ASSESSMENT OF EMBEDDED ENERGY OF FLOOR TILES MANUFACTURED IN SRI LANKA

W.M.N.K. Wijerathna

149330U

Dissertation submitted in partial fulfillment of the requirements for the Degree Master of Science in Electrical Installations

Department of Electrical Engineering

University of Moratuwa Sri Lanka

April 2018

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature of the candidate

Date:

(W.M.N.K.Wijerathna)

The above candidate has carried out research for the Masters Dissertation under my supervision.

Signature of the supervisor

Date:

(Dr. K.T.M. Udayanga Hemapala)

ABSTRACT

Floor tile manufacturing is one of the highest energy intensive industries in the world. Basically, the thermal energy is the most prominent energy component in the value. Embedded energy is a fairly a new concept which will be used to estimate how much energy had been used to produce one unit of material.

The embedded energy concept will be used to check the energy efficiency of the manufacturing.

The embedded energy comprises four components as level 01,02 03 and 04. Level 01 energy is the direct energy used in the manufacturing process. Level 02 is the labour component and the ancillary services. The transport and mining energy is considered as level 03 energy. The level 04 is the energy being used for manufacturing of the capital equipment or the machineries which are being used in the manufacturing process. Accessing of level 04 energy is very difficult and that energy is not considered in this research.

The fossil fuel is a limited resource to the world and in the countries like Sri Lanka, all most all the fuels are being imported. If it is strived to reduce the embedded energy or at least trying to reach the lowest values achieved by other countries will serve the world by saving energy.

The embedded energy of a typical factory in Sri Lanka is 12.58 MJ/Kg for Level 01, 0.14 MJ/Kg for the level 02 and 0.84 MJ/Kg for Level 03. Which gives the embedded energy as 13.56 MJ/Kg. According to the literature revived the internationally accepted embedded energy value is 11MJ/Kg for the floor tiles as per Inventory of Carbon and Energy.

To achieve the imbedded energy value 11 MJ/Kg is not an unrealistic task. For this the manufactures of the country have to rearrange their manufacturing processes in such a way that the wastages are minimized and the thermal energy is efficiently used.

By rearranging the production process to have the energy efficient manner will serve two purposes.

It will help to produce low embedded energy tile and lesser embedded energy means low fuel consumption in the manufacturing process. It will help to reduce the global energy demand and the unit cost of the product will be lower making it high profitable

ACKNOWLEDGEMENT

I wish to extend my deepest gratitude and affection to Dr. K.T.M. Udayanga Hemapala who encouraged and guided me to conduct this research and on preparation of final dissertation.

I extend my sincere gratitude to Dr. Nalin Wickramarachchi, Head of the Department of Electrical Engineering, Prof Lucas and all the lectures and visiting lectures of the Department of Electrical Engineering for the support extended during the study period.

I would like to take this opportunity to extend my sincere thanks to following experts who gave their support to conduct my work. Mr. Divakara, Plant manager Macson Mesh Industries, Mr. Pitipana, Production Manager, Mr. Sumanadasa, Quality control Manager of Royal Porcelain (Pvt) Ltd, Mr. Prbath Factory Manager of Lanka Tiles Ltd.

It is a great pleasure to remember the kind co-operation extended by the colleagues in the post graduate program and my friends.

Further, I would like to thank my wife Biyanka, son Dulsara, and Daughter Amalya for their scarification by bearing the hardships due to my absence at home during the study period.

TABLE OF CONTENTS

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENT	iii
TABLE OF CONTENTS	iv
LIST OF FIGURES	vii
LIST OF TABLES	viii
LIST OF ABBREVIATIONS	iix

1 INTRO	DUCTION1
1.1	Background1
1.2	Motivation2
1.3	Aim
1.4	Objective of the study2
1.5	Methodology2
1.6	Contribution 3
2 LITERA	TURE REVIEW
2.1 P plar	roduction Process of a ceramic floor tile manufacturing at5
2.2 B	ody raw materials6
2.3 St	orage of Raw Materials 7
2.4 B	all Mill Batching7
2.5 R	aw material Grinding Milling7
2.6 SI	ip storage

2.7 Ceramic powder preparation from Spray dryer
2.8 Storage of Ceramic Powder 11
2.9 Formation of a Ceramic tile by Powder Pressing 11
2.10 Fast drying 12
2.11 Glazing & Printing Applications12
2.12 Storage of Green Tiles 16
2.13 Firing the tiles in the kilns16
2.14 Storage of Fired Tiles19
2.15 Polishing, Squaring 19
2.16 Sorting & Packing 20
2.17 Storage of Finished goods 22
2.18 Product Classification 22
2.19 Product portfolio of the local manufactures 23
2.20 Energy Consumption in Ceramic Industry
2.21 Non Plastic Raw materials 26
2.22 Power Generation and Distribution in Sri Lanka 29
EMBEDDED ENERGY 31
3.1 Elements of the Embedded Energy31
3.2 Assessing of energy in a manufacturing prosses
3.3 Boundary conditions 34
DATA COLLECTION
4.1 Level 01 Energy 37
4.2 Level 02 Energy 42

3.

4.

4.3 Level 03 Energy 44
5.ANALYSIS OF DATA 46
5.1 Average monthly energy level 01 47
5.2 Level 01 Energy as embedded energy 49
5.3 Calculation of Embedded Energy 51
5.4 Benchmark embedded energy for local factories 52
5.5 Reasons for the Variations 53
6 SENSITIVITY ANALYSIS
7 CONCLUSIONS AND RECOMENDITIONS 56
7.1 Replacement of less efficient machines
7.2 Heat recovery System58
7.3 Heat Recovery system Calculations 59
7.4 Investment for Heat recovery System
7.5 Overall Conclusion60
8. REFERENCES

LIST OF FIGURES

Figure 2-1: Flow chart of the production process	. 5
Figure 2-2: Ball Mill used for grinding process	8
Figure 2-3: Silos used for storage of base powder	11
Figure 2-4: A pressing machine	11
Figure 2-5: A bell machine	13
Figure 2-6: A vela machine	14
Figure 2-7: A double disk machine	14
Figure 2-8: A Rotocolor machine	15
Figure 2-9: A digital Tile printer	15
Figure 2-10: A Roller Kiln	16
Figure 2-11: A Tile Polishing and Squaring Machine	20
Figure 5-1: Tile production in RPL plant in the year 2015	464
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015	464 46
Figure 5-1: Tile production in RPL plant in the year 2015 Figure 5-2: Energy Demand for RPL Factory in the year 2015 Figure 5-3: Level 01 Energy consumption	464 46 .47
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015Figure 5-3: Level 01 Energy consumptionFigure 5-4: Department wise Specific Energy	464 46 .47 47
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015Figure 5-3: Level 01 Energy consumptionFigure 5-4: Department wise Specific EnergyFigure 5-5: Level 01 energy for the Kiln	464 46 .47 47 48
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015Figure 5-3: Level 01 Energy consumptionFigure 5-4: Department wise Specific EnergyFigure 5-5: Level 01 energy for the KilnFigure 5-6: Monthly Average energy for the Milling	464 46 .47 47 48 48
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015Figure 5-3: Level 01 Energy consumptionFigure 5-4: Department wise Specific EnergyFigure 5-5: Level 01 energy for the KilnFigure 5-6: Monthly Average energy for the MillingFigure 5-7: Monthly Average energy for the Kiln	464 46 .47 47 48 48 48
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015Figure 5-3: Level 01 Energy consumptionFigure 5-4: Department wise Specific EnergyFigure 5-5: Level 01 energy for the KilnFigure 5-6: Monthly Average energy for the MillingFigure 5-7: Monthly Average energy for the KilnFigure 5-8: Level 02 Specific Energy	464 46 47 47 48 48 48 49 50
Figure 5-1: Tile production in RPL plant in the year 2015Figure 5-2: Energy Demand for RPL Factory in the year 2015Figure 5-3: Level 01 Energy consumptionFigure 5-4: Department wise Specific EnergyFigure 5-5: Level 01 energy for the KilnFigure 5-6: Monthly Average energy for the MillingFigure 5-7: Monthly Average energy for the KilnFigure 5-8: Level 02 Specific EnergyFigure 5-9: Level 02 average monthly energy for different departments	464 46 47 47 48 48 49 50 51
Figure 5-1: Tile production in RPL plant in the year 2015 Figure 5-2: Energy Demand for RPL Factory in the year 2015 Figure 5-3: Level 01 Energy consumption Figure 5-4: Department wise Specific Energy Figure 5-5: Level 01 energy for the Kiln Figure 5-6: Monthly Average energy for the Milling Figure 5-7: Monthly Average energy for the Kiln Figure 5-8: Level 02 Specific Energy Figure 5-9: Level 02 average monthly energy for different departments Figure 7-1: Weak thermal insulations	464 46 47 47 48 48 49 50 51 57

LIST OF TABLES

Table 2.1 Classification of tiles based on method of formation	22
Table 2.2 Classification based on water absorption	23
Table 2.3 The major tile sizes and types in RPL factory	.23
Table 2.4 The major tile sizes and types in RCL factory	24
Table 4-1 Level 01 energy Milling department	37
Table 4-2 Level 01 energy Pressing department	38
Table 4-3 Level 01 energy Glazing department	.39
Table 4-4 Level 01 energy Kiln department	40
Table 4-5 Level 01 energy Sorting department	.41
Table 4-6 Level 02 energy for ancillary activities	.42
Table 4 -7 Level 02 energy for labour activities	43
Table 4-8 Level 02 Total Energy	44
Table 4-9 Level 03 Total Energy for transportation	45
Table 5-1 Department wise embedded specific level 01energy	.49
Table 5-2 Department wise embedded specific level 02 energy	50
Table 5-3 Embedded Energy Bench mark value and the local	52
Table 6-1 Level 01 Specific Energy for different Energy Sources	54
Table 6-2 Level 02 Specific Energy for different Energy Sources	54
Table 6-3 Different combinations and percentage reduction	55
Table 6-3 Thermal Consumption comparison	57

LIST OF ABBREVIATIONS

Abbreviation	Description
BTU	British Thermal Unit
CEB	Ceylon Electricity Board
CPC	Ceylon Petroleum Corporation
GWh	Giga watt hour
Kcal	kilo calorie
kWh	kilo watt hour
LKR	Sri Lankan Rupee
LNG	Liquefied Natural Gas
LOLP	Loss of Load Probability
LPG	Liquefied Petroleum Gas
LTGEP	Long Term Generation Expansion Plan
MJ	Mega joule
MW	Mega watt
NCRE	Non-Conventional Renewable Energy
NCV	Net Calorific Value
NG	Natural Gas
O&M	Operation and Maintenance
MT	Metric tonne (1,000 kg)
USD	United States Dollar
RPL	Royal Porcelain Factory
RCL	Royal Ceramics Lanka Factory
LTL	Lanka Tiles Limited Factory