STAND-ALONE HYBRID ENERGY SYSTEM FOR A REMOTE FISHING ISLAND Battalangunduwa Island, Sri Lanka

By

Weerasooriya Arachchillage Thusitha Pushpakumara Sanjeewa Weerasooriya

(148368J)

Supervised by

Dr. AGT Sugathapala

This thesis is submitted in partial fulfilment of the requirement of the Degree of Master of Engineering (Energy Technology)

Department of Mechanical Engineering Faculty of Engineering University of Moratuwa Sri Lanka

March 2017

Declaration of the Candidate and the supervisor

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other university or institute of higher learning and to the best of my knowledge and belief this does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also I hereby grant the University of Moratuwa the non-exclusive right to reproduce and distribute my thesis/dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works such as articles or books.

Signature:

Date:

The above candidate carried out this research for his Master degree under my supervision.

Dr. A.G.T. Sugathapala

Date:

This is dedicated to

my parents,

my lovely wife Arosha and

my little princess Rehansa

for their love, endless support and

encouragement.

ACKNOWLEDGEMENT

It is my pleasure to be indebted to various personnel, who directly or indirectly contributed in the development of this work by influencing my thinking, behaviour, and acts.

First and foremost, I wish to express my most sincere gratitude to my supervisor, Dr. A.G.T. Sugathapala, for his valuable thoughts, guidance, continual support and supervision given throughout this study.

Also I express my sincere gratitude to all the lecturers of MEng/PG Diploma in Energy Technology (2014/2015) for providing me their valuable knowledge.

I am thankful to Dr. H.K.G. Punchihewa as well for his role as the course coordinator and for the support extended throughout this endeavour.

I am also extremely thankful to the Director General of Sri Lanka Sustainable Energy Authority, Eng. M.M.R. Pathmasiri and his staff member Mr. M.H.G Padmadewa for providing me all the required data and information to carry out this study.

I must also acknowledge my wife Arosha, without whose love and encouragement, I would not have finished this thesis.

Finally my thanks go to everyone who supported me even by a word to accomplish this goal.

Thusitha Weerasooriya

Content

1	INTRODUCTION		2
	1.1	Background	2
	1.2	Problem Statement	3
	1.3	Aim and Objective	. 3
	1.4	Methodology	4
	1.5	Results of the study	. 4
2	LITI	LITERATURE SURVEY	
	2.1	Hybrid energy systems	6
	2.2	Local energy scenario	7
	2.3	Renewable energy sources	. 9
		2.3.1 Overview	9
		2.3.2 Wind energy resource	. 9
		2.3.2 Solar energy resource	. 10
	2.4	Energy services	. 11
		2.4.1 Overview	11
		2.4.1 Ice making machines	12
		2.4.2 Reverse Osmosis technology	. 12
	2.5	Modelling of hybrid energy systems	14
3	METHODOLOGY		. 16
	3.1	Overview	. 16
	3.2	Selection of the site	16
	3.3	Collection of data	17
	3.4	Selection of energy sources	17
	3.5	Modelling and simulation	18
4	SITI	E DETAILS	19
	4.1	Overview	19
	4.2	Existing energy demand scenario	20
	4.3	Resources availability	21

5	ENI	ERGY CONVERSION TECHNOLOGIES	23
	5.1	Overview	23
	5.2	Energy resources used and their applications	23
	5.3	Technology status and trends	24
		5.3.1 Overview	24
		5.3.2 Solar PV technology status and trends	24
		5.3.3 Wind energy technology status and trends	
	5.4	Technology options analysis by using 'HOMER' Software	27
6	MO	DELLING AND SIMULATION	29
	6.1	Overview	29
	6.2	Electrical load profiles	29
	6.3	PV Generator data	30
	6.4	Battery	
	6.5	Diesel generator data	32
	6.6	Wind turbine data	32
	6.7	Converter	
7	RES	ULTS AND ANALYSIS	35
	7.1	Overview	35
	7.2	Results for load profile without ice plants	
	7.3	Results for load profile with ice plants	
	7.4	Special consideration	
	7.5	Results for simulation only with renewable energy sources	41
	7.6	Comparisons of results for all types of simulations	45
	7.7	Project implementation	
	7.8	Power plant location	47
8	CON	NCLUSIONS AND RECOMMENDATIONS	49
	8.1	Conclusions	49
	8.2	Recommendations	50

Notations

AC	Alternating Current
COE	Cost of Energy
DC	Direct Current
DG	Diesel generator
DHI	Diffuse Horizontal Irradiance
DNI	Direct Normal Irradiance
GHI	Global Horizontal Irradiance
kVA	kilovolt Ampere
kWh	kilowatt hour
LPG	Liquid Petroleum Gases
NASA	National Aeronautics and Space Administration
NCRF	Non-Conventional Renewable Energy
NPC	Net Present Cost
NREL	National Renewable Energy Laboratory
PV	Photo voltaic
R & D	Research and development
RES	Renewable Energy Sources
RO	Reverse Osmosis
SEA	Sustainable Energy Authority
TNPC	Total Net Present Cost
UN	United Nations
UNDP	United Nations Development Program
US	United States
USA	United States of America
USAID	United States Agency for International Development
WTG	Wind turbine generator

List of Figures

Figure 2.1	Fleet of small islands in the Northern part of Sri Lanka	7
Figure 2.2	Transmission network of Sri Lanka	8
Figure 2.3	Energy share of Sri Lanka	8
Figure 2.4	Wind resource map of Sri Lanka	10
Figure 2.5	Average Monthly Solar Radiation	11
Figure 2.6	Simplified process flow of RO system	13
Figure 3.1	Location of Battalangunduwa Island in the Indian Ocean	16
Figure 4.1	Major locations of Battalangunduwa island	19
Figure 4.2	Monthly average wind speeds at Battalangunduwa island	21
Figure 4.3	Average monthly solar radiation at Battalangunduwa island	22
Figure 5.1	Energy sources and conversion processes for end users	23
Figure 5.2	Processes and applications of energy supply to Battalangunduwa Island	24
Figure 5.3	Solar PV technology status and trends	25
Figure 5.4	Growth in size of wind turbines and prospects	26
Figure 6.1	Electrical load profile with ice plants	29
Figure 6.2	Electrical load profile without ice plants	30
Figure 6.3	Solar PV input data	31
Figure 6.4	Batterv input data	32
Figure 6.5	Diesel generators input data	33
Figure 6.6	Wind turbine input data	33
Figure 6.7	Converter input data	34
Figure 7.1	Simulation results for the load profile without considering ice plants	35
Figure 7.2	Energy production by component for the load profile without ice plant	36
Figure 7.3	NPC by cost type for the load profile without ice plants	37
Figure 7.4	Simulation results for the load profile with considering ice plants	38
Figure 7.5	Energy production by component for the load profile with ice plants	39
Figure 7.6	NPC by cost type for the load profile with ice plants	40
Figure 7.7	Simulation results for the load profile without ice plants (only with RES)	42
Figure 7.8	Monthly average electricity production for the load profile without ice plants (only with RES)	42

Figure 7.9	Simulation results for the load profile with ice plants (only with RES)	43
Figure 7.10	Monthly average electricity production for the load profile with ice plants (only with RES)	44
Figure 7.11	Power plant configuration	46
Figure 7.12	Power plant location	48

List of Tables

Table 2.1	Ice requirement for various fishing activities	12
Table 3.1	House Distribution at Battalangunduwa island	17
Table 3.2	Loads used in different types of houses at Battalangunduwa island	17
Table 5.1	Solar PV general technology status and trends	25
Table 5.2	Details provided to HOMER software	27
Table 6.1	Input data on component cost	34
Table 7.1	Details of the optimum results for simulation without ice plants	36
Table 7.2	Details of the optimum results for simulation with ice plants	38
Table 7.3	Cost involvement for the project without ice plants	39
Table 7.4	Cost involvement for the project with ice plants	40
Table 7.5	Comparison between the best and the second best options for the stage II	41
Table 7.6	Details of the results for simulation without ices plants (RESs only)	43
Table 7.7	Details of the results for simulation with ices plants (RESs only)	44
Table 7.8	Comparison of cost involvement among all the simulation results	45
Table 7.9	Comparison of installation capacity among all the simulation results	45

List of Annexes

Annex 1	Hourly Load Calculations for off season	A 1
Annex 2	Hourly Load Calculations for on-season	A 2
Annex 3	Summary of hourly load for off- season	A 3
Annex 4	Summary of hourly load for on-season	A 4

ABSTRACT

A detailed study on present and future energy demand, resource availability and technology options were studied to propose an optimum system to cater for the basic energy requirements of a remote fishing island, 'Battalangunduwa' in the North-Western coast of Sri Lanka. The aim of this project is to supply basic energy requirements to the people living in the island. At first, energy related issues such as, limited electricity supply to the island for household use, low price for fish production due to non-availability of ice at a reasonable rate and drinking water issues as well as health issues were identified. Further, the electricity demand to provide basic energy requirements for the existing residents was calculated as 327 kWh/day. Then to supply the energy demand, utilizing renewable energy sources such as wind and solar along with diesel generators in a hybrid system was developed by a modelling using a computer software (HOMER). The optimum option indicates that the share of annual energy generation from wind, solar and diesel generators are 85 %, 6 % and 9 % respectively without ice plants and 83 %, 0 % and 17 % respectively with ice plants. Economic evaluation was also carried out to find the viability of the system proposed and it is concluded that the project is technically feasible, environmental friendly, economically viable and also contributes to the socio economic development of the island community.