DECLARATION

I hereby declare that the work included in this thesis, in part or whole has not been submitted for any other academic qualification at any institution.

Eng. S. Shanmuhananthan,

Certified by:

Dr. Nimal P. D. Gamage
Project Supervisor,
Department of Civil Engineering,
University of Moratuwa,
Sri Lanka
ACKNOWLEDGEMENT

First of all I would like to express my gratitude to the University of Moratuwa for accepting my enrollment for the research study, the department of Irrigation for granting leave and Asian Development Bank for providing financial assistance.

I am very much thankful to Dr. Nimal P. D. Gamage, for agreeing to be my main supervisor and sincerely guiding me throughout my research and providing necessary software and study materials.

My sincere thanks to Prof. D. C. H. Senarath, for directing my research by viewing the work frequently and helping in identifying the reference materials.

Dr. S. P. Samarakkrama, being one of my supervisors, motivated me whenever the work slackened a bit, in addition to his valuable guidance. I must thank him for his patient guidance and motivation.

Also I must thank Prof. S. S. Wickremasuriya, not only for evaluating and directing my work at progress reviews, but also for his encouragement by providing reference materials and software.

Then I wish to thank the Head of the Department, Prof. A. K. W. Jeyawardena and the Director of Post Graduate Studies, Prof. (Ms). N. Ratnayake and the Course Coordinator, Dr. S. A. S. Kulathilaka for their great commitment in providing necessary facilities and coordinating the activities.

I must thank Eng. S. S. Sivakumar, a PhD candidate in the field of groundwater, not only for sharing his knowledge and valuable data but also for his encouragement.

Finally I thank Mr. H. W. Kumarasinghe, the technical officer in-charge for the hydraulic lab for providing timely assistance throughout my studies.
CONTENTS

Chapter 1
1.0 Introduction
 1.1 Background 01
 1.2 Objective 03
 1.3 Study Site 04
 1.3.1 Selection of Study Site 04
 1.3.2 Geography and Topography 05
 1.3.3 Climate 05
 1.3.4 Soil 06
 1.3.5 Agriculture 06
 1.4 Layout of the Thesis 06

Chapter 2
2.0 Literature Review
 2.1 Pumping test analysis 07
 2.2 Runoff 12
 2.3 Soil moisture budgeting methods 14
 2.4 Evapotranspiration 17
 2.5 Time steps 18
 2.6 Sensitivity to root constant 19
 2.7 Recharge from rivers 20
 2.8 Recharge from Irrigation storages 21
 2.9 Irrigation losses, both from canals and fields 22
 2.10 Software used for modeling – Modflow 25
 2.11 Calibration & Validation 26
Chapter 3

3.0 Theoretical Background

3.1 Ground water hydrology
 3.1.1 Ground water occurrence 29
 3.1.2 Soil water distribution 29
 3.1.3 Field capacity 30
 3.1.4 Wilting point 30
 3.1.5 Hygroscopic coefficient 30
 3.1.6 Moisture equivalent 30
 3.1.7 Divisions of sub surface water 30
 3.1.8 Root constant 31
 3.1.9 A conceptual soil moisture budgeting procedure 31
 3.1.10 Ground water movement 31
 3.1.11 Darcy's law 31
 3.1.12 General form of the ground water flow equation 32
 3.1.13 Steady flow equation 33
 3.1.14 Unsteady flow equation 33

3.2 Groundwater Modeling
 3.2.1 Objectives of Groundwater Modeling 34
 3.2.2 Data required for developing a groundwater model 34
 3.2.3 Topography 35
 3.2.4 Geology 35
 3.2.5 Type of aquifers 36
3.2.6 Unconfined aquifer
3.2.7 Confined aquifer
3.2.8 Aquifer thickness and lateral extent
3.2.9 Aquifer boundaries
3.2.10 A zero - flow boundary
3.2.11 A head controlled boundary
3.2.12 A flow-controlled boundary
3.2.13 Aquifer Characteristics
3.2.14 Type and extent of recharge areas
3.2.15 Rate of recharge
3.2.16 Main recharge sources
3.2.17 Methods for recharge estimation
3.2.18 Direct recharge
3.2.19 Methods for estimating direct recharge
3.2.20 Evapotranspiration
3.2.21 Indirect recharge
3.2.22 Recharge from rivers
3.2.23 Irrigation losses, both from canals and fields
3.2.24 Water losses from irrigation canals
3.2.25 Recharge from irrigated fields
3.2.26 Recharge from Irrigation storages
3.2.27 Type and extent of discharge areas
3.2.28 Rate of discharge
3.2.29 Calibration
3.2.30 Validation
Chapter 4
4.0 Aquifer Description

4.1 Source of Data
 4.1.1 Topography 51
 4.1.2 Geology & Aquifer physical parameters 51
 4.1.3 Aquifer properties 51
 4.1.4 Land usage 51
 4.1.5 Water-table fluctuation 52
 4.1.6 Rainfall & Evapotranspiration data 52
 4.1.7 Root Constant 52
 4.1.8 Irrigation Schemes 52
 4.1.9 Ground water withdrawal 52

4.2 Physical framework
 4.2.1 Geology and Aquifer Type 53
 4.2.2 Aquifer Properties 53
 4.2.3 Zone division 54
 4.2.4 Land usage 56

4.3 Hydrological stress
 4.3.1 Water-table fluctuation 57
 4.3.2 Rainfall recharge
 4.3.2.1 Runoff 58
 4.3.2.2 Evapotranspiration 59
 4.3.2.3 Root Constant 61
 4.3.3 Irrigation Recharge
 4.3.3.1 Recharge from Irrigation Storages 64
 4.3.3.2 Recharge from channel losses 64
 4.3.3.3 Recharge from field losses 65
 4.3.4 River Recharge 65
 4.3.5 Groundwater withdrawals 66
Chapter 5

5.0 Modeling Groundwater Flow

5.1 Model Buildup

5.1.1 Identifying type of model 67
5.1.2 Discretizing the problem Domain 68
5.1.3 Setting Boundary Conditions 69
 5.1.3.1 Zero flow boundary condition 69
 5.1.3.2 River Boundary Condition 71
 5.1.3.3 Constant Head Boundary Condition 73
 5.1.3.4 Recharge Boundary Condition 73
 5.1.3.5 Ground water withdrawal 74
5.1.4 Setting Initial Conditions 74
5.1.5 Specifying the Extreme Hydraulic Heads Observed 76

5.2 Model Runs

5.2.1 General Overview 77
5.2.2 Model Calibration and Verification (R1, R2, R3, R4) 79
5.2.3 Sensitivity Analysis (R5, R6) 80
5.2.4 Mass balance 81
5.2.5 Model Case Studies
 5.2.5.1 R1 - Steady state groundwater flow simulation 81
 5.2.5.2 R2 - Steady state groundwater flow simulation 81
 5.2.5.3 R3 - Transient state groundwater flow simulation 82
 5.2.5.4 R4 - Transient state groundwater flow simulation 83
 5.2.5.5 R5 - Transient state groundwater flow simulation 83
 5.2.5.6 R6 - Transient state groundwater flow simulation 83
Chapter 6

6.0 Results of the Model Runs

6.1 Steady State Runs

6.1.1 Steady state groundwater flow simulation

6.1.1.1 Model Calibration (Run R1)

6.1.1.2 Model Calibration (Run R2)

6.1.1.3 Boundary Conditions and Groundwater flow Results (R1, R2)

6.2 Transient State Runs

6.2.1 Transient state groundwater flow simulation - R3

6.2.1.1 Model Calibration and Verification (R3)

6.2.1.2 River Boundary Conditions and River Conductance

6.2.1.3 Hydraulic conductivity, Specific yield

6.2.2 Transient state groundwater flow simulation - R4

6.2.2.1 Model Calibration and Verification (R4)

6.2.2.2 Recharge from irrigation losses

6.2.2.3 Mass Balance

6.2.3 Transient state groundwater flow simulation – R5

6.2.3.1 Model Run (R5)

6.2.4 Transient state groundwater flow simulation – R6

6.2.4.1 Model Run (R6)
Chapter 7

7.0 Discussion

7.1 Water Balance

7.1.1 Introduction

7.1.2 Rainfall recharge

7.1.2.1 Rainfall surface runoff

7.1.2.2 Surface Water Balance

7.1.3 Recharge from Irrigation schemes

7.1.3.1 Recharge from Irrigation Storages

7.1.3.2 Recharge from channel losses

7.1.3.2 Recharge from field losses

7.1.4 River Recharge

7.1.5 Groundwater withdrawals

7.2 Water Balance of the Territory

7.2.1 Apparent Recharge

7.2.2 Recapitulation of Water Balance

7.2.3 Evaluation of Actual Water Balance for the period of 4 years

7.3 Evaluation of Computer Model Performance

7.4 Present Model Deficiencies

7.4.1 Initial Conditions

7.4.2 Recharge Rate

7.4.3 Withdrawal Rate

7.4.4 Evapotranspiration

7.4.5 Dry cell

7.4.6 Well Diameter

7.4.7 Column & Raw width
7.5 Recommendations for Supplementary Field Investigation 132

7.5.1 Additional Observation Wells 132
7.5.2 Recording monthly well observations 132
7.5.3 Conducting pumping tests 133
7.5.4 Installing river gauging stations 133
7.5.5 Installing pan evaporation station 133

Chapter 8

8.0 Conclusions and Recommendations

8.1 Conclusions 134
8.2 Recommendations 137

References 139

Annex – 4.1: Analysis of pumping test data 147
Annex – 4.2: Seasonal water level fluctuation 154
Annex – 4.3: Rainfall Summary 155
Annex – 4.4: The details of irrigation schemes 156
Annex – 7.1: Details of daily reservoir water balance 161
Annex – 7.2: Zone wise seasonal rainwater balance 167
Annex – 7.3: Sample workout of rainwater balance 168
Annex – 7.4: Detail computation of irrigation recharge 174
Annex – 7.5: Detail computation of Domestic withdrawal 182
Annex – 7.6: Detail computation of agriculture withdrawal 183
Annex – 7.7: Zone wise seasonal recharge 184
LIST OF TABLES

Table 4.1 - Zone Area Details 55
Table 4.2 - Land Usage Details 56
Table 4.3 - Zone Wise Land Usage Details 57
Table 4.4 - Average Daily Potential Evapotranspiration 59
Table 4.5 - Average Daily Potential Evapotranspiration 60
Table 4.6 - Zone Wise Weighted Root Constant 61
Table 4.7 - Sensitivity Analysis for Root Constant 62
Table 4.8 - Summary of Irrigation Schemes 63
Table 5.1 - The Observed Well Water Levels 76
Table 5.2 - The Stressed Period Details 84
Table 6.1 - Difference in the observed and predicted heads for run R3 92
Table 6.2 - Root mean square error of simulation run R3 93
Table 6.3 - The range within which the difference in observed and predicted heads lies during run R3 93
Table 6.4 - The optimized values of River Conductance 95
Table 6.5 - Optimized values of Hydraulic conductivity, Specific yield 95
Table 6.6 - Difference in the observed and predicted heads for run R4 99
Table 6.7 - The range within which the difference in observed and predicted heads lies during run R4 99
Table 6.8 - The range within which the difference in observed and predicted heads lies during run R4 and R3 100
Table 6.9 - The comparison of Root mean square error between R3 simulation run and R4 simulation run 100
Table 6.10 - Summary of the cumulative mass balance for the run R4 103
Table 6.11 - Difference in the observed and predicted heads for run R5 105
Table 6.12 – Difference in the predicted heads between R4 and R5. 106
Table 6.13 – The comparison of Root mean square error between R4 & R5. 107
Table 6.14 – Difference in the observed and predicted heads for run R6. 110
Table 6.15 – Difference in the predicted heads between R4 and R6. 110
Table 6.16 – The difference in cumulative mass balance between R4 & R6. 113
Table 7.1 – Optimized values of f (empirical factor) and pt (threshold precipitation below which no runoff occurs). 116
Table 7.2 – Percentage of Seasonal Average Surface Runoff out of Rainfall. 116
Table 7.3 – The summary for the seasonal Surface Water Balance. 117
Table 7.4 – % of Recharge from Irrigation Storages out of total recharge. 119
Table 7.5 – % of Recharge from Channel losses out of total recharge. 120
Table 7.6 – % of Recharge from field losses out of total recharge. 121
Table 7.7 – The optimized values of River Conductance. 122
Table 7.8 – The average values of seasonal recharge by various recharge components. 123
Table 7.9 – The average values of seasonal groundwater withdrawal by various components. 124
Table 7.10 – The Average Water Balance of the Study Area. 126
Table 7.11 – The Water Balance Comparison. 127
Table 7.12 – Comparison between Calculation and Model’s Prediction. 129
LIST OF FIGURES

Figure 1.1 - Maximum Groundwater level at the end of recharging period

Figure 5.1 - Topo inset of Project Site
Figure 5.2 - No flow Boundary Condition
Figure 5.3 - Constant Head Boundary Condition
Figure 5.4 - River Boundary Condition
Figure 5.5 - Zone division and Observation Wells
Figure 5.6 - Sub Surface Dams
Figure 6.1 - Comparison of Observed and Predicted Heads for the R1 steady state simulation.
Figure 6.2 - Comparison of Observed and Predicted Heads for the R2 steady state simulation.
Figure 6.3 - The graphical representation of groundwater flow path
Figure 6.4 - The River stretches
Figure 6.5 - Comparison of Observed and Predicted Heads for R4 run
Figure 6.6 - Comparison between Model Run R3 & Model Run R4
Figure 6.7 - Comparison between Model Run R4 & Model Run R5
Figure 6.8 - Comparison between Model Run R4 & Model Run R6