Agent Technology. 

Message space acts as a middle man for all the communication between agents. Request agents 

and the resource agents are connected to the message space and can be identified using directory 

service. If one agent needs to communicate with another agent, then that agent connects to 

message space and sends the message to the required agent. Afterwards, message space searches 

that agent using directory service and route that message to the relevant agent. Additionally,  by 

using message space an agent can broadcast a message to multiple agents. It is also responsible 

for coordination of the user channel request. 

5.3 Passenger Agents 

These agents will be created automatically by using passenger specific information. Each 

passenger agent will have details regarding their destination (longitude, latitude) and a unique 

name to identify. At creation time a passenger agent uses his or her destination details and call 

Google Map API web services to capture the minimum travel time needed to reach home based 



27 | P a g e  
 
 

on 8.00 pm traffic.  By adding 20% of expected minimum travel time to itself, it generates a 

maximum expected travel time threshold value.   

 

At the start passenger agents will talk with other passenger agents to find nearby passengers. If 

one passenger finds a nearby agent they will create a group. If an agent finds another group 

nearby, the agent will join with that group. Likewise passenger agents will form into groups and 

negotiate with vehicles as a group, where they can reach their destinations with lowest travel 

time. If a group or single agent finds a vehicle which satisfies their requirements, they will 

choose the specific vehicle.    

 

5.4 Vehicle Agents 

The system creates vehicle agents based on vehicle information (vehicle name and number of 

seats of each vehicle) which provide as input to the system. When a vehicle agent receives a 

message from a passenger agent or group agent, it checks whether the required capacity is 

available or not. If the capacity is not available, vehicle agent rejects the request and informs 

passenger agent that the requested capacity is not available. If the required capacity is available 

and vehicle has some passengers already assigned, it connects with Google API to get estimated 

travel time for requested passenger while considering passengers that are already assigned and it 

checks whether adding this passenger will affect negatively for already assigned passenger 

requirements. If adding requested passenger is not affect negatively for assigned passengers, it 

sends an estimated travel time as a proposal for passenger. Else it rejects the request and informs 

the passenger agent.  

When passenger agent receives all the proposed estimated travel time, it selects the proposal 

which contains the minimum estimated travel time, accepts that proposal and informs the vehicle 

agent to assign him as a passenger of that vehicle. It rejects all other vehicle agents’ proposals 

and informs them. By using this process vehicle agents are negotiating with passenger agents to 

design more cost effective routes while satisfying the passenger agents. At the same time they 



28 | P a g e  
 
 

are negotiating among themselves to separate and allocate more cost effective passengers for 

their own routes.  

 

5.5 Inform Agent 

This agent will load at the startup and its main responsibility is to inform passenger agents to 

perform groups based on their relative positions after make sure all the passenger agents are live.    

After passenger agents are created, it broadcast message to passenger agents for communicate 

with one another and create groups. After giving this message, it will sleep till passenger agents 

create their groups and passenger group agents come to live. When that process completed, it 

broadcast messages for passenger agents and vehicle agents to start the negotiation process for 

generating solution. 

5.6 Group Agent 

Every time a passenger agent connects with a nearby agent it will create a new group agent and 

add both passenger agents into the created group or it will add passenger agents into existing 

groups. After group agent comes to life, member passenger agents will assign group agent to 

negotiate on behalf of them and stop direct negotiations with vehicle agents. Group agents can 

join with other group agents or passenger agents and create new groups. Any group agent has 

two or many passenger agents and those passenger agents are sorted based on the distance from 

departure location.  

The passenger who has minimum expected travel duration and the passenger who has maximum 

expected travel duration among other agents are explicitly captured in group agent ontology. 

When new an agent joins the group these two records are updated based on joining passenger 

agent. When group agent evaluates a proposal of vehicle agent, first it checks whether this 

proposal satisfies the nearest member agent’s (who has minimum expected travel time) 

requirement. If it satisfies then it checks the proposal against the requirement of the agent who 

has maximum expected travel time. If it satisfies the request group the agent will accept that 

proposal and ask the vehicle agent to assign them to the vehicle. 



29 | P a g e  
 
 

Group agent’s process and lifetime can be summarized as follows. Group agents’ created by two 

or more nearby passenger agents and it can be expanded by adding new nearby agents.  Group 

agents will contain all member agents’ details (destination points) and their requirements 

(required travel times). When vehicle agent gives a proposal, this agent will evaluate it against 

member requirements. If the proposal satisfies member requirements, group agents will decide to 

use that vehicle and assign member agents to proposed vehicle. 

5.8 Summary 

The high level design of the system was explained in the chapter. The roles of the various agents 

in the system and their responsibilities were analyzed in detail so that in the following chapter it 

will be easier to locate these agents with the process. Next chapter is about the implementation of 

the Multi Agent Technology based solution, the technologies that are used and how each process 

is implemented. 

 

   

 

 

 

 

 

 

 

 



30 | P a g e  
 
 

Chapter 6 
 

Implementation of Multi Agent System to Solve VRP 

6.1 Introduction       

The implementation of the Multi Agent System will be discussed in the following chapter. Under 

implementation, it describes how this system is developed. Furthermore it gives a detailed 

insight about the technologies, methods, algorithms that are been used. The System 

Implementation Design is included together with the process. The details of the process are given 

also through images which makes it easier to understand. All the steps of the process are been 

explained in an order to understand how the system works.  

6.2 Technologies used 

Selecting correct technologies for a system is a deciding factor for its success. Selecting an 

unsuitable technologies or incompatible set of technologies together to implement solution will 

make implementation process hard and even sometimes researcher has to pay the price by giving 

up the research. Therefore technologies for this system choose carefully with clear understanding 

about inputs, process and outputs to be generated. Jade framework is used as the core framework 

for this system and to support it Java is selected as underlying technology to run Jade framework 

on it. Likewise all the following technologies were used for implementation of the system. 

 Java JDK 1.8.20  

 JADE 

 JavaFX  

 Google Maps API 

 HTML and Javascript  

 Maven 

 

 



31 | P a g e  
 
 

6.2.1 Java JDK 1.8.20  

 

JADE is one of the popular agent development frameworks and it uses java technology as its 

underlying technology. Since JADE is used as the agent framework of the present context; this 

system uses Java as its base technology. The Java Development Kit (JDK) is a software 

development environment used for developing Java applications. It includes the Java Runtime 

Environment (JRE), an interpreter/loader (java), a compiler (javac), an archiver (jar), a 

documentation generator (javadoc) and other tools needed in Java development. For this system 

JAVA is used as the base technology and JDK 1.8.20 as the Development Kit. 

 

6.2.2 JADE 

 

JADE (Java Agent Development Framework) is a software Framework fully implemented in the 

Java language. It simplifies the implementation of multi-agent systems through a middle-ware 

that complies with the FIPA specifications and through a set of graphical tools that support the 

debugging and deployment phases.  

 

6.2.3 JavaFX  

 

JavaFX is a software platform for creating and delivering desktop applications, as well as rich 

internet applications (RIAs) that can run across a wide variety of devices. It is intended to 

replace Swing as the standard GUI library for Java SE. Since it has rich features than other 

JAVA GUI frameworks, this system’s Graphical User Interfaces (GUI) are developed using 

JavaFX. 

 

6.2.4 Google Maps API 

 

Google launched the Google Maps API in June 2005 as a free service to allow developers to 

integrate Google Maps into their websites. By using the Google Maps API, it is possible to 

embed Google Maps site into an external website, on to which site specific data can be overlaid. 



32 | P a g e  
 
 

This API communication is based on JavaScript and JSON and it is a service for retrieving static 

map images, and web services for performing geocoding and generating driving directions. In 

this application Google Maps API is used to display passenger destinations, display passenger 

groups, display routes, retrieve travel time for passengers and retrieve routes according to traffic.  

 

 

6.2.5 HTML and Javascript 

This application uses HTML to display geo map, passenger details, groups and routes. HTML 

helps to run Javascripts on it and connect with Google maps to show update geo map insight. To 

mark passenger destinations, groups and routes in HTML, application uses Javascript. Other than 

that Javascript is used as the communication technology to communicate with Google Maps API 

to acquire required knowledge for agents.  

 

6.3 System Implementation Design 

The system implementation design is presented as follows.  

 

Figure 6.1: System Implementation Design 

 



33 | P a g e  
 
 

6.4 Process 

When considering the whole process of the system, it can be divided it into three main phases. 
These phases are data acquisition and create agent phase, passenger agent grouping phase, 
passenger, passenger group and vehicle negotiation phase. 

 

Figure 6.2: Steps of the system process 

6.5 Create Agents 

When the system starts it will take passenger details of those who requested transport and vehicle 
details which are available at the given period of time. These details can be user input or an input 
coming from integrated system based on the mode the system is running on. To handle the life 
cycle of the agents, system uses Jade framework, which the most popular JAVA language based 
Multi Agent Technology framework with FIPA specifications compliant. 

When the system receives the required information, it creates passenger agents, vehicle agents 
and informs agents according to it. After passenger agents start, they will call Google Maps API 
to find the minimum travel time to their destination based on traffic at travelling time and set it 
as their minimum expected travel time. By adding 20% of minimum expected travel time to itself 
they will find maximum expected travel time and they will negotiate with vehicle agents to have 
a travel time below that threshold value. Vehicle agents are created based on number of vehicles, 
vehicle names and capacity of vehicles. 



34 | P a g e  
 
 

 

Figure 6.3: Initial User Interface– Normal Mode 

 

 

Figure 6.4: After Agent Creation – Normal Mode 



35 | P a g e  
 
 

 

Figure 6.5: Add Passenger Details – Administrator Mode 

 

 

Figure 6.6: After Agent Creation – Administrator Mode 

 



36 | P a g e  
 
 

6.6 Passenger agents form into groups 

After passenger agents set their threshold values, inform agent will inform them to create groups 
by connecting with nearby passengers. Afterwards all the passengers broadcast a request 
message with their longitude and latitude details to identify nearby passenger agents. Later the 
agent who received the message gets the distance to request agent based on received details. If 
requested agent is within 30% of minimum expected travel time radius, it sends an 
acknowledgment message to the requested agent. 

By using this process passenger agents are able to talk with each other and create groups with 
passengers who are within 30% travel time from their minimum expected travel time. After all 
the passengers are grouped into nearby groups, the system shows nearby groups details on a map 
by coloring them with the same colors. When passenger agents create a new group or join to a 
group they will be assigned to a group agent and the specific agent will take responsibility of 
finding a suitable vehicle for assigned passengers. 

 

 

Figure 6.7: After passenger agents form into groups– Normal Mode 

 

 



37 | P a g e  
 
 

 

Figure 6.8: After passenger agents form into groups – Administrator Mode 

 

6.7 Negotiation process 

After the passenger agent is grouped into nearby groups, negotiation starts between passenger, 
passenger group and vehicle agents.  

Passenger agents will try to negotiate for the lowest travel time they can have, while vehicle 
agents negotiate for the minimum route cost. At the end of this process both the parties will come 
up with a solution, which have minimum route cost while satisfying the passenger requirements. 

 



38 | P a g e  
 
 

 

Figure 6.9: After negotiation process– Normal Mode 

 

 

Figure 6.10: After negotiation process– Administrator Mode 

 



39 | P a g e  
 
 

6.8 Summary 

This chapter discussed about the technologies used and the implementation of the system. Later 
it discussed about how passenger agents acquire required knowledge, create groups and how they 
negotiate with vehicle agents.  Under that topic it described how passenger and vehicle agents 
take decisions for an uninterrupted flow of the service. Finally the discussion is extended to show 
how this process is presented to user of the system. The next chapter will explain an overall 
evaluation process of the research. 

 

 

 

 

 

              

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



40 | P a g e  
 
 

Chapter 7 

Evaluation 

7.1 Introduction       

An experiment is designed to evaluate the Hypothesis in the given chapter. It will showcase 

efficiency and will reveal comparison of data that were being used. The experiment is centered 

on a particular data. Furthermore, it is justified as to how the data was selected to provide an 

unbiased experiment. The discussion is extended to see whether the objectives mentioned in 

earlier chapters are met and to what extent. 

7.2 Experimental Design      

This experiment was designed to evaluate whether shuttle plans generated by the system is 

efficient than manually generated shuttle plans or not. As the first step of the evaluation process 

sample dataset were selected from shuttle requests, which were made by the employees of 

MillenniumIT for 8.00pm shuttle. To select a dataset without any biasness, shuttle request data 

for 10 days was selected randomly. 

Later for the evaluation process manually generated shuttle plans for those shuttle requests were 

collected and the data was summarized. Summarization was done based on the following criteria, 

 Number of passengers 

 Total route distance (for all requests) 

 

Date Number of passengers Total route distance(Manually) 

14/09/2016  43 503 

16/09/2016  34 482 

2009/2016  51 529 

22/09/2016  12 358 

25/09/2016  27 392 

29/09/2016  32 453 



41 | P a g e  
 
 

30/09/2016  18 316 

04/10/2016  45 539 

06/10/2016  36 453 

12/10/2016  17 337 

 

Table 7.1: Sample data summary 

 

After collecting and summarizing the dataset, shuttle plans were generated through the proposed 

system for the same requests. When shuttle plans were generated, the total route cost of each 

plan were calculated and evaluated against the manually generate shuttle plans. The side by side 

comparison of the two methods was as follows. 

  

Date Total route distance(Manually) Total route distance (MAS) 

14/09/2016 503 492 

16/09/2016 482 476 

20/09/2016 529 545 

22/09/2016 358 332 

25/09/2016 392 408 

29/09/2016 453 412 

30/09/2016 316 289 

04/10/2016 539 513 

06/10/2016 453 412 

12/10/2016 337 325 

 

Table 7.2: Route distance comparison 

 

The percentage of the system generated shuttle plans was better than manually generated plans 

which were 80%.  Only two sample datasets have total route distance lower than the solution 



42 | P a g e  
 
 

generated by Multi Agent Technology. When compare route costs most of the system generated 

routes were efficient more than 5% with regard to the existing system. 

7.3 Evaluate Results 

Analyzing and evaluate results of system generated solution against the manually generated 
solutions were given concrete evidence to suggest that the system generated solutions were more 
cost effective than the manually generated solutions. As per the following diagrams, solutions 
were evaluated and come up with more insights about the solutions given by two parties.  

 

 

Figure 7.1: Number of passenger based on the date 

 

0

10

20

30

40

50

60

Number of passengers



43 | P a g e  
 
 

 

Figure 7.2: Comparison of two solutions 

 

 

Figure 7.3: Total kms saving by system generated solution 

 

0

100

200

300

400

500

600

Total route distance(Manually)

Total route distance (MAS)

‐20

‐10

0

10

20

30

40

50

Reduced travel distance



44 | P a g e  
 
 

As per the Figure 7.1 and Figure 7.2 it shows clear relationship between number of passengers 
and the total distances of generated solutions. It indicates solutions are creating based on the 
passengers requirements. All above insights suggest that system generated solutions are cost 
effective than the manually generated solutions for 80% of the times and it helps to reduce the 
transport cost by considerable amount.  

7.3 Summary 

In the end of the chapter, it brings out a detailed evaluation of the Hypothesis using a proper 

experiment mechanism. It has been designed and conducted in such away to measure the success 

of the application. All the attempts made to conduct the experiment are presented step by step in 

a detailed manner. The efficiency of the system is finally stated as opposed to the manual system. 

By presenting the results, the hypothesis is justified.     

  

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



45 | P a g e  
 
 

Chapter 8 

Conclusion 

8.1 Introduction       

Through the previous chapters detailed discussions were done on the main problem, different 
kinds of technology that have been used, a hypothesis, design of the solution, implementation of 
the solution and its evaluation process. As the final chapter, this chapter explains the conclusion 
of the research. Additionally, it will explain the further work done in the proposed system. It 
describes the challenges that were found during the process and suggests what areas should be 
tented to, to run the system without any errors. However, the current improvements that are 
identified in the system are brought to a conclusion. 

8.2 Conclusion 

The aim of this project was to develop a Multi Agent System for generate travel plan, which is 
cost effective than the manually generated travel plan. Furthermore it should able to come up 
with solutions which satisfy all the involving parties. This is a challenging target for traditional 
technologies and mathematical based technologies, Because of the complexity it adds up to the 
solution with increase of the number of travel requests. Multi Agent Technology overcome this 
challenge by converting traditional data points to agents, who can have their own goals, negotiate 
for themselves and contribute for best possible overall solution. 

Because of being a Multi Agent System this system can operate using minimal user inputs and 
intervention. It uses external systems like Google API to quire required knowledge and through 
the interaction and negotiation it builds the solution as an emergent property. Based on these 
features it has higher level of adaptation to different problems and it increases the level of 
satisfaction of passengers.   

This research’s evaluation process was designed to evaluate the hypothesis that “Vehicle Routing 
Problem can be solved by Multi Agent Systems”. According to the results of evaluation, it found 
80% of solutions, which are generated by Multi Agent System, give efficient solutions than 
manually generated solutions. Furthermore, most of the solutions were having more than 5% of 
efficiency improvement which is considerable amount of cost saving. Based on these results it is 
possible to arrive at the conclusion that the hypothesis (“Vehicle routing problem can be solved 
by Multi Agent Systems”) is correct.  



46 | P a g e  
 
 

8.3 Limitations and Further Work 

When running these testing, the number of vehicle was added as a manual input to maximize the 
quality of the results. When the number of vehicles is higher than the required level, it tends to 
generate shuttle plans with a slightly higher total route cost. To avoid this it is necessary to 
develop a negotiation process between shuttles to identify the number of vehicles which gives 
best results by themselves.     

When analyzing the results of the evaluation, two datasets were found which do not agree with 
the hypothesis. When further analyzing these two results, it was found that sometimes passenger 
groups were not flexible enough when they negotiate with vehicles to do shuttle allocation. For 
example, when there are two groups with 6 or 7 passengers, they needed separate vehicles and 
did not agree to break the groups and join extra passengers to another group. This matter should 
be improved in future to get more accurate results. In the current solution these are the 
improvements that have been identified through this process. 

8.4 Summary 

In this chapter we have discussed the conclusions that we can finally derive from the research. 
All the aspects of the problem, technology, design, implementation, evaluation were discussed. 
Based on all the facts, a final conclusion was stated showing how the Vehicle Routine Problem 
can be efficiently solved by the Multi Agent System. If there would be further studying and 
research to solve the problem encountered as stated in further work, the system would showcase 
higher performance and will function as a perfect solution to all the parties that are involved. 

 

 

 

 

 

 

 

 

 

 



47 | P a g e  
 
 

 

 

 

 

 

 

 

 

References 
 

[1] G. Dantzig and J. Ramser:  “The Truck Dispatching Problem”: Management Science 
Volume. 6: 1959 

[2] G. Clarke and J. R. Wright: “Scheduling of vehicles from a central depot to a number of 
delivery points”: Operations Research Vol. 12: 1964 

[3] Suresh Nanda Kumar, Ramasamy Panneerselvam: “A Survey on the Vehicle Routing 
Problem and Its Variants”: Intelligent Information Management: 2012 

[4] J. K. Lenstra and A. H. G. Rinnooy Kan: “Complexity of Vehicle and Scheduling Problems”: 
Networks, Vol. 11: 1981 

[5] J. Homberger and H. Gehring: “A Two-Phase Hybrid Meta-Heuristic for the Vehicle Routing 
Problem with Time Windows”: European Journal of Operational Research: Vol. 162: 2005 

[6] F. J. Bard, G. Kontoravdis and G. Yu: “A Branch-and-Cut Procedure for the Vehicle Routing 
Problem with Time Windows”: Transportation Science, Vol. 36: 2002 

[7] G. Gutiérrez-Jarpa, G. Desaulniers, G. Laporte and V. Marianov: “A Branch-and-Price 
Algorithm for the Vehicle Routing Problem with Deliveries, Selective Pickups and Time 
Windows”: European Journal of Operational Research Vol. 206, No. 12: 2010 

[8] G. B. Alvarenga, G. R. Mateus and G. de Tomi: “A Genetic and Set Partitioning Two-Phase 
Approach for the Vehicle Routing Problem with Time Windows”: Computers and Operations 
Research, Vol. 34, No. 6: 2007 

[9] P. Shaw: “Using Constraint Programming and Local Search Methods to Solve Vehicle 
Routing Problems”: University of Strathclyde, Glasgow: 1998 

[10] M. Gandreau, F. Guertin, J.-Y. Potvin and R. Seguin: “Neighborhood Search Heuristics for a 
Dynamic Vehicle Dispatching Problem with Pick-Ups and Deliveries”: Transportation 
Research Part E, Logistics and Transportation Review, sportation ReVol. 14: 2006 



48 | P a g e  
 
 

[11] Geir Hasle, Knut-Andreas Lie, Ewald Quak; “Geometric modelling, numerical simulation, 
and optimization applied mathematics”: 2007  

[12] George Rzevski, Jonathan Himoff and Petr Skobelev: “MAGENTA Technology Multi-Agent 
Logistics i-Scheduler for Road Transportation” 

[13] Petr Skobelev:  “Bio-Inspired Multi-Agent Technology for Industrial Applications” 
[14] George Rzevski, Petr Skobele: “Emergent Intelligence in Large Scale Multi-Agent Systems: 

International journal of education and information technologies” 
[15] Olli Bräysy, Michel Gendreau: “Vehicle Routing Problem with Time Windows, Part I: Route 

Construction and Local Search Algorithms”: Transportation Science Volume 39 Issue 1, 
February 2005 

[16] Gilbert Laporte: “The Vehicle Routing Problem: An overview of exact and approximate 
algorithms”  

[17] “Agent Technology: Computing as Interaction. A Roadmap for Agent Based Computing” : 
http://www.agentlink.org/roadmap/index.html 

[18] Yung-yu Tseng, Wen Long Yue and Michael A P Taylor: “The role of transportation in 
logistics chain”: Proceedings of the Eastern Asia Society for Transportation Studies, Vol. 5, 
pp. 1657 - 1672, 2005 

 

  



49 | P a g e  
 
 

Appendix A 
Source code of the system 

A.1 Introduction       

This section will include source code which was used to develop the proposed system. 

A.2 Sample ource code of the system 

Structure of the project 

 

Figure A.1: Structure of the project 



50 | P a g e  
 
 

 

JAVA class structure 

 

Figure A.2: Class Structure 



51 | P a g e  
 
 

 

MainApp.java 

This java class works as main class of the project. This is responsible to start the application and 
load GUI to screen.  

package vrpsol_v1; 
 
import javafx.application.Application; 
import static javafx.application.Application.launch; 
import javafx.fxml.FXMLLoader; 
import javafx.scene.Parent; 
import javafx.scene.Scene; 
import javafx.scene.layout.Pane; 
import javafx.stage.Stage; 
 
 
public class MainApp extends Application { 
 
    @Override 
    public void start(Stage stage) throws Exception { 
        Parent root = FXMLLoader.load(getClass().getResource("/fxml/Scene.fxml")); 
         
        Scene scene = new Scene(root); 
        scene.getStylesheets().add("/styles/Styles.css"); 
        stage.setTitle("JavaFX and Maven"); 
        stage.setScene(scene); 
        stage.show(); 
        
    } 
 
    public static void main(String[] args) { 
        launch(args);         
    } 
 
} 

 

FXMLController.java 

This Java class is controlling all user interactions with the system.  
 
package vrpsol_v1; 
 
import Common.AgentBehaviouStatus; 
import Common.CommonMassageManipilator; 
import DAO.PassengerDAO; 
import agentDetails.PassengerAgentDetails; 
import agentDetails.StartingPointDetails; 
import static com.sun.corba.se.impl.util.Utility.printStackTrace; 



52 | P a g e  
 
 

import jade.core.Profile; 
import jade.core.ProfileImpl; 
import jade.wrapper.AgentContainer; 
import jade.wrapper.AgentController; 
import jade.wrapper.StaleProxyException; 
import java.io.File; 
import java.net.URL; 
import java.util.List; 
import java.util.ResourceBundle; 
import java.util.logging.Level; 
import java.util.logging.Logger; 
import javafx.event.ActionEvent; 
import javafx.fxml.FXML; 
import javafx.fxml.Initializable; 
import javafx.scene.control.Button; 
import javafx.scene.control.Label; 
import javafx.scene.control.TextArea; 
import javafx.scene.control.TextField; 
import javafx.scene.web.WebEngine; 
import javafx.scene.web.WebView; 
 
public class FXMLController implements Initializable { 
 
    private Label lable1; 
    jade.core.Runtime rt = jade.core.Runtime.instance(); 
    Profile profile = new ProfileImpl(null, 1099, null); 
    AgentContainer mainContainer = rt.createMainContainer(profile); 
 
    @FXML 
    private Label lblNoOfVeh; 
    @FXML 
    private Label lblPassengers; 
    @FXML 
    private TextField txtNoOfVeh; 
    @FXML 
    private TextArea txtPassengers; 
    @FXML 
    private Button btnNoOfVeh; 
    @FXML 
    private Button btnStartNormalMode; 
     
    @FXML 
    private Button btnAdminMode; 
     
    @FXML 
    private Button btnNormalMode; 
     
    @FXML 
    private Button btnAddPassengers; 
    @FXML 
    private Button btnGroupPassengers; 
    @FXML 
    public WebView webView; 



53 | P a g e  
 
 

 
    public static WebView staticWebview; 
    public static WebEngine staticWebEngine; 
     
    @FXML 
    public void startAdminMode(ActionEvent event) { 
        try { 
            WebEngine engine = webView.getEngine(); 
            File mapFile = new File("E:/html/Map.html"); 
            engine.load(mapFile.toURI().toURL().toString()); 
            rt.setCloseVM(true); 
            staticWebview = webView; 
            staticWebEngine = engine; 
            AgentController agent = mainContainer.createNewAgent("rma", 
"jade.tools.rma.rma", new Object[0]); 
            agent.start(); 
            lblNoOfVeh.setDisable(false); 
            txtNoOfVeh.setDisable(false); 
            btnNoOfVeh.setDisable(false); 
            lblNoOfVeh.setVisible(true); 
            txtNoOfVeh.setVisible(true); 
            btnNoOfVeh.setVisible(true); 
            btnNormalMode.setDisable(true); 
            btnAdminMode.setDisable(true); 
        } catch (Exception e) { 
            printStackTrace(); 
        } 
    } 
 
    @FXML 
    public void selectNormalMode(ActionEvent event) { 
        try { 
            WebEngine engine = webView.getEngine(); 
            File mapFile = new File("E:/html/Map.html"); 
            engine.load(mapFile.toURI().toURL().toString()); 
            rt.setCloseVM(true); 
            staticWebview = webView; 
            staticWebEngine = engine; 
            AgentController agent = mainContainer.createNewAgent("rma", 
"jade.tools.rma.rma", new Object[0]); 
            agent.start(); 
            addVeihcles(10); 
            btnStartNormalMode.setVisible(true); 
            //btnNormalMode.setDisable(true); 
            //btnAdminMode.setDisable(true); 
        } catch (Exception e) { 
            e.printStackTrace(); 
        } 
    } 
 
    @FXML 
    public void startNormalMode(ActionEvent event) { 
        try { 



54 | P a g e  
 
 

            List<PassengerAgentDetails>  passengers= 
PassengerDAO.getRequestedPassengerList(); 
            addPassengers(passengers); 
            AgentController informAgent = mainContainer.createNewAgent("informAgent", 
"agents.InformAgent", new Object[0]); 
            informAgent.start(); 
            AgentController groupAgent = mainContainer.createNewAgent("GroupAgent", 
"agents.GroupAgent", new Object[0]); 
            groupAgent.start(); 
        } catch (Exception e) { 
            printStackTrace(); 
        } 
    } 
    @FXML 
    public void addNoOfVehicles(ActionEvent event) { 
        String strNoOfVehicles = txtNoOfVeh.getText(); 
        Integer intNoOfVehicles = 0; 
        if (strNoOfVehicles != null && strNoOfVehicles.length() != 0) { 
            intNoOfVehicles = Integer.parseInt(strNoOfVehicles); 
            addVeihcles(intNoOfVehicles); 
            txtNoOfVeh.setDisable(true); 
            btnNoOfVeh.setDisable(true); 
            lblPassengers.setDisable(false); 
            txtPassengers.setDisable(false); 
            btnAddPassengers.setDisable(false); 
            lblPassengers.setVisible(true); 
            txtPassengers.setVisible(true); 
            btnAddPassengers.setVisible(true); 
        } 
    } 
 
    @FXML 
    public void addPassengers(ActionEvent event) throws StaleProxyException { 
        String strPassengers = txtPassengers.getText(); 
        CommonMassageManipilator msgManipuManipilator = new 
CommonMassageManipilator(); 
        List<PassengerAgentDetails> passengers = 
msgManipuManipilator.getPassengerList(strPassengers); 
        Integer noOfPassengers = passengers.size(); 
        if (passengers != null && passengers.size() != 0) { 
            addPassengers(passengers); 
            lblPassengers.setDisable(true); 
            txtPassengers.setDisable(true); 
            btnAddPassengers.setDisable(true); 
            btnGroupPassengers.setDisable(false); 
            AgentController informAgent = mainContainer.createNewAgent("informAgent", 
"agents.InformAgent", new Object[0]); 
            informAgent.start(); 
            AgentController groupAgent = mainContainer.createNewAgent("GroupAgent", 
"agents.GroupAgent", new Object[0]); 
            groupAgent.start(); 
        } 
    } 



55 | P a g e  
 
 

 
    @FXML 
    public void groupPassengers(ActionEvent event) { 
        try { 
            AgentBehaviouStatus.informToStartGroupPassengersDone = false; 
 
        } catch (Exception ex) { 
            Logger.getLogger(FXMLController.class.getName()).log(Level.SEVERE, null, 
ex); 
        } 
    } 
 
    public boolean addVeihcles(int noOfVehicles) { 
        try { 
            for (int i = 1; i <= noOfVehicles; i++) { 
                AgentController vehicleAgent; 
                try { 
                    vehicleAgent = mainContainer.createNewAgent("Vehicle" + i, 
"agents.VehicleAgent", new Object[0]); 
                    vehicleAgent.start(); 
                } catch (StaleProxyException ex) { 
                    
Logger.getLogger(FXMLController.class.getName()).log(Level.SEVERE, null, ex); 
                } 
 
            } 
        } catch (Exception ex) { 
            ex.printStackTrace(); 
            return false; 
        } 
        return true; 
    } 
 
    public boolean addPassengers(List<PassengerAgentDetails> passengers) { 
        try { 
            Integer noOfPassengers = passengers.size(); 
            if (passengers != null && passengers.size() != 0) { 
                for (int i = 0; i < noOfPassengers; i++) { 
                    WebEngine engine = webView.getEngine(); 
                    engine.executeScript("addMarker('" + 
passengers.get(i).getAgentName() + "'," + passengers.get(i).getLatitude() + "," + 
passengers.get(i).getLongitude() + ")"); 
                    PassengerAgentDetails passengerAgentDetails = new 
PassengerAgentDetails(passengers.get(i).getAgentName(), 
passengers.get(i).getLatitude(), passengers.get(i).getLongitude()); 
                    AgentController passengerAgent; 
                    try { 
                        passengerAgent = 
mainContainer.createNewAgent(passengers.get(i).getAgentName(), 
"agents.PassengerAgent", new Object[]{passengerAgentDetails}); 
                        passengerAgent.start(); 
                    } catch (StaleProxyException ex) { 



56 | P a g e  
 
 

                        
Logger.getLogger(FXMLController.class.getName()).log(Level.SEVERE, null, ex); 
                    } 
 
                } 
            } 
        } catch (Exception ex) { 
            ex.printStackTrace(); 
            return false; 
        } 
        return true; 
    } 
 
    public static void markGroupMember(PassengerAgentDetails passenger, String 
iconColor){ 
        if(iconColor==null){ 
            iconColor = "FE7569"; 
        } 
        staticWebEngine.executeScript("addMarkerWithColor('" + 
passenger.getAgentName() + "'," + passenger.getLatitude() + "," + 
passenger.getLongitude() + ",'"+iconColor+"')"); 
    } 
     
    public static void deleteMarkers(){ 
        staticWebEngine.executeScript("deleteMarkers()"); 
    } 
 
    public static void displayRoute(List<PassengerAgentDetails> assignedPassengers){ 
        String routeDeitals = 
"['MIT',"+StartingPointDetails.latitude+","+StartingPointDetails.longitude+"]"; 
        for (PassengerAgentDetails assignedPassenger : assignedPassengers) { 
                
routeDeitals=routeDeitals+",['"+assignedPassenger.getAgentName()+"',"+assignedPasseng
er.getLatitude()+","+assignedPassenger.getLongitude()+"]"; 
        } 
        System.out.println("calculateAndDisplayRoute(["+routeDeitals+"])"); 
        
staticWebEngine.executeScript("calculateAndDisplayRoute(["+routeDeitals+"])"); 
     
    } 
     
    @Override 
    public void initialize(URL url, ResourceBundle rb) { 
        // TODO 
    } 
 
} 

 

PassengerAgent.java 

package agents; 



57 | P a g e  
 
 

 

import agentDetails.PassengerAgentDetails; 

import agentDetails.StartingPointDetails; 

import behaviors.ReadInformAgentMessage; 

import com.google.maps.DirectionsApi; 

import com.google.maps.GeoApiContext; 

import com.google.maps.model.DirectionsRoute; 

import com.google.maps.model.LatLng; 

import com.google.maps.model.TravelMode; 

import jade.core.AID; 

import jade.core.Agent; 

import jade.core.behaviours.SimpleBehaviour; 

import jade.domain.DFService; 

import jade.domain.FIPAAgentManagement.DFAgentDescription; 

import jade.domain.FIPAAgentManagement.ServiceDescription; 

import jade.domain.FIPAException; 

import jade.lang.acl.ACLMessage; 

import java.text.SimpleDateFormat; 

import java.util.ArrayList; 

import java.util.HashSet; 

import java.util.List; 

import java.util.Set; 

import java.util.logging.Level; 

import java.util.logging.Logger; 



58 | P a g e  
 
 

import onotology.GroupDetails; 

import onotology.PassengerToPassengerReq; 

import org.joda.time.DateTime; 

 

/** 

 * 

 * @author amithm 

 */ 

public class PassengerAgent extends Agent { 

 

 private double expectedMinimumTravalTime; 

 private double expectedMaximumTravalTime; 

 private PassengerAgentDetails passengerAgentDetails; 

 private Set<PassengerAgentDetails> nearByPassengers = new 
HashSet<PassengerAgentDetails>(); 

 private GroupDetails groupDetails = new GroupDetails(); 

 private boolean creationIsFinished = false; 

 private boolean negotiatingPassenger = false; 

 private boolean inaGroup = false; 

 GeoApiContext context = new GeoApiContext() 

   .setApiKey("AIzaSyAQeLDVDVACYKFX2oMdKkB0BXPneIGYkD4"); 

 

 protected void setup() { 

  System.out.println("Passenger agent " + getLocalName() + " started"); 

  addBehaviour(new createRequiredInfo(this)); 



59 | P a g e  
 
 

  addBehaviour(new ReadInformAgentMessage(this)); 

 

 } 

 

 // ......... Start createRequiredInfoBehaviour ........... 

 class createRequiredInfo extends SimpleBehaviour { 

 

  SimpleDateFormat time_formatter = new SimpleDateFormat( 

    "yyyy-MM-dd_HH:mm:ss.SSS"); 

  Agent thisAgent; 

 

  public createRequiredInfo(Agent a) { 

   super(a); 

   thisAgent = a; 

  } 

 

  protected void setup() { 

   ServiceDescription sd = new ServiceDescription(); 

   sd.setType("passenger"); 

   sd.setName(getLocalName()); 

   register(sd); 

  } 

 

  void register(ServiceDescription sd) { 



60 | P a g e  
 
 

   DFAgentDescription dfd = new DFAgentDescription(); 

   dfd.setName(getAID()); 

   dfd.addServices(sd); 

 

   try { 

    DFService.register(thisAgent, dfd); 

   } catch (FIPAException fe) { 

    fe.printStackTrace(); 

   } 

  } 

 

  public void action() { 

   Object[] args = getArguments(); 

   passengerAgentDetails = (PassengerAgentDetails) args[0]; 

 

   try { 

    LatLng passengerLatLng = new LatLng( 

      passengerAgentDetails.getLatitude(), 

      passengerAgentDetails.getLongitude()); 

    DirectionsRoute[] routes = DirectionsApi.newRequest(context) 

      .mode(TravelMode.DRIVING).departureTime(new 
DateTime()) 

      .origin(StartingPointDetails.latLan) 

      .destination(passengerLatLng).await(); 



61 | P a g e  
 
 

    expectedMinimumTravalTime = 
routes[0].legs[0].duration.inSeconds; 

    expectedMaximumTravalTime = expectedMinimumTravalTime 

      + expectedMinimumTravalTime / 5; 

    passengerAgentDetails 

     
 .setExpectedMinimumTravalTime(expectedMinimumTravalTime); 

    passengerAgentDetails 

     
 .setExpectedMaximumTravalTime(expectedMaximumTravalTime); 

    System.out.println(time_formatter.format(System 

      .currentTimeMillis()) 

      + " : " 

      + passengerAgentDetails.getAgentName() 

      + "'s maxsimum expected travel time is " 

      + expectedMaximumTravalTime); 

    creationIsFinished = true; 

 

    DFAgentDescription dfd = new DFAgentDescription(); 

    dfd.setName(getAID()); 

    ServiceDescription sd = new ServiceDescription(); 

    sd.setType("passenger"); 

    sd.setName(getLocalName()); 

    dfd.addServices(sd); 

    DFService.register(thisAgent, dfd); 



62 | P a g e  
 
 

   } catch (Exception ex) { 

    Logger.getLogger(PassengerAgent.class.getName()).log( 

      Level.SEVERE, null, ex); 

   } 

  } 

 

  public boolean done() { 

   return creationIsFinished; 

  } 

 } 

 

 // ......... End createRequiredInfoBehaviour ............. 

 

 public PassengerAgentDetails getPassengerAgentDetails() { 

  return passengerAgentDetails; 

 } 

 

 public double getExpectedMinimumTravalTime() { 

  return expectedMinimumTravalTime; 

 } 

 

 public Set<PassengerAgentDetails> getNearByPassengers() { 

  return nearByPassengers; 

 } 



63 | P a g e  
 
 

 

 public void setNearByPassengers(Set<PassengerAgentDetails> nearByPassengers) { 

  this.nearByPassengers = nearByPassengers; 

 } 

 

 public GeoApiContext getContext() { 

  return context; 

 } 

 

 public void setContext(GeoApiContext context) { 

  this.context = context; 

 } 

 

 public double getExpectedMaximumTravalTime() { 

  return expectedMaximumTravalTime; 

 } 

 

 public void setExpectedMaximumTravalTime(double expectedMaximumTravalTime) { 

  this.expectedMaximumTravalTime = expectedMaximumTravalTime; 

 } 

 

 public GroupDetails getGroupDetails() { 

  return groupDetails; 

 } 



64 | P a g e  
 
 

 

 public void setGroupDetails(GroupDetails groupDetails) { 

  this.groupDetails = groupDetails; 

 } 

 

 public boolean isCreationIsFinished() { 

  return creationIsFinished; 

 } 

 

 public void setCreationIsFinished(boolean creationIsFinished) { 

  this.creationIsFinished = creationIsFinished; 

 } 

 

 public boolean isNegotiatingPassenger() { 

  return negotiatingPassenger; 

 } 

 

 public void setNegotiatingPassenger(boolean negotiatingPassenger) { 

  this.negotiatingPassenger = negotiatingPassenger; 

 } 

 

 public boolean isInaGroup() { 

  return inaGroup; 

 } 



65 | P a g e  
 
 

 public void setInaGroup(boolean inaGroup) { 

  this.inaGroup = inaGroup; 

 } 

} 

 

VehicleAgent.java 

 

package agents; 

 

import agentDetails.PassengerAgentDetails; 

import behaviors.VehicleCommunicatingBehavior; 

import jade.core.Agent; 

import jade.domain.DFService; 

import jade.domain.FIPAAgentManagement.DFAgentDescription; 

import jade.domain.FIPAAgentManagement.ServiceDescription; 

import jade.domain.FIPAException; 

import java.util.HashSet; 

import java.util.Set; 

 

/** 

 * 

 * @author amithm 

 */ 

public class VehicleAgent extends Agent { 



66 | P a g e  
 
 

 

    private int noOfSeats = 10; 

    private int seatsAvailable; 

    private PassengerAgentDetails firstPassenger; 

    private PassengerAgentDetails lastPassenger; 

    private Set<PassengerAgentDetails> assignedPassengers = new 
HashSet<PassengerAgentDetails>(); 

     

    protected void setup()  

    {  

        System.out.println("Vehicle agent "+ getLocalName()+" started");  

        ServiceDescription sd = new ServiceDescription(); 

        sd.setType("vehicle"); 

        sd.setName(getLocalName()); 

        register(sd); 

        addBehaviour(new VehicleCommunicatingBehavior(this)); 

    } 

    void register(ServiceDescription sd) { 

            DFAgentDescription dfd = new DFAgentDescription(); 

            dfd.setName(getAID()); 

            dfd.addServices(sd); 

            try { 

                DFService.register(this, dfd); 

            } catch (FIPAException fe) { 

                fe.printStackTrace(); 



67 | P a g e  
 
 

            } 

    } 

 

    public int getNoOfSeats() { 

        return noOfSeats; 

    } 

 

    public void setNoOfSeats(int noOfSeats) { 

        this.noOfSeats = noOfSeats; 

    } 

 

    public int getSeatsAvailable() { 

        return seatsAvailable; 

    } 

 

    public void setSeatsAvailable(int seatsAvailable) { 

        this.seatsAvailable = seatsAvailable; 

    } 

 

    public Set<PassengerAgentDetails> getAssignedPassengers() { 

        return assignedPassengers; 

    } 

 

    public void setAssignedPassengers(Set<PassengerAgentDetails> assignedPassengers) { 



68 | P a g e  
 
 

        this.assignedPassengers = assignedPassengers; 

    } 

 

    public PassengerAgentDetails getFirstPassenger() { 

        return firstPassenger; 

    } 

 

    public void setFirstPassenger(PassengerAgentDetails firstPassenger) { 

        this.firstPassenger = firstPassenger; 

    } 

 

    public PassengerAgentDetails getLastPassenger() { 

        return lastPassenger; 

    } 

 

    public void setLastPassenger(PassengerAgentDetails lastPassenger) { 

        this.lastPassenger = lastPassenger; 

    } 

 

} 

 

GroupAgent.java 

package agents; 

 



69 | P a g e  
 
 

import agentDetails.PassengerAgentDetails; 

import onotology.GroupDetails; 

import behaviors.GroupingBehavior; 

import jade.core.Agent; 

import jade.domain.DFService; 

import jade.domain.FIPAAgentManagement.DFAgentDescription; 

import jade.domain.FIPAAgentManagement.ServiceDescription; 

import java.io.IOException; 

import java.util.HashMap; 

import java.util.HashSet; 

import java.util.List; 

import java.util.ArrayList; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

 

/** 

 * 

 * @author amithm 

 */ 

public class GroupAgent extends Agent { 

 

    private List<GroupDetails> groups = new ArrayList<GroupDetails>(); 

    private HashMap<PassengerAgentDetails, HashSet<PassengerAgentDetails>> 
nearbyAgentsOfPassengers = new HashMap<PassengerAgentDetails, 
HashSet<PassengerAgentDetails>>(); 



70 | P a g e  
 
 

 

    protected void setup() { 

        ServiceDescription sd = new ServiceDescription(); 

        sd.setType("GroupAgent"); 

        sd.setName(getLocalName()); 

        register(sd); 

        try { 

            addBehaviour(new GroupingBehavior(this)); 

        } catch (IOException ex) { 

            Logger.getLogger(GroupAgent.class.getName()).log(Level.SEVERE, null, ex); 

        } 

    } 

 

    void register(ServiceDescription sd) { 

        try { 

            DFAgentDescription dfd = new DFAgentDescription(); 

            dfd.setName(getAID()); 

            dfd.addServices(sd); 

            DFService.register(this, dfd); 

        } catch (Exception fe) { 

            fe.printStackTrace(); 

        } 

    } 

 



71 | P a g e  
 
 

    public HashMap<PassengerAgentDetails, HashSet<PassengerAgentDetails>> 
getNearbyAgentsOfPassengers() { 

        return nearbyAgentsOfPassengers; 

    } 

 

    public void setNearbyAgentsOfPassengers(HashMap<PassengerAgentDetails, 
HashSet<PassengerAgentDetails>> nearbyAgentsOfPassengers) { 

        this.nearbyAgentsOfPassengers = nearbyAgentsOfPassengers; 

    } 

 

    public List<GroupDetails> getGroups() { 

        return groups; 

    } 

 

    public void setGroups(List<GroupDetails> groups) { 

        this.groups = groups; 

    } 

 

} 

 

InformAgent.java 

package agents; 

 

import Common.AgentBehaviouStatus; 

import agentDetails.PassengerAgentDetails; 



72 | P a g e  
 
 

import agentDetails.StartingPointDetails; 

import behaviors.AssignedDetailsViewBehavior; 

import com.google.maps.DirectionsApi; 

import com.google.maps.GeoApiContext; 

import com.google.maps.model.DirectionsRoute; 

import com.google.maps.model.LatLng; 

import com.google.maps.model.TravelMode; 

import jade.core.AID; 

import jade.core.Agent; 

import jade.core.behaviours.SimpleBehaviour; 

import jade.domain.DFService; 

import jade.domain.FIPAAgentManagement.DFAgentDescription; 

import jade.domain.FIPAAgentManagement.ServiceDescription; 

import jade.domain.FIPAException; 

import jade.lang.acl.ACLMessage; 

import java.io.IOException; 

import java.text.SimpleDateFormat; 

import java.util.logging.Level; 

import java.util.logging.Logger; 

import org.joda.time.DateTime; 

 

/** 

 * 

 * @author amithm 



73 | P a g e  
 
 

 */ 

public class InformAgent extends Agent { 

 

    private boolean informedToGroup = false; 

    private int noOfPassengerAgents = 0; 

     

    protected void setup() { 

        System.out.println("Inform agent " + getLocalName() + " started"); 

        DFAgentDescription dfd = new DFAgentDescription(); 

        dfd.setName(getAID()); 

        ServiceDescription sd = new ServiceDescription(); 

        sd.setType("InformAgent"); 

        sd.setName(getLocalName()); 

        dfd.addServices(sd); 

        try { 

            DFService.register(this, dfd); 

        } catch (FIPAException ex) { 

            Logger.getLogger(InformAgent.class.getName()).log(Level.SEVERE, null, ex); 

        } 

        addBehaviour(new InformToStartGroupPassengers(this)); 

        try { 

            addBehaviour(new AssignedDetailsViewBehavior(this)); 

        } catch (IOException ex) { 

            Logger.getLogger(InformAgent.class.getName()).log(Level.SEVERE, null, ex); 



74 | P a g e  
 
 

        } catch (FIPAException ex) { 

            Logger.getLogger(InformAgent.class.getName()).log(Level.SEVERE, null, ex); 

        } 

    } 

 

    class InformToStartGroupPassengers extends SimpleBehaviour { 

 

        SimpleDateFormat time_formatter = new SimpleDateFormat("yyyy-MM-
dd_HH:mm:ss.SSS"); 

        Agent thisAgent; 

        int n = 0; 

 

        public InformToStartGroupPassengers(Agent a) { 

            super(a); 

            thisAgent = a; 

        } 

 

        public void action() { 

            try { 

 

                if (n == 1) { 

                    System.out.println("Grouping passengers started."); 

                    DFAgentDescription dfd = new DFAgentDescription(); 

                    ServiceDescription sd = new ServiceDescription(); 

                    sd.setType("passenger"); 



75 | P a g e  
 
 

                    dfd.addServices(sd); 

                    DFAgentDescription[] result = DFService.search(thisAgent, dfd); 

                    result = DFService.search(thisAgent, dfd); 

                    noOfPassengerAgents = result.length; 

                    System.out.println("Sending grouping message to " + result.length + " of 
Passengers."); 

                    for (int i = 0; i < result.length; i++) { 

                        System.out.println("Sending message to Passenger " + i + " by Inform Agent"); 

                        ACLMessage msg = new ACLMessage(ACLMessage.INFORM); 

                        msg.setContent("Start_Grouping"); 

                        AID dest = result[i].getName(); 

                        msg.addReceiver(dest); 

                        send(msg); 

                    } 

                } 

                block(10000); 

                n++; 

            } catch (Exception ex) { 

                ex.printStackTrace(); 

            } 

        } 

 

        public boolean done() { 

            System.out.println("n is " + n); 

            return n >= 2; 



76 | P a g e  
 
 

        } 

    } 

 

    public int getNoOfPassengerAgents() { 

        return noOfPassengerAgents; 

    } 

 

    public void setNoOfPassengerAgents(int noOfPassengerAgents) { 

        this.noOfPassengerAgents = noOfPassengerAgents; 

    } 

} 

PassengerAgentDetails.java 

package agentDetails; 

 

import java.io.Serializable; 

import java.util.Comparator; 

import java.util.Objects; 

 

/** 

 * 

 * @author amithm 

 */ 

public class PassengerAgentDetails implements Serializable{ 

 



77 | P a g e  
 
 

    private String AgentName; 

    private double latitude; 

    private double longitude; 

    private double expectedMinimumTravalTime; 

    private double expectedMaximumTravalTime; 

    private double acceptedMinTravalTime; 

    private double acceptedMaxTravalTime; 

 

    public PassengerAgentDetails() { 

    } 

 

    public PassengerAgentDetails(String AgentName, double latitude, double longitude) { 

        this.AgentName = AgentName; 

        this.latitude = latitude; 

        this.longitude = longitude; 

    } 

 

    public PassengerAgentDetails(String AgentName, double latitude, double longitude, double 
expectedMinimumTravalTime, double expectedMaximumTravalTime, double 
acceptedMinTravalTime, double acceptedMaxTravalTime) { 

        this.AgentName = AgentName; 

        this.latitude = latitude; 

        this.longitude = longitude; 

        this.expectedMinimumTravalTime = expectedMinimumTravalTime; 

        this.expectedMaximumTravalTime = expectedMaximumTravalTime; 



78 | P a g e  
 
 

        this.acceptedMinTravalTime = acceptedMinTravalTime; 

        this.acceptedMaxTravalTime = acceptedMaxTravalTime; 

    } 

 

    public String getAgentName() { 

        return AgentName; 

    } 

 

    public void setAgentName(String AgentName) { 

        this.AgentName = AgentName; 

    } 

 

    public double getLatitude() { 

        return latitude; 

    } 

 

    public void setLatitude(double latitude) { 

        this.latitude = latitude; 

    } 

 

    public double getLongitude() { 

        return longitude; 

    } 

 



79 | P a g e  
 
 

    public void setLongitude(double longitude) { 

        this.longitude = longitude; 

    } 

 

    public double getExpectedMinimumTravalTime() { 

        return expectedMinimumTravalTime; 

    } 

 

    public void setExpectedMinimumTravalTime(double expectedMinimumTravalTime) { 

        this.expectedMinimumTravalTime = expectedMinimumTravalTime; 

    } 

 

    public double getExpectedMaximumTravalTime() { 

        return expectedMaximumTravalTime; 

    } 

 

    public void setExpectedMaximumTravalTime(double expectedMaximumTravalTime) { 

        this.expectedMaximumTravalTime = expectedMaximumTravalTime; 

    } 

 

    public double getAcceptedMinTravalTime() { 

        return acceptedMinTravalTime; 

    } 

 



80 | P a g e  
 
 

    public void setAcceptedMinTravalTime(double acceptedMinTravalTime) { 

        this.acceptedMinTravalTime = acceptedMinTravalTime; 

    } 

 

    public double getAcceptedMaxTravalTime() { 

        return acceptedMaxTravalTime; 

    } 

 

    public void setAcceptedMaxTravalTime(double acceptedMaxTravalTime) { 

        this.acceptedMaxTravalTime = acceptedMaxTravalTime; 

    } 

 

    @Override 

    public int hashCode() { 

        int hash = 7; 

        hash = 47 * hash + Objects.hashCode(this.AgentName); 

        return hash; 

    } 

 

    @Override 

    public boolean equals(Object obj) { 

        if (obj == null) { 

            return false; 

        } 



81 | P a g e  
 
 

        if (!(obj instanceof PassengerAgentDetails)) { 

            return false; 

        } 

        PassengerAgentDetails other = (PassengerAgentDetails) obj; 

        if (this.getAgentName().equals(other.getAgentName()) ) { 

            return true; 

        } 

         

        else{ 

            return false; 

        }  

    } 

        

} 

 

 

 

 

 

 

 

 

 

 



82 | P a g e  
 
 

 

 

 


