PERFORMANCE ANALYSIS OF AN INSTALLED WIND, SOLAR, DIESEL AND BATTERY HYBRID POWER SYSTEM

Amukotuwe Gedara Asela Nirmala Bandara Jayasinghe

128363V

Degree of Master of Science

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

December 2017

PERFORMANCE ANALYSIS OF AN INSTALLED WIND, SOLAR, DIESEL AND BATTERY HYBRID POWER SYSTEM

Amukotuwe Gedara Asela Nirmala Bandara Jayasinghe

128363V

Thesis/Dissertation submitted in partial fulfillment of the requirements for the degree Master

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

December 2017

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a degree or diploma in any other University or institute of higher learning to the best of my knowledge and belief, it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:

Date:

A. G. A. N. B. Jayasinghe

The above candidate has carried out research for the Master's Thesis under my supervision

Signature: Prof. R. A. Attalage, Deputy Vice Chancellor, University of Moratuwa. Date:

Performance Analysis of an Installed Wind-Solar-Diesel and Battery Hybrid Power System

ABSTRACT:

Hybrid power system is identified as most economical solution for providing electricity to communities currently isolated from the national grid and mostly main land. Recently, first Solar wind diesel Battery Hybrid commissioned in one of the northern Island of Sri Lanka called Eluvathivu, as a pilot power plant for demonstrating the maturity and feasibility of hybridization of different power sources. One of other objective of implementing this project was train CEB staff to prepare them for implementing similar projects on the other Islands. During this study performance analysis of this power system was carried out using HOMER pro software. It was identified that initial capital cost of the hybrid system is more than 10 times higher than diesel power system. However present worth value of the hybrid system will be \$ 1,152,154 and discounted payback will be less than 4 years. Sensitivity analysis was done using future load demand demonstrates that design configuration of hybrid power system can be sustained maximum average load up to 235kWh/day and when the hybrid system operates in higher load demands than design, overall efficiency of the system increases. Sensitivity analysis was done for possible expansion of the current system illustrates installed configuration is the optimum configuration to meet the site conditions. Performance of the hybrid system very much depends on wind speed of the Island. When the wind speed exceeds cut in speed of wind turbines, 1m/s of increment of wind speed will result more than 6% increment of renewable fraction of the system. 0.5 kWh/m2/day increment of solar scaled average increment will generate around 7000kWh/ year of additional electrical energy. However cost of energy and net present cost of the power system do not depend on the variation of solar radiation since almost all the additional energy generated due to increment of solar radiation is accounted as excess energy to the system. When analyzed using actual data of hybrid power system with output predicted by using HOMER Pro, it was observed that HOMER Pro under estimates total renewable energy generation and total unmet load of the hybrid system and overestimates generated energy by the diesel generator and total electricity consumption. Therefore estimated values of COE and NPC are over estimated.

Key Words; Eluvathivu Island, HOMER Pro, Hybrid Power System

ACKNOWLEDGEMENT

I would first like to thank my thesis Supervisor Prof. R. A. Attalage, Senior Professor in Mechanical Engineering, Deputy Vice Chancellor of the University of Moratuwa and course coordinator Dr. H. K. G. Punchihewa, Senior Lecturer, Department of Mechanical Engineering, University of Moratuwa for giving me greatest support and guidance during this research. They consistently allowed this Thesis to be my own work, but steered me in the right the direction whenever they thought I needed it.

I would also like to thank the Staff DGM North, Ceylon Electricity Board and my colleagues Eng. Sharadha Premaratna and Eng. J. A. S. A. Jayasinghe for their cooperation for succeeding in my thesis. Without their passionate contribution, this thesis could not have been successfully conducted.

I would be very much grateful to Eng. V.K Jayasiri, Eng. P. Kalubovila and Eng. A. I. A. Baduge, who are former DGMs, Workshop and Ancillary Services and Eng. D. R. M. Harasgama, who is a present DGM, Workshop and Ancillary Services and Eng. P. K. S. Chandrasekara and Eng. A.P.K. Muthunayake former and current Chief Engineers of Power Plant Unit of Ceylon Electricity Board respectively for giving me utmost support and opportunity to complete this thesis. I wish to thank Mr. S.D.L. Sandanayake, Lab Attendant, Department of Mechanical Engineering, and University of Moratuwa.

Finally, I would appreciate wife, daughter and all the other members of my family without their scarification this work would not be realized and everybody, who has helped me in numerous ways at different stages of the research, which was of utmost importance in bringing out this effort a success.

TABLE OF CONTENTS

DECLARATIONi
ABSTRACT: ii
ACKNOWLEDGEMENT iii
LIST OF FIGURES vii
LIST OF TABLES viii
ABBREVIATIONSix
1 INTRODUCTION1
1.1 Background1
1.2 Renewables in Sri Lanka
1.3 Aim & Objectives of the Thesis4
1.4 Methodology4
1.5 Outline of the Thesis5
2 LITERATURE REVIEW6
3 DESIGNING OF HYBRID SYSTEM WITH HOMER PRO9
3.1 Simulation9
3.2 Optimization
3.3 Sensitivity Analysis
3.4 Calculations
3.4.1 PV Array Power Output11

	3.4.2 Wind Turbine Power Output
	3.4.3 Calculating Hub Height Wind Speed
	Turbine Power Output at Standard Air Density
	Applying Density Correction
	Creates the Generator efficiency curve
	3.4.4 Emission Calculations
4	ELUVAITHIVU ISLAND18
	4.1 General Description
	4.2 Climate Pattern
	4.2.1 Wind Pattern
	4.2.2 Solar Radiation Pattern
	4.2.3 Level of Electrification
	4.3 Solar Wind Diesel Battery Hybrid Power System in Eluvaithivu
	4.3.1 Hybrid Power System in Eluvaithivu20
5	RESULTS AND DISCUSSION
	5.1 Comparison of Base case Generator System with new Hybrid Configuration .28
	5.2 Analysis of Future Electricity Demand
	5.3 Possible Expansion of the current System
	5.3.1 Add Component to the system
	5.3.2 Change Tilt angle of the PV panels
	5.4 Analyze system performance with different weather conditions
	5.4.1 Variation of solar radiation

	5.4.2 Variation of wind speed					
	5.5 Comparison of System Performance Using Actual Generation Data	42				
6	CONCLUSION	54				
7	REFERENCES	56				

LIST OF FIGURES

Figure 1-1	Northern Region of Sri Lanka
Figure 3-1	Sensitivity Analysis Window from HOMER Pro software10
Figure 3-2	Typical Power Curve of wind turbine13
Figure 4-1	Eluvaithivu Island map18
Figure 4-2	Monthly Average Wind Speed
Figure 4-3	Monthly average Solar Radiation variation21
Figure 4-4	Electricity delivered by Diesel Generator and fuel Consumption from May 2011 to May 2013
Figure 4-5	Daily Load profile measured in kW
Figure 4-6	System configuration of installed Hybrid System as per HOMER software 27
Figure 5-1	HOMER Window of Sensitivity analysis of Scaled Average electrical load 31
Figure 5-2	Variation of Fuel Consumption and Cost of Energy with Annual scale average load
Figure 5-3	Result of Sensitivity Analysis
Figure 5-4	Variation of Electricity Production of Wind, Generator and Excess Electricity
	with wind speed

LIST OF TABLES

Table 1.1	Northern Inhabitants Island's Electrification Status
Table 3.1	Power sources and storages available in HOMER Pro11
Table 4.1	Monthly average wind data at 40 m high mast
Table 4.2	Monthly average Solar Radiation Variation21
Table 4.3	Electricity delivered by Diesel Generator and fuel consumption from May 2011 to May 2013
Table 4.4	Hourly average load of the Island delivered by the existing Generators24
Table 5.1	Comparison of all system with Design Configuration
Table 5.2	Discounted cash flow
Table 5.3	Sensitivity Scaled Average Electricity Load
Table 5.4	Identification of Possible Expansion of the Current System
Table 5.5	Sensitivity of Angle of slope of the PV Panels
Table 5.6	Sensitivity Solar Scaled Average
Table 5.7	Sensitivity wind speed41
Table 5.8	Eluvaithivu Hybrid System Energy Dispatch - October 201611
Table 5.9	Eluvaithivu Hybrid System Energy Dispatch - November 201619
Table 5.10	Eluvaithivu Hybrid System Energy Dispatch - December 2016
Table 5.11	Eluvaithivu Hybrid System Energy Dispatch - January 2017199

ABBREVIATIONS

HOMER	Hybrid Optimization of Multiple Electric Renewables
NREL	National Renewable Energy Laboratory
COE	Cost of Energy
NPC	Net Present Cost
STP	Standard Temperature and Pressure
ADB	Asian Development Bank
PV	Photo Voltaic
NCRE	Non-conventional Renewable Energy
CEB	Ceylon Electricity Board
DGM	Deputy General Manager

1 INTRODUCTION

1.1 Background

Role of renewable energy has become more significant in the current world since most of the countries in the world are increasingly concerned on their energy security and sustainable development. Promoting electricity generation based on non- conventional renewable energy sources is a vision of most of the countries and policy makers develop new policies to increase percentage of electricity generation based on renewable energy sources. 147 countries who participated for 21st conference of the parties of United National Framework Convention on Climate Change (UNFCCC) in Paris agreed to limit global warming to well below 2 ^oC by scaling up their renewable energy [1]. Total global investment for renewable energy capacity in 2015 was \$ 285.9 billion, which was recorded as highest investment for renewable up to 2015. \$ 199 billion out of total investment was for utility scale wind farms and solar parks [2].

Biomass, Petroleum, coal, Hydro and non-conventional renewable energy are the primary contributors of the energy sector of the Sri Lanka. They contribute 43%, 37%, 4%, 13% and 3% to total energy respectively. Total grid connectivity of the country is around 98% and level of electrification is almost 100%. Installed capacity is approximately 4,050 MW, consisting of 900 MW of coal power, 1,335 MW of oil burning thermal power, 1,375 MW of hydro power and 442 MW of non- conventional renewable energy sources such as wind, mini hydro, bio-mass and solar power plants. The annual total electricity is about 10,500 GWh. The annual rate of rise of electricity demand is expected as 4 - 6%.

After commissioning Chunnakam and Kilinochchi Grid Sub Stations and Uthuru Janani Power Station in Chunnakam, all most all the parts other than few geographically isolated areas like northern islands, top of the mountains and few small villages which are not having proper access, of the country is connected through the national grid. There are 4 small inhabitants islands called Eluvaithivu, Analaithivu, Nainathivu and Delft (*Figure 1.1*), which are located northern part of the country [3] geographically

isolated from the main land satisfied their electrical needs using diesel generators due to impossibility of construction of high voltage overhead distribution lines through deep sea and costly installation of submarine cables. Those Northern Inhabitants Island's Electrification Status is tabulated in *Table 1.1*.

Providing uninterrupted power to these inhabitants is a great challenge due to problems in fuel transportation to produce electrical power. Therefore there are power cuts during day time. Also unit cost of generated electricity is high due to high diesel prices and cost of transportation of diesel. Renewable energy based mini grid system was identified as a solution to overcome this problem since geographical location of these islands is ideal to produce electrical energy using renewable energy. However with the seasonal variation of the solar and wind resources, power generation is limited. This issue can be avoided by coupling renewable based power generation technology with a diesel generator and forming hybrid power system. When it compares with diesel generator along with hybrid power system, hybrid power systems have significantly higher investment cost and lower operational and maintenance cost.

Figure 1-1 Northern Region of Sri Lanka 2

No	Description	Population	No. of Houses	No. of Electrified houses	Level of Electrification
1	Eluvaithivu	787	110	73	66%
2	Analaithivu	2,324	452	152	34%
3	Nainathivu	3,030	833	520	62%
4	Delft	4,540	1,181	214	18%

 Table 1.1 Northern Inhabitants Island's Electrification Status

1.2 Renewables in Sri Lanka

When consider the history, until early 1990s large-scale commercial hydropower projects were the primary source of power generation in Sri Lanka. However, droughts in 1992, 1996, 2001 and 2002 have led the Ceylon Electricity Board (CEB) and other major Sri Lankan power producers to shift to thermal power. In 2012, "oil-fired thermal power provided nearly 60% of generation" in Sri Lanka, while hydropower accounted for around 23% of the total [4].

Currently Sri Lanka is in a key turning point of a move towards non-conventional renewable energy (NCRE) technologies, including mini hydro projects, solar projects, wind projects and formal biomass projects. Biomass is already estimated to be a leading source of energy supply in Sri Lanka, but market has not well formalized yet. By agreeing to buy power at set prices, the state effectively encouraged long-term planning and investment in this segment among private sector as well, thus facilitating the growth of the NCRE market [4].

As of January 2015 connected capacity of solar and wind Power connected to the national grid were 1.4MW and 124MW respectively. As per the government policies,

CEB plans [5], [6] to increase NCRE capacity to 972MW by 2020, which will contribute 20% of the total power generation of the country. This percentage will reach its maximum (21.4%) in 2025, when installed capacity will reach 1367MW. It is expected to reach installed capacity to 1897MW in 2034. Wind power will be the major contributor of NCRE in 2034. Installed capacity of Wind and Solar Power will be 719MW and 226MW respectively.

1.3 Aim & Objectives of the Thesis

The aim of the research is to analyse performance of installed Wind, Solar, and Diesel Battery Hybrid Power System. Objectives are set as follows to achieve this aim. The objectives are:

- Compare the performance of design configuration of the hybrid system with the base case diesel generator in view of identifying the feasibility of the project.
- Analyse the performance of the system with possible expansions to the current system
- Analyse the unit Cost of Energy for different input conditions and identify best operating point of the hybrid power system.
- Compare the computer based simulated results with actual data for validation

1.4 Methodology

Following methodology was used to achieve the above objectives of the research. Initially, a literature review was carried out to get a better understanding about similar type of early research done for Si Lanka context as well as other part of the world. At the same time the design data of the hybrid power system was also collected from staff of Deputy General Manager (Northern Province). This data includes system configuration of the installed power system, hourly electricity variation before installed the hybrid system, electricity generation data of wind, solar and diesel generator system of current system and historical power generation data of previously installed stand along diesel generator system.

A model was developed using 'HOMER Pro' software by including cost and lifetime data of each component of the system, monthly average solar radiation, monthly average wind speed and predicted load demand. Optimized system configuration performances obtained from the software was compared with Old generator system to check feasibility of the project.

Sensitivity analysis was carried out to identify the system performance by varying scale average load to the system, monthly average wind speed and monthly average solar radiation and compare results to identify possible operating condition of the power system.

Another sensitivity analysis was carried out to identify possible future expansion of the system. Capacity of solar panels, angle of solar panels, number of wind turbine and capacity of generator were considered as sensitivity inputs. An analysis was done to analyse feasibility of each system configuration.

1.5 Outline of the Thesis

This thesis is organized in 6 Chapters. The general introduction about Renewable Energy resources in Sri Lanka and Research Methodology for "Performance Analysis of Installed Wind, Solar, Diesel, Battery Hybrid Power System" are illustrated in Chapter 1. Available technologies of Wind, Solar, Diesel Battery Hybrid Power System and developments that have been carried out by various researchers were also studied and discussed in the Chapter 2. Chapter 3, is illustrated introduction about HOMER Pro software, which is used for optimizing simulation and sensitivity analysis. Over view of Eluvathivu Island and installed hybrid system are described in Chapter 4. Chapter 5 presents the Results and discussion. Final Conclusion is given in the Chapter 6.

2 LITERATURE REVIEW

According to the United Nations Energy Security, Drinking water, climate change and poverty are the four main priorities of the world [7]. There are many papers published about hybrid power generating systems. Most of them are about feasibility analysis of hybrid energy system for different location of the world. Majority of these papers are about feasibility analysis of Electrification of by using off grid hybrid power plants. And very few papers have used optimization technique to model how hybrid systems could reduce electricity generation cost over conventional fossil fuel systems.

Eng. K Ratneswaran [8] has conducted extensive analysis using Homer Software after conducting survey for data collection and concluded this wind – diesel hybrid power system as the most economical system to elect rich the Eluvathivu Island. As per his analysis, one wind turbine (80kW) with two diesel generators (45kW + 15 kW) battery energy storage and convertor (16 kW) is the most reliable and economical hybrid system to electrify this Island. And the payback period of this project is 6 to 7 years.

M. V. P. Geetha Udayakanthi [9] has analyzed wind and solar power generation possibility of different locations in Sri Lanka. And she concluded that Sri Lanka has economically feasible power generation potential of wind and solar energy. She has further concluded that, Sothern and Western Coastal belts are most suitable for utility scale wind and solar power generation. The selected locations were simulated using HOMER software.

Feasibility study of a wind-PV-diesel hybrid system for a village in Saudi Arabia has done by S. Rehman, A.M. Mahbub, J. Meyer an L.M. Al-Hadhrami [10] of King Fahd University for Petroleum and Minerals of Saudi Arabia have concluded that, every 0.5m/s increment of wind speed will result 5% increment of wind energy contribution to the hybrid power system and the cost of energy (COE) decreased linearly.

Feasibility analysis of hybrid off grid wind–DG-battery energy system for the ecotourism remote area was carried out by the research team of Department of Mechanical Engineering in University of Malaya, Which consists with A. Shezan, R. Saidur, K.R Ula, A. Hossain, W.T. Chong, S. Julai [11]. The research team has analyzed a complete off grid wind–diesel-battery hybrid RE model with the use of HOMER software by minimizing a unit cost of the electricity production for 2 residential hotels of the Cameron Highlands, which is a decentralized region in Malaysia. The research team has found that 15 wind turbines (10kw), 1 diesel generator (4kw), and 2 battery hybrid RE systems are most economically feasible. Further, it was found that decrement of CO₂ emission from the simulation result.

Another research was carried out by the Mahabub Hasan and Oishe Binty Momin [12] to evaluate the performance and feasibility of a solar-wind-diesel hybrid energy system through a computer simulation studies to achieve an efficient and cost competitive system. Finally, it was concluded that, solar-wind-diesel hybrid energy system consumes less fuel than the diesel generator which is run by only diesel and total net present cost of solar-wind-diesel hybrid energy system is less than the diesel generator. Further it was found that hybrid system will reduce the CO2 emission by 60% in the local atmosphere compared to electricity draw from the national grid.

A technical and feasibility assessment was done by Ani Vincent Anayochukwu [13], incorporating the solar PV generation to the existing diesel power system that currently supplied power to the Church. Finally it was found that the proposed system would meet around 53% of the average annual Parish Church electrical load and result in 47% reduction in diesel use and low CO_2 emission compared to the previously existing system.

Maamar Laidi, Salah Hanini, Brahim Abbad1, Nachida Kasbadji Merzouk and Mohamed Abbas [14] have proposed wind- Solar-Diesel Battery hybrid power system to meet energy requirement of the small houses located in the southern part of the Algeria and 47% of renewable penetration hybrid power system is most economical.

Victor O. Okinda, Nichodemus A. Odero [15], have carried out a review of techniques in optimal sizing of hybrid renewable energy system and concluded that along renewable generation is a variable alternative to the grid supply or off grid non-conventional fossil fuel base power generation for remote areas across the globe. They have further concluded that optimal sizing of components of a hybrid system is crucial for the feasibility of such system in terms of cost and reliability.

J. G. Fantidis, D. V. Bandekas and N. Vordos [16], have carried out a techno economical study of hybrid power system for a remote village in Greece to investigate the possibility of replacing diesel power generation with hybrid power system. The sensitivity analysis was carried out to understand most important parameters of the system and also define future scenarios of competitiveness between technologies.

T. Givler and p. Lilienthal [17], have been carried out a research using HOMER software NREL's micro power optimization model to explore the role of Generator in small power systems to explore the threshold load size at which it is more cost effective to include a diesel than to increase the size of the battery bank or PV array. From their analysis they have concluded that for loads ranging from 3 - 13 kWh/day to PV battery systems are cost effective and for the loads above 13kWh/day hybrid PV/generator/battery systems are cost effective depending on the reliability of the system, solar resource, and diesel fuel price.

3 DESIGNING OF HYBRID SYSTEM WITH HOMER PRO

The HOMER Pro [18] is a computer model developed by NREL of USA to evaluate designs of both off-grid and grid connected power systems. Inbuilt algorithms are available in the HOMER Pro software for simulation, optimization and sensitivity analysis, therefore it is easier to evaluate the many possible system configurations when inserted inputs including available technology options, component costs and resource availability.

HOMER Pro is required monthly average of daily solar radiation and wind speed values to develop a model. The software synthesizes a set of solar radiation values for each hour of the year using the Graham algorithm. Also it creates time series wind speed data using HOMER's synthetic wind speed data synthesis algorithm.

3.1 Simulation

In each time step of the year, HOMER Pro simulates the operation of each system configurations by making energy balance calculations. For each time step, HOMER Pro compares the electric and thermal demand in that time step to the energy that the system can supply in that time step, and calculates the flows of energy to and from each component of the system to determine whether a configuration is feasible. Then it estimates the cost of installing and operating the system over the lifetime of the project. For systems that include batteries or fuel-powered generators, HOMER Pro also decides in each time step how to operate the generators and whether charge or discharge the batteries.

3.2 Optimization

HOMER Pro displays a list of possible system configurations sorted by ascending net present cost or lifecycle cost, after simulating all of the possible system configurations, which can use to compare system design options. This will help to select best system configuration for the system.

3.3 Sensitivity Analysis

If there is an uncertainty about the exact value of some input variable, sensitivity analysis is the option that determine how important that variable is and how the outputs change depending a range of values of that particular input variable. If it defines sensitivity variables as inputs, then HOMER repeats the optimization process for each value of each sensitivity variable that specified. For example, if you define wind speed as a sensitivity variable, HOMER will simulate system configurations for the range of wind speeds that specify. Sensitivity Analysis Window from HOMER Software is given in the *Figure 3.1*.

Sensitivity Result	s Optim	ization Re	sults															
																	 Tabular 	C Graphic
Double click on a	system b	elow for o	optimiza	ation result	s.												Export	Details
Solar (kWh/m²/d)	Wind (m/s)	<u>1</u> 7	්ස්	5 8 2	PV (kW)	WT	DG1 (kW)	DG2 Li-lon 27. (kW)	. Conv. (kW)	Initial Capital	Operating Cost (\$/yr)	Total NPC	COE (\$/kWh)	Ren. Frac.	Diesel (L)	DG1 (hrs)	DG2 (hrs)	
4.930	8.550	4	ιœ	🗊 🗹	46	2	30	3	100	\$ 373,035	15,415	\$ 641,458	0.534	0.86	3,071	813		
4.930	7.550	- - 7 /	۱œ	🖻 🕅	46	2	30	3	100	\$ 373,035	17,400	\$ 676,030	0.563	0.81	4,478	1,254		
4.930	6.550	- 4 🕴	ιœ.	🖻 🗹	46	2	30	3	100	\$ 373,035	19,718	\$ 716,388	0.596	0.73	6,131	1,732		
4.930	5.550	- 1 4	۱œ	🖻 🗹	46	2	30	3	100	\$ 373,035	22,291	\$ 761,191	0.634	0.65	7,955	2,217		
5.500	8.550	_ ¶ ∦	۱ <u>۵</u>	🖻 🔀	46	2	30	3	100	\$ 373,035	15,379	\$ 640,835	0.533	0.87	3,046	805		
5.500	7.550	- <u>¶</u> ķ	۱ <u>۵</u>	🖻 🖄	46	2	30	3	100	\$ 373,035	17,330	\$ 674,800	0.562	0.81	4,435	1,233		
5.500	6.550	- <u>¶</u> ķ	۱ <u>۵</u> -	🖻 🗹	46	2	30	3	100	\$ 373,035	19,605	\$ 714,413	0.595	0.74	6,062	1,704		
5.500	5.550	- 4 k	۱ <u>۵</u> -	🖻 🗹	46	2	30	3	100	\$ 373,035	22,157	\$ 758,858	0.632	0.66	7,862	2,190		
4.500	8.550	- <u>¶</u> ķ	۱ <u>۵</u>	🖻 🖄	46	2	30	3	100	\$ 373,035	15,457	\$ 642,189	0.535	0.86	3,097	825		
4.500	7.550	- <u>¶</u> ķ	۱ <u>۵</u> -	🖻 🗹	46	2	30	3	100	\$ 373,035	17,457	\$ 677,011	0.564	0.80	4,515	1,269		
4.500	6.550	- 4 k	۱ <u>۵</u> -	🖻 🗹	46	2	30	3	100	\$ 373,035	19,841	\$ 718,530	0.598	0.73	6,201	1,765		
4.500	5.550	- 7 k	۱œ	🖻 🖄	46	2	30	3	100	\$ 373,035	22,433	\$ 763,665	0.636	0.65	8,048	2,250		
u																		

Figure 3-1 Sensitivity Analysis Window from HOMER Pro software

HOMER Pro models can be used for both conventional and renewable energy technologies. Power sources and storages available in HOMER Pro are given in *Table 3.1*;

Power sources	storages
Solar Photovoltaic (PV)	 Flywheels
 Wind Turbines 	 Customized batteries
Diesel or Petrol Generators	 Flow batteries
Hydro Power	 Hydrogen
 Biomass Power 	
 Utility Grids 	
 Fuel cells 	

Table 3.1 Power sources and storages available in HOMER Pro

3.4 Calculations

3.4.1 PV Array Power Output

HOMER uses the following equation to calculate the output of the PV array:

$$P_{PV} = Y_{PV} f_{PV} \left(\frac{\overline{G_r}}{\overline{G_{r.STC}}} \right) \left[1 + \alpha_p \left(T_c - T_{c,STC} \right) \right]$$

Where;

- Y_{PV} is the rated capacity of the PV array, meaning its power output under standard test conditions [kW]
- f_{PV} is the PV derating factor [%]
- \bar{G}_{r} is the solar radiation incident on the PV array in the current time step [kW/m2]

 $\bar{G}_{r.STC}$ is the incident radiation at standard test conditions [1 kW/m2]

- αP is the temperature coefficient of power [%/°C]
- Tc is the PV cell temperature in the current time step [Tc,STC is the PV cell temperature under standard test conditions [25 °C]

If, it ignores the effect of temperature on the PV array, HOMER assumes that the temperature coefficient of power is zero, so that the above equation simplifies to:

$$P_{PV} = Y_{PV} f_{PV} \left(\frac{\overline{G_r}}{\overline{G}_{r.STC}} \right)$$

3.4.2 Wind Turbine Power Output

HOMER Pro calculates the power output of the wind turbine in each time step. This entails a three-step process, first calculate the wind speed at the hub height of the wind turbine, then to calculate how much power the wind turbine would produce at that wind speed at standard air density, and to adjust that power output value for the actual air density.

3.4.3 Calculating Hub Height Wind Speed

In each time step, HOMER calculates the wind speed at the hub height of the wind turbine using the inputs you specify in the Wind Resource window. If it chooses to apply the logarithmic law, HOMER calculates the hub height wind speed using the following equation:

$$U_{hub} = U_{anem} \cdot \frac{\ln(Z_{hub}/Z_0)}{\ln(Z_{anem}/Z_0)}$$

If it chooses to apply the power law, HOMER calculates the hub height wind speed using the following equation:

$$U_{hub} = U_{anem} \cdot \left(\frac{Z_{hub}}{Z_{anem}}\right)^{\alpha}$$

Where:

U_{hub} - the wind speed at the hub height of the wind turbine [m/s]

- U_{anem} the wind speed at anemometer height [m/s]
- Z_{hub} the hub height of the wind turbine [m]
- Z_{anem} the anemometer height [m]
- A the power law exponent

> Turbine Power Output at Standard Air Density

Once HOMER has determined the hub height wind speed, it refers to the wind turbine's power curve to calculate the power output one would expect from that wind turbine at that wind speed under standard conditions of temperature and pressure.

If the wind speed at the turbine hub height is not within the range defined in the power curve, the turbine will produce no power. This follows the assumption that wind turbines produce no power at wind speeds below the minimum cutoff or above the maximum cutout wind speeds.

Figure 3-2 Typical Power Curve of wind turbine

Applying Density Correction

Power curves typically specify wind turbine performance under conditions of STP (*Figure 5*). To adjust to actual conditions, HOMER multiplies the power value predicted by the power curve by the air density ratio, according to following equation:

$$P_{WTG} = \left(\frac{\rho 3}{\rho_0}\right) P_{WTG,STP}$$

Where:

PwTG - the wind turbine power output [kW]

PwTG,STP - the wind turbine power output at standard temperature and pressure kW]

 ρ - the actual air density [kg/m³]

 ρ_0 - the air density at standard temperature and pressure (1.225 kg/m³)

Creates the Generator efficiency curve

On the Generator Inputs window, when it enters the fuel curve inputs HOMER draws the corresponding efficiency curve. HOMER takes the fuel curve as a straight line. The relationship between generator's fuel consumption in units/hr (term "units" to mean the units specified for the particular fuel, whether kg, L, or m³) and its electrical output is given from the following equation.

$$F = F_{0.}Y_{gen.} + F_{1.}P_{gen.}$$

Where F_0 is the fuel curve intercept coefficient in units/hr/kW, F_1 is the fuel curve slope in units/hr/kW, Y_{gen} is the rated capacity of the generator in kW, and P_{gen} is the electrical output of the generator in kW. Efficiency of the generator gives from the following equation:

$$\eta_{gen} = \frac{3.6 \, P_{gen}}{m_{fuel} L H V_{fuel}}$$

Where;

P_{gen} - the electrical output in kW,

 m_{fuel} - the mass flow rate of the fuel in kg/hr

LHV_{fuel} - the lower heating value (a measure of energy content) of the fuel in MJ/kg.

The factor of 3.6 arises because 1 kWh = 3.6 MJ.

The mass flow rate of the fuel is related to F, the generator's fuel consumption, but the exact relationship depends on the units of the fuel. If the fuel units are kg, then m_{fuel} and F are equal, so the equation for m_{fuel} is as follows:

$$\dot{m}_{fuel} = F = F_0 Y_{gen} + F_1 P_{gen}$$

If the fuel units are liters, the relationship between m_{fuel} and F involves the density. The equation for m_{fuel} is as follows:

$$\dot{m}_{fuel} = \rho_{fuel} \left(\frac{F}{1000} \right) = \frac{\rho_{fuel} \left(F_{0.} Y_{gen.} + F_{1.} P_{gen.} \right)}{1000}$$

Where ρ_{fuel} is the fuel density in kg/m³. If the fuel units are m³ the factor of 1000 is unnecessary, and the equation for m_{fuel} is as follows:

$$\dot{m}_{fuel} = \rho_{fuel}F = \rho_{fuel} \left(F_{0.}Y_{gen.} + F_{1.}P_{gen.}\right)$$

Let us further develop the efficiency equation for the case where the fuel units are liters. In this case, the efficiency equation becomes:

$$\eta_{gen} = \frac{3600. P_{gen}}{P_{fuel.} ((F_0.Y_{gen.} + F_1.P_{gen.})) LHV_{fuel}}$$

If we divide numerator and denominator by Y_{gen} , the capacity of the generator, and define a new symbol p_{gen} for the relative output of the generator ($p_{gen} = P_{gen}/Y_{gen}$) then the efficiency equation becomes:

$$\eta_{gen} = \frac{3600 \cdot p_{gen}}{\rho_{fuel} \left(F_0 + F_1 \cdot p_{gen}\right) \cdot \text{LHV}_{fuel}}$$

That equation gives the efficiency of the generator as a function of its relative output. It is this relation that HOMER plots in the efficiency curve on the Generator Inputs window when the fuel units are L. If the fuel units are m³, the efficiency equation becomes:

$$\eta_{gen} = \frac{3.6. P_{gen}}{P_{fuel.} \left((F_{0.}Y_{gen.} + F_{1.}P_{gen.}) \right) LHV_{fuel}}$$

Finally, if the fuel units are kg, the efficiency equation becomes:

$$\eta_{gen} = \frac{3600. P_{gen}}{\left(F_{0.}Y_{gen.} + F_{1.}P_{gen.}\right) LHV_{fuel}}$$

3.4.4 Emission Calculations

HOMER Pro calculates the emissions of the following six pollutants:

- 1. Carbon Dioxide (CO₂)
- 2. Carbon Monoxide (CO)
- 3. Unburned Hydrocarbons (UHC)
- 4. Particulate Matter (PM)
- 5. Sulfur Dioxide (SO₂)
- 6. Nitrogen Oxides (NO_x)

These emissions are generated from a generator(s) while generating electricity or from a boiler while generating thermal energy. HOMER first determines kilogram (kg) of pollutant emitted per unit of fuel consumed (emission factor) for each pollutant before simulating the power system. Emission factors for carbon monoxide, unburned hydrocarbons, particular matters and nitrogen oxide are directly specified by the HOMER. HOMER does some calculation using emission factors of other pollutants, carbon and sulfur content of the fuel and following three principal assumptions.

- 1. Any carbon in the fuel that does not get emitted as carbon monoxide or unburned hydrocarbons gets emitted as carbon dioxide.
- 2. The carbon fraction of the unburned hydrocarbon emissions is same as that of the fuel.
- 3. Any sulfur in the *burned* fuel that does not get emitted as particulate matter gets emitted as sulfur dioxide.

It calculates the annual emission of that pollutant by multiplying these emission factors by the total annual fuel consumption values after simulation.

4 ELUVAITHIVU ISLAND

4.1 General Description

Eluvaithivu is a small island (*Figure 4.1*) covers an area of 1.7 km² located on the western side of the Jaffna Peninsula. Total population of the island is 787 persons and altogether there are 110 houses. Majority of the inhabitants are fishermen. Due to surface sand layer of the island retention of the rain water is very limited; therefore water scarcity in the island after the rainy season. With the limited water resources available in the island agricultural activities are also restricted to rainy season.

Figure 4-1 Eluvaithivu Island map

4.2 Climate Pattern

4.2.1 Wind Pattern

Overall climate pattern of this island is very much similar to the climatic pattern present in Northern part of Sri Lanka. North-East monsoon brings rain to this part of the country during October to December and 70% of the annual rainfall records in this period. Due to absence of meteorological station within the island meteorological data are not available. However there are two meteorological weather stations located in the Northern region of Sri Lanka, Jaffna city and Mannar. Surface wind speed data have been collecting at three hourly intervals during day time by using a mechanical cup counter anemometer mounted on a 6m mast in meteorological station in Jaffna. There are two sources of wind data are available for Mannar island. One is 6m high mast established by Meteorological Department, Which is located in the middle of the Mannar city. And other data source is 40m high mast is sited on the coast established by CEB and there are two year hourly data is available at this source. Monthly average wind data at 40m high mast is shown in the **Table 4.1** and **Figure 4.2**.

Month	Average Wind Speed (m/s)
January	4.98
February	5.08
March	4.15
April	4.36
May	7.55
June	8.30
July	8.15
August	7.30
September	6.10
October	4.90
November	4.84
December	6.30

Table 4.1 .Monthly average wind data at 40 m high mast

Figure 4-2 Monthly Average Wind Speed

4.2.2 Solar Radiation Pattern

Solar radiation data were not recorded at above two meteorological stations. Therefore solar radiation data were obtained from the *www.ecoweb.larc.nasa.gov* and observed that, solar radiation levels are fairly uniform over the region and vary from 3.92 - 5.95 kwh/m²/day. Daily average solar radiation variation is presented in *Table 4.2* and *Figure 4.3*.

Month	Clearness Index	Average Radiation (kWh/m²/day)
January	0.51	4.50
February	0.58	5.50
March	0.58	5.95
April	0.55	5.80
May	0.53	5.48
June	0.45	4.66
July	0.48	4.90
August	0.44	4.63
September	0.49	5.02
October	0.47	4.56
November	0.48	4.28
December	0.46	3.92

 Table 4.2 Monthly average Solar Radiation Variation

Figure 4-3 Monthly average Solar Radiation variation

4.2.3 Level of Electrification

Before commissioning the hybrid power system electricity was supplied by using a 100 kVA diesel generator. Electricity was supplied for limited number of hours during a day (4.30 - 6.30 am and 6.00 to 10.30 pm). Annual electricity consumption was around 47,000 kWh. Monthly electricity consumption and monthly fuel consumption for electricity generation between May 2011 to May 2013 is given in the *Table 4.3* and *Figure 4.4*;

Month	Fuel Consumption	Energy			
	(Lit)	Delivery (kWh)			
May-11	1730	2889			
Jun-11	1840	2976			
Jul-11	1870	3330			
Aug-11	1770	3513			
Sep-11	1825	3544			
Oct-11	1845	3702			
Nov-11	1600	3353			
Dec-11	2080	4291			
Jan-12	1670	4592			
Feb-12	2105	4012			
Mar-12	2250	4472			
Apr-12	2035	4291			
May-12	2100	4157			
Jun-12	1935	3481			
Jul-12	2255	4164			
Aug-12	2150	3775			

Table 4.3 Electricity delivered by Diesel Generator and fuel consumption from May2011 to May 2013

Month	Fuel Consumption	Energy
	(1)	Delivery (kWh)
Sep-12	2205	4135
Oct-12	2245	4136
Nov-12	2170	3874
Dec-12	2350	4247
Jan-13	800	4529
Feb-13	2045	3853
Mar-13	2265	4129
Apr-13	2115	3967
May-13	2230	3966

Figure 4-4 Electricity delivered by Diesel Generator and fuel Consumption from May 2011 to May 2013

As per the details available in CEB, the monthly electricity consumption of the houses was varied between 20kWh and 40kWh during this period.

Fuel for operating this generator was transported by using boats from main land using 210 liter barrels. The transporter charged Rs. 500.00 (US \$ 3.5) per barrel to transport fuel. However up to jetty of the mainland Ceylon Electricity board transports fuel using its vehicles and staff. Ceylon Petroleum Corporation charge Rs. 4.30 per liter to Transport fuel from Colombo to Jaffna. Therefore altogether around Rs. 10.00 cost per liter to transport fuel to the island.

The old generator run in the power plant consumes excessive amounts of fuel, because the generator always operates with part load. As per the *Table 4.3* the average power generation of the generator was 1.89 kWh/l. Therefore the electricity generation cost in the island is above 55.00 Rs/kWh (US\$ 0.4/ kWh). However Ceylon Electricity Board charged less than 5.00 Rs/kWh from most of the consumers. Therefore Ceylon Electricity Board incurred severe financial loss in every year in operating diesel generating systems in the island.

Hourly avarage load of the island delivered by the existing 100kVA Diesel generator was recorded are given in the *Table 4.4* and *Figure 4.5*.

Time	Hourly Average Load (kWp)
0:00-1:00	3.34
1:00-2:00	3.45
2:00-3:00	3.68
3:00-4:00	4.26
4:00-5.00	5.98
5:00-6:00	11.85
6:00-7:00	9.32
7:00-8:00	5.18
8:00-9:00	3.22

Table 4.4 Hourly average load of the Island delivered by the existing Generators

Time	Hourly Average Load (kWp)
9:00-10:00	3.22
10:00-11:00	5.87
11:00-12:00	7.02
12:00-13:00	5.18
13:00-14:00	4.26
14:00-15:00	3.34
15:00-16:00	3.34
16:00-17:00	3.80
17:00-18:00	7.13
18:00-19:00	20.36
19:00-20:00	25.30
20:00-21:00	21.39
21:00-22:00	12.65
22:00-23:00	10.47
23:00-00:00	5.18

Figure 4-5 Daily Load profile measured in kW
4.3 Solar Wind Diesel Battery Hybrid Power System in Eluvaithivu

Among the all 4 inhabitant islands in northern part of the country Eluvaithivu Island was selected to implement a small pilot project for demonstrating the maturity and feasibility of hybridization of different power sources. The project was realized in a closed collaboration between Asian Development Bank (ADB) and the local electricity supplier Ceylon Electricity Board. One other objective of this pilot project was train Ceylon Electricity Board staff to prepare them for implementing similar projects on the other islands.

Solar Photo Voltaic Panels (Solar PV), Wind turbines and Diesel Generators were selected as power generating source of this pilot power plant. There are millions of combinations available with these three power sources to fulfill the requirement. Therefore it was used HOMER software to identified optimum combination.

4.3.1 Hybrid Power System in Eluvaithivu.

Initially simulation was done with 0.25kW Solar PV panels, 10kW wind turbines, 30kW Diesel Generators and 27.5kWLi- Iron kWh batteries. After simulating using HOMER software, it was identified that 177 numbers of 0.25kW Solar PV panels, 2 numbers of wind turbines, 1 number of Diesel generator, 3 number of Li Iron Batteries and 100kW convertor as main component of the hybrid power system. However later it was identified that transporting of 10kW wind turbine to the island is difficult. Therefore 2 numbers of 10kW wind turbines were replaces from 6 numbers of 3.5kW wind turbines. System configuration of installed Hybrid System is shown in *Figure 4.6*.

100 numbers of 177 PV panels are directly connected to the AC load and rest is connected to DC bus, which are used to charge to batteries. 1 battery is connected to each phase of the local grid (*Annex A*).

Figure 4-6 System configuration of installed Hybrid System as per HOMER software

5 RESULTS AND DISCUSSION

5.1 Comparison of Base case Generator System with new Hybrid Configuration

HOMER Pro gives two different optimum results for the given inputs. The first one is for cycle charging (CC) operation and the second is for Load following (LF) operation. If system designs for CC operation, then power generated by the diesel generator is also used for battery charging other than renewable resources. But in the LF operation battery charging is done only from the renewable energy. Therefore the fuel consumption of the CC operation will be higher. However, when there is low load in the system no need to operate the generator unless power stored in the batteries is insufficient to cater the load. Once battery voltage drops to a certain level, generator operates and supplies power to the load while charging batteries. This is the reason behind the low generator running hours of the CC operation. Since generator does not charge the battery, ability to absorb renewable energy of LF operation is higher, this increases renewable fraction of LF operation. The hybrid power plant installed in Eluvathivu Island was designed to operate CC operation. The comparison of all system with Design Configuration is given in *Table 5.1*.

Description	Cycle Charging Operation (CC)	Load Following Operation (LF)	100kW Diesel Generator System
COE (\$)	0.82	0.84	1.77
NPC (\$)	994,438.80	1,018,907.00	2,132,852.00
Renewable Fraction (%)	45.08	58.14	0.00
Generator Operating Hours	1,650.00	3,165.00	8760.00
Generator Production (kWh)	37,929.17	28,907.27	220,242.00
Generator Fuel Consumption (l)	13,175.11	12,234.84	80,249.00
Battery Annual Throughput (kWh)	25,906.12	19,425.30	0.00

Table 5.1 Comparison of all system with Design Configuration

When it compares the results of installed hybrid configuration and base case generator system, unit cost of energy of diesel system is more than two times higher than installed hybrid system. Net present cost of the hybrid system is 2.14 times lesser than generator system. This is due to six times higher fuel consumption of the diesel generator system. This ratio will be further increased with fuel price escalations in future. If the solar radiation is available during the day time most probably total load of the island will be fulfilled by energy generated from PV panels of the hybrid system and in the night time, which has high load demand the generator will be catered the load with energy stored in batteries. According to typical diesel generator efficiency curves efficiency of the diesel generator in the generator system is low.

As per the optimized output data of the system, total unmet electricity load of the Island is almost zero. However there is a doubt about the reliability of this system since Diesel generator available in the system is not sufficient to meet the design peak of the system. This was experienced several times during last four months. The system was tripped when the peak demand has been increased more than 30kW. During these times CEB switched on diesel generator in old power station. When it analysed actual hybrid system data which are presented in *Table 5.8*, *Table 5.9*, *Table 5.10* and *Table 5.11*, old power station generator also provide around 600kWh per month. Also there is doubt about future performance of this system because in recent past Sri Lanka experiences abnormal weather patterns.

		Discounted cash flow											
Year	Hybrid	l System	Diesel	System	Difference								
	Annual Cumulative		l Cumulative Annual Cum		Annual	Cumulati ve							
0	-\$410,690	-\$410,690	-\$40,000	-\$40,000	-\$370,690	\$370,690							
1	-\$16,401	-\$427,091	-\$94,949	-\$134,949	\$78,548	\$292,142							
2	-\$15,928	-\$443,019	-\$130,255	-\$265,204	\$114,327	\$177,815							

Table 5.2 Discounted cash flow

	Discounted cash flow											
Year	Hybrid	l System	Diesel	System	Diff	ference						
	Annual	Cumulative	Annual	Cumulative	Annual	Cumulative						
3	-\$15,468	-\$458,487	-\$89,550	-\$354,754	\$74,082	\$103,734						
4	-\$15,022	-\$473,510	-\$123,152	-\$477,905	\$108,129	\$4,396						
5	-\$14,589	-\$488,099	-\$84,458	-\$562,364	\$69,869	\$74,265						
6	-\$111,136	-\$599,234	-\$116,438	-\$678,802	\$5,302	\$79,567						
7	-\$13,759	-\$612,994	-\$112,389	-\$791,191	\$98,630	\$178,197						
8	-\$13,363	-\$626,356	-\$77,358	-\$868,549	\$63,996	\$242,193						
9	-\$12,977	-\$639,333	-\$106,260	-\$974,809	\$93,283	\$335,476						
10	-\$23,981	-\$663,314	-\$72,960	-\$1,047,769	\$48,978	\$384,454						
11	-\$12,239	-\$675,554	-\$100,466	-\$1,148,235	\$88,227	\$472,682						
12	-\$93,235	-\$768,789	-\$96,975	-\$1,245,210	\$3,739	\$476,421						
13	-\$11,543	-\$780,332	-\$66,826	-\$1,312,036	\$55,283	\$531,704						
14	-\$11,210	-\$791,543	-\$91,685	-\$1,403,722	\$80,475	\$612,179						
15	-\$10,887	-\$802,429	-\$63,026	-\$1,466,748	\$52,140	\$664,319						
16	-\$10,573	-\$813,002	-\$86,686	-\$1,553,434	\$76,113	\$740,432						
17	-\$10,268	-\$823,270	-\$59,443	-\$1,612,877	\$49,175	\$789,606						
18	-\$78,218	-\$901,489	-\$81,960	-\$1,694,837	\$3,742	\$793,348						
19	-\$18,316	-\$919,804	-\$79,110	-\$1,773,947	\$60,795	\$854,143						
20	-\$9,405	-\$929,209	-\$54,446	-\$1,828,392	\$45,041	\$899,183						
21	-\$9,133	-\$938,342	-\$74,796	-\$1,903,188	\$65,662	\$964,846						
22	-\$8,870	-\$947,212	-\$51,350	-\$1,954,538	\$42,480	\$1,007,326						
23	-\$8,614	-\$955,826	-\$70,718	-\$2,025,256	\$62,104	\$1,069,429						
24	-\$65,620	-\$1,021,447	-\$68,260	-\$2,093,516	\$2,640	\$1,072,069						
25	\$40,749	-\$980,697	-\$39,336	-\$2,132,852	\$80,085	\$1,152,154						

Initial capital cost of the current system was \$ 410,690 which more than 10 times higher than the capital cost of old system. (*Table 5.2*) However due high fuel cost of the old system project discounted payback will be less than 4 years and present worth value of the project will be \$ 1,152,154. Therefore investment for this project is viable.

5.2 Analysis of Future Electricity Demand

Sensitivity analysis was carried out to check how the new hybrid power system will be behaved in future, when scaled average Electrical load of the Island increases. Scaled average load was increased from 190 to 250 kWh/day by 5kWh/day increments.

Sensitivity				Architecture										Cost										
Electric Load #1 Scaled Average V (kWh/d)	Δ	Ţ	ų	Ţ	4	1	1		•	P' (k)	V W) V	PV (1) (kW)	PV (2) (kW)	PV (3) (kW)	WT3.5 🍸	Gen50 (kW)	LI-lon 🍸	Converter (kW)	Dispatch 🍸	COE (\$)	NPC (\$)	Operating cost (\$)	Initial capital 🛛	Fuel cost (\$)
190		4	Ţ	4	4	' ∤	1		0 🕅	11	.5	13.5	9.75	10.5	6	30.0	3	100	CC	\$0.810	\$981,304	\$32,661	\$410,690	\$ 11,993
195		4	Ţ	4	4	1	1		0 🛛	11	.5	13.5	9.75	10.5	6	30.0	3	100	CC	\$0.796	\$990,262	\$33,174	\$410,690	\$12,394
200		Ţ	Ţ	Ţ	Ą	1	1		0 🛛	1	.5	13.5	9.75	10.5	6	30.0	3	100	CC	\$0.783	\$998,154	\$33,625	\$410,690	\$12,836
205		Ţ	Ţ	Ą	4	1	1		0	1	5	13.5	9.75	10.5	6	30.0	3	100	CC	\$0.771	\$1.01M	\$34,189	\$410,690	\$13,197
210		4	Ţ	Ţ	4	1	1		0	11	.s//	33.5	9.75	10.5	6	30.0	3	100	CC	\$0.756	\$1.01M	\$34,458	\$410,690	\$13,546
215		4	4	4	4	1	1		0	11	.5	13.5	9.75	10.5	6	30.0	3	100	CC	\$0.744	\$1.02M	\$34,881	\$410,690	\$14,003
220		.	!!!	4	4	1	1		0	11	.5	13.5	975//n	10.5	6	30.0	3	100	CC	\$0.734	\$1.03M	\$35,415	\$410,690	\$14,456
225		ų	ų	ų	Ą	1	1		0 🖸	11	.5	13.5	9.75	185)52	6	30.0	3	100	CC	\$0.723	\$1.04M	\$35,877	\$410,690	\$14,847
230		4	Ţ	Ţ	4	1	1		0 🕅	11	.5	13.5	9.75	10.5	(D)	30.0	3	100	CC	\$0.714	\$1.05M	\$36,439	\$410,690	\$15,308
235		4	-	4	4	1	1		0 🛛	11	.5	13.5	9.75	10.5	8M	30.0	3	100	СС	\$0.703	\$1.05M	\$36,794	\$410,690	\$15,624
•	_									_					~	UL								•

Figure 5-1 HOMER Window of Sensitivity analysis of Scaled Average electrical load

By analyzing sensitivity of the system using HOMER Pro it was observed that the designed configuration of the system cannot fulfill electrical requirement more than 235kWh/day. Renewable fraction of the system decreases with load increases since annual Electricity generation from Solar PV and Wind turbines are remaining same and Diesel Generator generates more power to cater additional requirement of the load. During the analysis it was identified that when daily average load increases the electrical efficiency of the diesel generator slightly increases and amount of excess energy decreases. This means overall efficiency of the hybrid power system goes high. Cost of energy will decrease linearly when load increases. The effecting variables for cost of energy are cost of fuel and operating cost. Both of these two variables also vary linearly with the load, as shown in the *Figure 5.2*. The results of the sensitivity analysis are tabulated in *Table 5.3*. However total unmet load increases, which implies some capacity shortage of the system when average load increases. HOMER Pro illustrated that the

system can sustain for 235kWh/day scaled average load. There is a doubt about system reliability with fluctuations of renewable resources.

Figure 5-2 Variation of Fuel Consumption and Cost of Energy with Annual scale average load

5.3 Possible Expansion of the current System

5.3.1 Add Component to the system

1. Add components to the system

It is necessary to analysis how the system can be further improved to reduce cost of energy, fuel consumption and emissions. Four possible expansions were considered for the analysis and their results are tabulated in *Table 5.4*.

- 1. Add additional 2.25kW module of PV panel to East oriented roof of pergola
- 2. Add additional 2.25kW module of PV panel to West oriented roof of pergola

- 3. Add additional 3.5kW wind turbine
- 4. Increase capacity of the Diesel Generator up to 50kW

Capacity of solar PV module is 2.25kW. According to the results tabulated *Table 5.4*, PV production is not varied with the orientation of the panel. Annual electricity production increment of both orientations is almost same. When it is added additional Solar PV module to the system (capital cost will be increased by \$4,050), total energy generated by Solar PV will be increased by 3,373 kWh per year for east oriented roof and 3,389kWh per year for west oriented roof and cost of energy will be increased by \$0.004 per kWh for both cases. However the amount of excess energy of the system will be also increased by 3,387 kWh/year for east roof and 3,388 kWh/year for west roof. That implies that all the additional energy generated by PV panels is accounted as excess energy. Therefore, there is no impact to the system when PV capacity increases. The investment for increasing PV capacity is not a viable option.

With the initial capital of \$ 18,000 it can be added another 3.5kW wind turbine to the system. Then the total electricity generated by wind will be increased by 2,749kWh per year and electricity generated by diesel generator reduced by 1,351 kWh per year. Fuel consumption will be reduced by 463 liter per year while increasing renewable fraction by 2%. However, cost of energy will be increased by \$ 0.01 per kWh. Net present value of the system also increases from around \$ 12,000. Therefore investment for increasing wind power capacity is also not a viable option.

Current capacity of the diesel generator is not sufficient to meet the designed peak of the system. Therefore it was analyzed system performance with higher generator capacity. The selected Diesel generator capacity was 50kW, which is the next higher capacity than design peak of the system. Generator Electricity production and excess energy of the system will be reduced by 922kWh/year and 1,261 kWh/year respectively. However Cost of energy will be increased by \$ 0.027 per kWh. NPC will be increased by around \$ 32, 000. Therefore this is also not an economically viable option. However this needs to be considered in future with the increment of electricity demand of the Island.

5.3.2 Change Tilt angle of the PV panels

Angle of slope of the PV panels also affecting factor of PV energy production. Therefore a sensitivity analysis was carried out to identify the effect of PV angle. Result of such analysis is tabulated in *Table 5.5*.

Cost of energy decreases linearly with the increment of the tilt angle of PV panels. The results show that, total electricity production, PV Electricity production as well as excess energy of the system will be reduced almost same amount increment of angle of the PV panels. Tilt angle of slope of PV panels will not be affected to the fuel consumption of the system. This result gives an idea about PV energy production of the installed hybrid system. Most of the energy generated by PV is calculated as excess energy.

5.4 Analyze system performance with different weather conditions5.4.1 Variation of solar radiation

Solar radiation of the site is between 3.92-5.95 kWh/m²/day. It was carried out a sensitivity analysis to investigate the importunacy of the solar radiation to the system performance. Sensitivity input, solar radiation was increased by 0.5 kWh/m²/day intervals from 3.5 to 6.0. The results are tabulated in *Table 5.6*. Result of Sensitivity analysis is given in the *Figure 5.3*.

Figure 5-3 Result of Sensitivity Analysis

As per the *Figure 5.3*, total PV production curve and Excess Electricity curve are almost parallel to each other when solar radiation increases. This means that additional electricity production due to increment of solar radiation will be accounted as excess energy of the system. There is no any significant reduction in generator electricity production. Therefore the effects of change solar radiation will not be affected to the performance of the system. This result implies that if other conditions remaining same, the system can be operated even the locations which has very low solar radiation.

5.4.2 Variation of wind speed

Monthly average 60m height wind speed of the site is between 4.149-8.3 m/s. It was carried out a sensitivity analysis to investigate the importunacy of the wind speed to the system performance. Sensitivity input, wind was increases by 0.5 m/s intervals from 2.0 to 8.0. The results are tabulated in *Table 5.6*.

Figure 5-4 Variation of Electricity Production of Wind, Generator and Excess Electricity with wind speed

Figure 5.4, shows that, Wind speed up to 4 m/s system performance remains same. Wind electricity portion of the system is almost zero in this range of wind speeds, due to low power generation (less than 0.1kW) by the wind turbines in this range of wind speeds. There is a rapid increment of wind electricity when wind speed above 4m/s and rapid decrease of the generator production and cost of energy due to rapid reduction of fuel consumption. This implies that the role of generator will be substituted by wind turbines in high wind speeds. And also there is a rapid increment of renewable fraction of the system when wind speed exceeds 4m/s. Renewable fraction of the system will increase more than 6% when wind speed increase 1m/s. Therefore from the above results the effects of change wind speed will be an affecting factor to the performance of the system.

Description		Sensitivity												
Scaled Avg. Electrical Load (kWh/day)	190	195	200	205	210	215	220	225	230	235				
COE (\$)	0.822	0.81	0.797	0.785	0.773	0.759	0.748	0.736	0.726	0.714				
NPC (\$)	996,452	1,006,893	1,016,755	1,026,282	1,034,838	1,040,058	1,049,419	1,055,354	1,064,094	1,069,679				
Renewable Fraction (%)	44.88	44.24	43.65	43.46	42.78	42.2	41.79	41.52	41.09	41.07				
Total Electricity Production (kWh/yr)	125,143	126,602	128,044	129,212	130,762	132,272	133,657	134,941	136,368	137,460				
PV Electricity Production (kWh/yr)	70,425	70,425	70,425	70,425	70,425	70,425	70,425	70,425	70,425	70,425				
Wind Electricity Production (kWh/yr)	16,492	16,492	16,492	16,492	16,492	16,492	16,492	16,492	16,492	16,492				
Generator Electricity Production (kWh/yr)	38,226	39,685	41,126	42,295	43,845	45,354	46,740	48,024	49,450	50,543				
Electrical Consumption(kWh/yr)	69,346	71,169	72,990	74,807	76,628	78,466	80,294	82,117	83,938	85,764				
Excess Electricity (kWh/yr)	52,356	51,939	51,567	50,802	50,555	50,271	49,817	49,318	48,908	48,189				
Unmet load (kWh/yr)	4.11	5.94	10.45	18.37	21.63	9.16	6.17	7.74	11.66	11.3				
Diesel Consumption (L/yr)	13,275	13,779	14,266	14,700	15,173	15,556	16,023	16,386	16,843	17,166				
Gen. Running /(Hours/yr)	1,660	1,721	1,772	1,847	1,858	1,801	1,848	1,832	1,861	1,859				
CO_2 (kg/yr)	34,761	36,081	37,357	38,493	39,733	40,736	41,957	42,908	44,106	44,951				

Table 5.3 Sensitivity Scaled Average Electricity Load

Case	Current System	Add. PV module for East Oriented roof	Add. PV module for West Oriented roof	Add. Wind Turbine	Increase Gen. capacity
West Oriented PV Capacity (kW)	9.75	9.75	12	9.75	9.75
East Oriented PV Capacity (kW)	10.5	12.75	10.5	10.5	10.5
Number of Wind Turbine	6	6	6	7	6
Generator Capacity	30	30	30	30	50
COE (\$)	0.824	0.828	0.828	0.834	0.851
NPC (\$)	994,439	998,848	999,343	1,006,050	1,026,504
Operating cost (\$)	33,241	33,261	33,290	32,875	34,676
Total Initial capital (\$)	413,690	417,740	417,740	431,690	420,690
Initial capital of PV (\$)	81,450	85,500	85,500	81,450	81,450
Initial capital of Wind Turbine (\$)	108,000	108,000	108,000	126,000	108,000
Initial capital of Generator (\$)	18,000	18,000	18,000	18,000	25,000
O&M (\$)	3,557	3,624	3,625	3,735	5,606
Renewable Fraction (%)	45.08	45.29	45.21	47.03	46.42
Total Fuel (L/yr)	13,175	13,130	13,152	12,712	12,411
Elec. Production (kWh/yr)	124,847	128,220	128,236	126,244	123,925
PV Elec. Production (kWh/yr)	70,425	73,947	73,905	70,425	70,425
Wind Elec. Production (kWh/yr)	16,492	16,492	16,492	19,241	16,492
Generator Production (kWh/yr)	37,929	37,780	37,839	36,578	37,007
Elec. Consumption (kWh/yr)	69,059	69,059	69,060	69,060	69,063
Excess Elec (kWh/yr)	52,351	55,738	55,739	53,815	51,090
Unmet load (kWh/yr)	4.203	4.022	3.873	3.224	0
Carbon Dioxide (kg/yr)	34,500	34,381	34,439	33,289	32,491
Generator Running (Hours/yr)	1,650	1,649	1,653	1,597	1,399

Table 5.4 Identification of Possible Expansion of the Current System

Description		Sensi	tivity	
PV Slope (°)	5	10	15	20
COE (\$)	0.827	0.826	0.825	0.824
NPC (\$)	997,403	996,053	994,954	994,439
Operating cost (\$)	33,410.6	33,333.3	33,270.4	33,240.9
Fuel cost (\$)	13,310.7	13,250.4	13,198.4	13,175.1
O&M cost (\$)	3,557.66	3,557.33	3,557.12	3,557.12
Renewable Fraction (%)	44.54	44.77	44.98	45.07
Electricity Production (kWh/yr)	127,865	127,166	126,132	124,847
Total PV Production (kWh/yr)	73,072.5	72,533.7	71,648.3	70,425.3
Wind Electricity Production (kWh)	16,492.1	16,492.1	16,492.1	16,492.1
Generator Production (kWh/yr)	38,300.1	38,139.9	37,991.9	37,929.2
Electricity Consumption (kWh/yr)	69,059.2	69,059.2	69,059.1	69,059.3
Excess Electricity (%)	43.29	42.97	42.52	41.93
Excess Electricity (kWh/yr)	55,349	54,648.9	53,626.8	52,350.7
Unmet load (kWh/yr)	4.226	4.290	4.346	4.203
Diesel Consumption (L/yr)	13,310.7	13,250.4	13,198.4	13,175.1
Generator Running (Hours/yr)	1,672	1,661	1,654	1,650
Carbon Dioxide (kg/yr)	34,855.4	34,697.6	34,561.3	34,500.4
Generator O&M Cost (\$)	50.16	49.83	49.62	49.5
Battery annual Throughput (kWh/yr)	26,081.3	26,080.5	25,989.4	25,906.1

 Table 5.5 Sensitivity of Tilt Angle of the PV Panels

Description			Sensiti	vity		
Solar Scaled Avg. (kWh/m²/day)	3.5	4.0	4.5	5.0	5.5	6.0
COE (\$)	0.830	0.829	0.827	0.824	0.823	0.821
NPC (\$)	1,000,948.0	1,000,024.0	997,510.5	994,363.7	993,029.3	990,190.9
Operating cost (\$)	33,613.5	33,560.6	33,416.7	33,236.6	33,160.2	32,997.7
Fuel cost (\$)	13,586.7	13,477.8	13,323.0	13,167.7	13,091.3	12,947.5
O&M (\$)	3,556.3	3,557.3	3,557.5	3,557.1	3,557.1	3,556.7
Renewable Fraction (%)	42.9	43.7	44.5	45.1	45.5	46.1
Electricity Production (kWh/yr)	106,053.8	112,600.7	119,115.8	125,749.9	132,466.4	137,515.2
Total PV Production (kWh/yr)	50,151.6	57,204.1	64,266.7	71,361.3	78,334.7	83,820.7
Wind Electricity Production (kWh)	16,492.1	16,492.1	16,492.1	16,492.1	16,492.1	16,492.1
Generator Production (kWh)	39,410.1	38,904.5	38,357.0	37,896.5	37,639.6	37,202.5
Electricity Consumption (kWh/yr)	69,060.2	69,060.7	69,058.8	69,059.3	69,059.9	69,059.9
Excess Electricity (%)	31.6	35.6	39.1	42.4	45.3	47.3
Excess Electricity (kWh/yr)	33,492.2	40,050.0	46,588.9	53,255.3	59,988.2	65,044.9
Unmet load (kWh/yr)	3.2	2.8	4.7	4.1	3.5	3.5
Diesel Consumption (L)	13,586.7	13,477.8	13,323.0	13,167.7	13,091.3	12,947.5
Generator Running /Hours	1,625.0	1,661.0	1,668.0	1,652.0	1,652.0	1,640.0
Carbon Dioxide (kg/yr)	35,578.2	35,292.9	34,887.7	34,481.0	34,281.0	33,904.5
Generator O&M Cost (\$)	48.8	498	50.0	49.6	49.6	49.2
Battery Annual Throughput (kWh)	26,078.5	26,078.2	26,074.0	25,903.5	25,820.3	25,839.1

 Table 5.6 Sensitivity Solar Scaled Average

Description				Sensitivity			
Wind Scaled Average (m/s)	2.00	3.00	4.00	5.00	6.00	7.00	8.00
COE (\$)	0.86	0.85	0.85	0.83	0.81	0.78	0.75
NPC (\$)	1,035,754	1,031,121	1,020,749	1,000,435	981,236	945,231	907,285
Operating cost (\$)	35,777.38	35,512.23	34,918.56	33,755.80	32,656.91	30,596.07	28,424.11
Fuel cost (\$)	14,748.75	14,536.67	14,042.31	13,084.08	11,979.57	10,235.78	8,517.52
O&M Cost (\$)	5,109.50	5,083.40	5,034.80	4,935.80	4,938.50	4,788.20	4,580.30
Renewable Fraction (%)	31.12	32.09	34.43	38.93	44.81	53.18	61.08
Elec. Production (kWh/yr)	117,615	117,719	118,768	120,787	124,534.10	129,236.90	136,436.50
Total PV Elec. Prod. (kWh/yr)	69,939	69,939	69,939	69,939	69,939.77	69,939.77	69,939.77
Wind Elec. Prod. (kWh/yr)	106.30	881.82	3,545.15	8,676	16,479.06	26,963.74	39,619.63
Gen. Prod. (kWh/yr)	47,569	46,898	45,283	42,171	38,115.27	32,333.37	26,877.06
Elec. Consum. (kWh/yr)	69,062	69,063	69,063	69,059	69,060.72	69,062.53	69,063.47
Excess Elec. (kWh/yr)	44,762.43	44,889.85	46,022.34	48,213.59	52,062.31	57,000.48	64,527.59
Unmet load (kWh/yr)	1.08	0.04	0.00	3.71	2.76	0.94	0.00
Diesel Consumption (L/yr)	14,748.75	14,536.67	14,042.31	13,084.08	11,979.57	10,235.78	8,517.52
Generator Running/(Hours/yr)	1,780.00	1,751.00	1,697.00	1,587.00	1,590.00	1,423.00	1,192.00
Carbon Dioxide (kg/yr)	38,610.26	38,055.06	36,760.89	34,252.38	31,360.91	26,795.90	22,297.72
Battery Annual Throughput (kWh/yr)	28,224.20	28,074.60	27,484.58	26,478.99	25,717.78	24,019.91	21,627.56

Table 5.7 Sensitivity wind speed

5.5 Comparison of System Performance Using Actual Generation Data

This hybrid plant was commissioned by the end of year 2016 and energy dispatch data are available with the Deputy General Manager (North) of Ceylon Electricity Board. Such data for month of October, November and December 2016 are presented in *Table* **5.8** to *Table 5.11*. These data was included energy generation from new and old diesel generators, total of wind and Solar energy production and energy consumption data. There is an uncertainty about fuel consumption data since there is no proper way to obtain daily fuel consumption only refilling data available and their accuracy also doubtful. Therefore, fuel consumption data has not taken for the analysis.

In the optimum design condition annual total unmet load is 0.000111 kWh per year. That means the designed system can fulfill almost all the electricity required. However when it analysis actual data of October 2016, 640kWh of electricity was generated by old 100kVA generator. The amounted of energy generated by the 100kVA for the month November, December and January 2017 are 637,697 and 601 respectively. This was due to poor generator sizing as discussed in clause 5.1.

		Actua	l System		HOMER Pro Output					
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Unit (kwh)	Energy Consumption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)			
10/1/2016	276.15	0	0	181.42	255.55	125.06	201.93			
10/2/2016	264.68	0	0	188.98	211.24	110.73	187.13			
10/3/2016	269.50	0	0	183.86	291.64	113.82	161.50			
10/4/2016	277.41	0	0	195.12	218.09	160.45	214.83			
10/5/2016	305.87	0	0	199.76	199.60	111.87	161.70			
10/6/2016	281.54	0	0	192.02	138.47	141.66	201.61			
10/7/2016	245.98	0	0	197.51	264.21	37.50	156.50			
10/8/2016	330.07	0	0	193.93	197.53	103.57	166.65			
10/9/2016	293.22	0	0	201.11	186.64	122.42	185.07			
10/10/2016	302.33	0	0	195.28	215.37	149.42	218.63			
10/11/2016	279.21	0	0	193.57	61.20	151.06	193.73			
10/12/2016	300.78	0	0	213.84	142.00	114.26	188.94			
10/13/2016	331.88	0	0	211.90	307.11	136.36	206.05			
10/14/2016	316.71	0	0	201.94	103.10	113.93	183.65			
10/15/2016	302.57	0	0	204.93	143.73	115.61	190.67			
10/16/2016	255.68	0	32	111.41	265.54	128.96	202.19			
10/17/2016	131.55	0	176	159.05	119.69	127.08	185.35			
10/18/2016	289.38	0	0	196.62	156.50	105.00	177.42			

 Table 5.8 Eluvaithivu Hybrid System Energy Dispatch - October 2016

		Actua	l System		НС	MER Pro O	utput
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Unit (kwh)	Energy Consumption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)
10/19/2016	255.69	93	0	139.23	229.84	145.29	210.67
10/20/2016	203.61	147	81	65.69	264.49	115.04	182.72
10/21/2016	114.42	0	146	174.28	198.98	112.76	189.56
10/22/2016	255.63	63	0	176.68	221.23	115.46	177.82
10/23/2016	280.49	25	0	196.54	254.06	100.46	163.05
10/24/2016	287.41	108	0	182.37	218.70	140.91	192.56
10/25/2016	264.36	117	0	136.72	222.74	61.32	161.44
10/26/2016	146.42	13	115	145.78	275.17	135.76	192.56
10/27/2016	292.26	131	0	200.70	211.12	98.42	186.96
10/28/2016	284.18	37	0	196.90	181.40	111.36	140.30
10/29/2016	304.17	47	0	138.94	89.73	159.54	205.78
10/30/2016	197.24	92	90	194.06	123.98	123.32	177.96
10/31/2016	260.38	134	0	159.38	73.75	119.33	178.84
Total	8200.77	1007	640	5529.51			

		Actual	System		HOMER Pro Output			
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Energy Output (kwh)	Energy Consumption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)	
11/1/2016	284.54	186	23	146.18	239.55	158.18	220.49	
11/2/2016	156.68	69	68	134.79	243.57	117.71	189.54	
11/3/2016	276.90	152	0	185.85	306.77	109.60	155.53	
11/4/2016	287.48	24	0	192.72	219.31	141.71	201.56	
11/5/2016	297.57	94	0	197.11	125.00	125.85	189.66	
11/6/2016	302.76	159	0	196.06	190.33	133.60	190.12	
11/7/2016	289.70	187	0	123.57	127.23	141.83	195.52	
11/8/2016	191.52	11	71	166.75	35.48	147.90	185.86	
11/9/2016	255.51	228	0	176.49	78.24	118.97	180.05	
11/10/2016	282.37	146	0	180.92	276.05	161.70	216.20	
11/11/2016	271.66	132	0	116.11	242.35	132.38	181.12	
11/12/2016	187.33	46	96	179.43	113.50	100.24	171.37	
11/13/2016	274.69	115	0	161.32	302.53	132.24	198.39	
11/14/2016	270.24	165	0	183.16	306.80	100.78	161.63	
11/15/2016	274.67	117	0	168.43	267.11	115.10	198.49	
11/16/2016	221.42	102	0	140.30	174.54	75.70	158.54	
11/17/2016	253.43	151	0	165.34	191.79	101.12	171.80	

 Table 5.9 Eluvaithivu Hybrid System Energy Dispatch - November 2016

	Actual System				HOMER Pro Output			
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Energy Output (kwh)	Energy Consumption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)	
11/18/2016	292.47	130	0	169.25	78.73	96.67	174.55	
11/19/2016	245.30	139	19	104.45	164.63	107.83	201.08	
11/20/2016	160.92	61	98	101.38	53.47	175.15	197.69	
11/21/2016	167.20	73	107	146.05	75.11	139.23	191.71	
11/22/2016	223.93	126	45	120.87	200.40	144.46	214.72	
11/23/2016	177.18	0	81	183.67	287.92	114.50	181.00	
11/24/2016	285.10	102	0	183.33	279.27	137.91	202.43	
11/25/2016	274.98	119	0	178.73	218.18	133.85	183.99	
11/26/2016	280.53	110	0	175.81	190.42	139.76	205.96	
11/27/2016	266.84	135	0	174.88	89.18	148.16	230.00	
11/28/2016	256.60	120	0	164.03	191.88	93.14	137.81	
11/29/2016	272.32	122	0	74.43	93.04	79.99	158.13	
11/30/2016	187.73	126	29	N/A	150.52	166.02	191.34	
Total	7469.57	3447	637					

		Actual S	System	HOMER Pro Output			
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Unit (kwh)	Energy Consum ption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)
12/1/2016	294.71	51	0	N/A	107.54	113.14	203.03
12/2/2016	144.28	77	125	N/A	261.65	30.00	149.12
12/3/2016	179.23	56	114	N/A	134.12	94.31	196.05
12/4/2016	263.65	115	0	N/A	112.23	47.27	158.09
12/5/2016	257.68	95	0	N/A	60.02	133.04	168.91
12/6/2016	268.11	107	0	N/A	227.30	143.30	205.71
12/7/2016	280.17	135	0	N/A	167.53	148.41	221.06
12/8/2016	275.44	126	0	N/A	266.07	87.10	165.54
12/9/2016	279.22	162	0	N/A	229.23	110.37	188.47
12/10/2016	266.57	140	0	N/A	239.90	137.37	201.23
12/11/2016	281.70	105	0	N/A	286.86	126.90	194.12
12/12/2016	293.33	54	0	N/A	268.11	99.15	171.56
12/13/2016	273.98	85	0	N/A	145.01	113.05	188.02
12/14/2016	297.51	144	0	N/A	231.48	136.88	205.75
12/15/2016	294.34	130	0	N/A	274.95	101.97	188.85
12/16/2016	316.71	97	0	N/A	274.49	110.87	187.60

 Table 5.10 Eluvaithivu Hybrid System Energy Dispatch - December 2016

	Actual System				HOMER Pro Output		
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Unit (kwh)	Energy Consum ption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)
12/17/2016	314.76	129	0	N/A	226.75	107.66	175.00
12/18/2016	292.96	83	0	N/A	97.88	122.22	200.41
12/19/2016	304.3	101	0	N/A	282.76	72.09	173.13
12/20/2016	392.80	232	0	N/A	236.15	110.43	197.33
12/21/2016	253.29	153	0	N/A	235.20	107.56	180.28
12/22/2016	285.48	131	0	N/A	42.80	135.24	150.35
12/23/2016	284.56	130	0	32.44	105.74	122.71	194.82
12/24/2016	308.87	148	85	199.36	84.81	120.00	206.15
12/25/2016	317.7	162	0	213.65	159.73	143.40	198.90
12/26/2016	329.29	168	0	146.28	311.80	76.87	174.90
12/27/2016	197.81	74	99	194.35	179.36	108.14	187.43
12/28/2016	295.00	94	0	220.08	299.93	99.90	178.01
12/29/2016	322.99	104	0	236.33	276.57	103.94	198.83
12/30/2016	343.74	133	0	156.06	200.99	119.47	257.96
12/31/2016	240.56	77	274	N/A	110.71	105.74	193.92
Total	8,750.74	3,598.00	697.00				

		System	HOMER Pro Output				
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Unit (kwh)	Energy Consumption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)
1/1/2017	243.73	0	123	174.2	41.07	145.01	218.04
1/2/2017	229.73	42	105	196.1	226.43	106.98	153.74
1/3/2017	264.59	68	38	204.7	274.77	149.03	211.84
1/4/2017	291.35	110	0	191.5	55.57	142.62	191.36
1/5/2017	280.68	109	0	188.2	52.44	117.60	166.24
1/6/2017	274.24	111	0	198.0	273.57	108.08	171.29
1/7/2017	274.51	119	17	104.7	240.75	95.82	131.86
1/8/2017	143.30	0	125	177.7	239.99	138.36	204.84
1/9/2017	294.14	131	0	190.5	266.10	142.93	228.66
1/10/2017	286.71	151	0	140.9	257.40	110.22	193.44
1/11/2017	189.72	57	99	184.7	106.29	138.16	197.36
1/12/2017	280.22	129	0	193.9	89.50	139.27	206.60
1/13/2017	290.75	123	0	193.1	216.04	117.11	177.62
1/14/2017	288.9	118	0	206.6	124.02	172.00	196.56
1/15/2017	278.82	105	0	191.3	244.27	140.40	208.46
1/16/2017	274.03	83	0	180.9	73.01	109.62	149.59
1/17/2017	265.21	96	0	191.0	316.61	105.93	165.24

 Table 5.11 Eluvaithivu Hybrid System Energy Dispatch – January 2017

		Actual	System	HOMER Pro Output			
Date	Total Renewable Energy Output (kwh)	New Generator Energy Output (kwh)	Old Power Station Unit (kwh)	Energy Consumption (kWh)	Total Renewable Energy Output (kWh)	Generator Energy Output (kWh)	Total Electrical Consumption (kWh)
1/18/2017	259.01	90	0	164.1	291.02	115.29	193.40
1/19/2017	239.68	79	0	210.9	293.52	112.54	201.79
1/20/2017	306.13	164	0	161.8	287.42	137.10	197.31
1/21/2017	211.29	59	94	226.8	199.55	111.88	196.04
1/22/2017	302.39	60	0	226.2	239.98	138.95	213.60
1/23/2017	303.63	73	0	229.9	112.07	114.46	187.65
1/24/2017	297.58	128	0	218.2	126.33	104.70	179.44

Figure 5.5 Actual and predicted renewable energy outputs

Figure 5.5 shows the actual renewable output data and renewable energy output data obtained through HOMER Pro. Data is available for the period 116 days starting from October 01 2016 to January 24 2017. As per the above figure it was identified that pattern of actual output variation and pattern of the HOMER Pro prediction is nearly similar to each other. That means HOMER Pro also can predict most of the seasonal variations. However most of the time HOMER Pro under estimated the renewable energy production of the system

During the period of December to February Sri Lanka is experienced northeast monsoon. Therefore normally during the selected period wind speed of the Elevathivu Island is high and due to rainy season Island receive low amount of solar radiation. HOMER prediction is based on above conditions. But in the last year weather patterns were totally different when compared with historical data. This may be a reason for under estimating by the software.

Figure 5.6 Actual and predicted energy outputs of diesel generator

Figure 5.6 shows the actual energy output data and output data obtained through HOMER Pro for electricity generated by diesel generator. Data is available for the period 116 days starting from October 01 2016 to January 24 2017. As per the above figure it cannot any relationship between actual output variation and output data predicted by HOMER Pro. However most of the time HOMER Pro is over estimated the energy production by the diesel generator. This may due to high wind speed during time period. As discussed in clause 5.4.2 increment in wind speed will reduce energy generation of the generator.

Variation of actual energy consumption of the Island is plotted with HOMER pro predicted energy consumption value is illustrated in *Figure 5.7*. Data is available for

the period 90 days starting from October 01 2016 to January 24 2017. As per the *Figure 5.7*, actual and predicted energy consumption data are nearly equal to each other.

Average of the actual data and predicted values are 174kWh/day and 187kWh /day respectively. As per clause 5.3 of this thesis maximum scaled average that system can sustain is 235kWh per day.

Figure 5.7 Actual and Predicted energy consumption

6 CONCLUSION

Hybrid power system is identified as most economical solution for providing electricity to communities currently isolated from the national grid and mostly main land. There is a lot of research work available for optimizing techniques and optimized hybrid power system design. As identified, most of these optimized hybrid power systems have not been realized due to some reasons including high initial cost. Therefore literature highlighting performance of hybrid power system is not many available to study.

During the study, performance of the installed hybrid power system was compared with previously used stand-alone diesel system (base case) to identify the feasibility of the project. It was identified that discounted payback of the project is less than 4 years. However, when compared with actual outputs of the installed power system in Eluvathivu with outputs predicted using HOMER Pro software, it was identified that HOMER Pro gives over-estimated energy outputs for diesel generator electricity generation and electrical energy consumption and under estimate total renewable energy generation. This is due to inaccuracies in wind energy estimation. HOMER calculates wind energy using monthly average wind speeds. Therefore accuracy of the wind energy estimation is not in a satisfactory level. If HOMER under-estimates wind energy generation then automatically electricity generation using diesel generator will be over-estimated since there is a no effect of solar radiation on system performances as discussed in 5.4. Fuel cost of the generator is the one of the most significant factor of calculating net present cost and cost of energy, which are the optimizing parameters of HOMER Pro. Therefore it can be observed that actual discounted payback of the installed hybrid power system even low than HOMER predicted.

During the sensitivity analysis it the system performances was analysed for different future demands, possible expansion and under different weather conditions and found that maximum average load that power system can sustain is 235kWh/day, system designed for optimized combination of each power generating and storing

sources, other important findings of the thesis are wind speed is a dominant factor of the power system performance and solar radiation not very much affecting the system performances. Also 1 m/s of increment of wind speed for wind speed above 4m/s will result more than 6% increment in renewable fraction of the system.

Capital cost of batteries will contribute higher amount of total capital cost of the project. It is more than 35% of the total capital cost and around 42% of total NPV of the project since high replacement cost. Therefore, selection of batteries is a very important factor when designing a hybrid power system. Amount of electricity stores in the batteries depends on solar radiation and average wind speed data values. In every second values of solar radiation and wind speed are varied. Only provision is available in HOMER to enter monthly average values. Therefore, selection of capacity of batteries will not be accurate.

CEB planned to improve the reliability of the power system by adding new generator which is going to synchronize with the available 30kW generator to avoid power system failure during peak time. These results are based on only 4 months actual data since the power system has been commissioned recently. Therefore, it is recommended to analyse performance of new hybrid power system in future by considering at least one year generation data.

The system comprises with several power sources. Therefore with the absent of one source other power sources can fulfill system requirement at least for some extend. Hence reliability of the hybrid power system is higher than base case diesel generators. Fuel consumption data of base case system and actual hybrid system, will be described importance of hybrid systems, since there is a significant reduction in fuel consumption in hybrid system and Carbon Dioxide emissions. Renewable faction of actual system also higher than HOMER estimated. Therefore the actual system is more environmentally friendly then designed.

7 REFERENCES

- REN21 Secretariat, "Renewables 2016 Global Status Report," REN21 Secretariat, France, 2016.
- [2] "Global Trends in Renewable Energy Investment 2016," Frankfurt School of Finance & Management gGmbH, 2016.
- [3] "https://docs.google.com/file/d/0BwtHKWY5sCyVclpMR3pMM1lYVWM/edit,"[Online].
- [4] "Oxford Business Group," 2017. [Online]. Available: https://www.oxfordbusinessgroup.com/analysis/sustainable-generation-rolerenewable-power-sources-set-expand.
- [5] Ceylon Electricity Board, "Long Term Generation Expansion Plan 2015 -2034," July 2015.
- [6] Ministry of Power and Energy, "Energy Empowered Nation," Sri Lanka Energy Sector Development Plan for a Knowledge based Economy, 2015.
- [7] D. M. Lal, B. B. Dash and A. Akella, "Optimization of PV/Wind/Micro-Hydro/Diesel Hybrid Power System in," *International Journal on Electrical Engineering and Informatics - Volume 3*, p. 1, 3 November 2011.

- [8] K. Ratneswaran, "Hybrid Power System for Eluvaithivu Island Sri Lanka," *Master of Science Thesis*, pp. 1 61, 2011.
- [9] M. G. Udayakanthi, "Design of a Wind-Solar Hybrid Power Generation System in Sri Lanka," *KTH Industrial Engineering and Management*, pp. 1 - 61, 2015.
- [10] S. Rehman, A. M. Mahbub, . J. Meyer and . L. M. Al-Hadhrami, "Feasibility study of a wind-pv-diesel hybrid power system for a village".
- [11] S. A. Shezan, R. Saidur, K. R. Ullah, W. T. Chong and S. Julai, "Feasibility analysis of a hybrid off-grid wind–DG-battery energy system for the eco-tourism remote areas," vol. 17, December 2015.
- [12] M. Hasan and O. B. Momin, "Performance Analysis and Feasibility Study of Solar-Wind-Diesel Hybrid Power system in Rural Areas of Bangaladesh," *International Journal of Engineering Research and General Science*, pp. 410 - 420, September 2015.
- [13] A. V. Anayochukwu, "Feasibility Assessment of PV Diesel Hybrid Power system for an Isolated off Grid Catholic Church," *Renewable Energies Reaseach Nucleus*, pp. 49 - 63, 2013.
- [14] M. Laidi, S. Hanini, B. Abbad, N. K. Merzouk and M. Abbas, "Study of a Solar PV-Wind-Battery Hybrid Power System for a Remotely Located Region in the Southern Algerian Sahara: Case of Refrigeration," pp. 30-38, 2012.

- [15] V. O. Okinda and N. A. Odero, "A REVIEW OF TECHNIQUES IN OPTIMAL SIZING OF HYBRID," *International Journal of Research in Engineering*, pp. 153 -161, November 2015.
- [16] J. G. FANTIDIS, D. V. BANDEKAS and . N. VORDOS, "Techno-economical study of hybrid power system for a remote village in Greece," *Recent Researches in Energy, Environment and Sustainable Development*, pp. 30 - 35.
- [17] T. Givler and P. Lilienthal, "Using HOMER® Software, NREL's Micropower Optimization Model, to Explore the Role of Gen-sets in Small Solar Power Systems," 2005.
- [18] Laboratory, National Renewable Energy, "HOMER, The Micropower Optimization Model".
- [65] H. S. Jacobus, "Solar-Diesel Hybrid Power System Optimization and Experimental Validation," *Thesis Submitted to the faculty of the Graduate School of the University of Maryland*, pp. 1 - 102, 2010.
- [66] R. Saidur, W. T. Chong, K. R. Ullah and S. Julai, "Feasiility Analysis of a hybrid off-gridwind-DG-Battery energy system for eco- tourism remote areas," *ResearchGate*, 12 August 2015.

APPENDIX A

APPENDIX B

Input Summary

Project title	Eluvathivu
Author	
Notes	

Project Location

Location	Unnamed Road, Sri Lanka
Latitude	9 degrees 41.33 minutes North
Longitude	79 degrees 48.72 minutes East
Time zone	Asia/Colombo

Load: Electric1

Data source	Synthetic
Daily noise	10%
Hourly noise	20%
Scaled annual average	189.215 kWh/d
Scaled peak load	40.9879 kW
Load factor	0.1923

Microgrid Controller: HOMER Cycle Charging

Quantity	Capital	Replacement	O&M
1	\$0.00	\$0.00	\$0.00

Minimization strategy	Economic
Setpoint state of charge	80
Allow multiple generators to operate simultaneously	Yes
Allow systems with generator capacity less than peak load	Yes
Allow diesel off operation	Yes

Microgrid Controller: HOMER Load Following

Quantity	Capital	Replacement	O&M
1	\$0.00	\$0.00	\$0.00

Minimization strategy	Economic
Allow multiple generators to operate simultaneously	Yes
Allow systems with generator capacity less than peak load	Yes
Allow diesel off operation	Yes

PV:AC West

Size	Capital	Replacement	0&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Sizes to consider	11.5
Lifetime	25 yr
Derating factor	90%
Tracking system	No Tracking
Slope	20.000 deg
Azimuth	90.000 deg
Ground reflectance	0.0%

PV:AC East

Size	Capital	Replacement	0&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Sizes to consider	13.5
Lifetime	25 yr
Derating factor	90%
Tracking system	No Tracking
Slope	20.000 deg
Azimuth	-90.000 deg
Ground reflectance	0.0%

PV:DC West

Size	Capital	Replacement	0&M
1.00	\$1,800.00	\$1,800.00	\$30.00

Sizes to consider	9.75
Lifetime	25 yr
Derating factor	90%
Tracking system	No Tracking
Slope	20.000 deg
Azimuth	90.000 deg
Ground reflectance	0.0%

PV:DC East

Size	Capital	Replacement	0&M	
1.00	\$1,800.00	\$1,800.00	\$30.00	
Size	Capital	Replacement		O&M
--------------------	---------	-------------	--	-----
Sizes to consider		10.5		
Lifetime 2		25 yr		
Derating factor		90%		
Tracking system		No Tracking		
Slope		20.000 deg		
Azimuth		-90.000 deg		
Ground reflectance		0.0%		

Solar Resource

Scaled annual average	4.90 kWh/m2/d
-----------------------	---------------

Wind Turbine:Windspot 3.5

Quantity	Capital	Replacement	O&M
1	\$18,000.00	\$18,000.00	\$180.00

Wind Resource

Generator:50kW Genset

Size	Capital	Replacement	O&M
1.00	\$500.00	\$500.00	\$0.03

Sizes to consider	0,30
Lifetime	15,000 hrs
Min. load ratio	25%
Heat recovery ratio	0%
Fuel used	Diesel
Fuel curve intercept	0.0330 L/hr/kW
Fuel curve slope	0.2730 L/hr/kW

Fuel: Diesel

Price	\$ 1.00/L
Lower heating value	43.2 MJ/kg
Density	820.00 kg/m3
Carbon content	88.0%
Sulfur content	0.4%

Battery:Li-Ion 27.5 kWh

Quantity	Capital	Replacement	O&M	
1	\$48,160.00	\$38,528.00	\$190.00	
Quantities to consider				3

Converter

Size	Capital	Replacement	O&M	
100.00	\$61,760.00	\$0.00	\$500.00	
Sizes to consider		0,100 kW		
Lifetime		25 yr		
Inverter can parallel with AC generator			Yes	

Economics

Annual real interest rate	3%
Project lifetime	25 yr
Capacity shortage penalty	\$0/kWh
System fixed capital cost	0
System fixed O&M cost	0

System control

Timestep length in minutes	60
Multi-Year enabled	No
Allow systems with multiple generators	Yes
Allow systems with multiple wind turbine types	No
Battery autonomy threshold	2
Maximum renewable penetration threshold	55

Optimizer

Maximum simulations	10000
System design precision	0.01
NPC precision	0.01
Minimum spacing	0
Focus factor	50
Optimize category winners	Yes
Use base case	Yes

Emissions

Carbon dioxide penalty	\$ O/t
Carbon monoxide penalty	\$ O/t
Unburned hydrocarbons penalty	\$ O/t
Particulate matter penalty	\$ O/t
Sulfur dioxide penalty	\$ O/t
Nitrogen oxides penalty	\$ O/t

Constraints

Maximum annual capacity shortage	0
Minimum renewable fraction	0
Operating reserve as percentage of hourly load	10
Operating reserve as percentage of peak load	0
Operating reserve as percentage of solar power output	25
Operating reserve as percentage of wind power output	50

HOMER Energy, LLC © 2017

System Report

System architecture

PV	AC West	12	kW
PV #2	AC East	14	kW
PV #3	DC West	10	kW
PV #4	DC East	11	kW
Wind Turbine	Windspot 3.5	6	
Generator	50kW Genset	30	kW
Storage	Li-Ion 27.5 kWh	3	strings
Converter	System Converter	100	kW
Dispatch Strategy	HOMER Cycle Charging		

Cost summary

Total net present cost	981215	\$
Levelized cost of energy	0.813	\$/kWh

Net Present Costs

Component	Capital	Replacement	O&M	Fuel	Salvage	Total
AC West	20,700	0	6,027	0	0	26,727
AC East	24,300	0	7,076	0	0	31,376
DC West	17,550	0	5,110	0	0	22,660
DC East	18,900	0	5,503	0	0	24,403
Windspot 3.5	108,000	0	18,869	0	0	126,869
50kW Genset	15,000	20,015	25,001	209,273	-2,526	266,764
HOMER Cycle Charging	0	0	0	0	0	0
Li-Ion 27.5 kWh	144,480	303,818	9,958	0	-46,336	411,921
System Converter	61,760	0	8,735	0	0	70,495
System	410,690	323,833	86,280	209,273	-48,861	981,215

Component	Capital		Replacement		O&M	Fuel	Salvage	Total
AC West		1,185		0	345	0	0	1,530
AC East		1,391		0	405	0	0	1,796
DC West		1,005		0	293	0	0	1,297
DC East		1,082		0	315	0	0	1,397
Windspot 3.5		6,182		0	1,080	0	0	7,262
50kW Genset		859		1,146	1,431	11,978	-145	15,269
HOMER Cycle Charging		0		0	0	0	0	0
Li-Ion 27.5 kWh		8,270		17,390	570	0	-2,652	23,578
System Converter		3,535		0	500	0	0	4,035
System		23,507		18,536	4,939	11,978	-2,797	56,163

Electrical

Quantity	Value	Units
Excess electricity	52071	kWh/yr
Unmet load	3	kWh/yr
Capacity shortage	9	kWh/yr
Renewable percent	45	%

Component	Production(kWh/yr)	Percent (%)
PV	17,661	14
PV	20,985	17
PV	14,973	12
PV	16,321	13
Generator	38,111	31
Wind Turbine	16,492	13
Total	124,543	100

Load	Consumption(kWh/yr)	Percent (%)
AC primary load	69,061	100
DC primary load	0	0

Consumption(kWh/yr)

^{69,061} Percent (%)

100

PV:AC West

Quantity	Value	Units
Rated capacity	12	kW
Mean output	2	kW
Mean output	48.39	kWh/d
Capacity factor	17.53	%
Total production	17661	kWh/yr
Minimum output	0.00	kW
Maximum output	12.03	kW
PV penetration	25.57	%
Hours of operation	4358	hrs/yr
Levelized cost	0.087	\$/kWh

PV:AC East

Quantity	Value	Units
Rated capacity	14	kW
Mean output	2	kW
Mean output	57.49	kWh/d
Capacity factor	17.74	%
Total production	20985	kWh/yr
Minimum output	0.00	kW
Maximum output	14.03	kW
PV penetration	30.38	%

Hours of operation Quantity	Value	4358	hrs/yr Units
Levelized cost		0.086	\$/kWh
24 PV Output	14.03		

PV:DC West

Quantity	Value	Units
Rated capacity	10	kW
Mean output	2	kW
Mean output	41.02	kWh/d
Capacity factor	17.53	%
Total production	14973	kWh/yr
Minimum output	0.00	kW
Maximum output	10.20	kW
PV penetration	21.68	%
Hours of operation	4358	hrs/yr
Levelized cost	0.087	\$/kWh

PV:DC East

Quantity	Value	Units
Rated capacity	11	kW
Mean output	2	kW
Mean output	44.72	kWh/d
Capacity factor	17.74	%
Total production	16321	kWh/yr
Minimum output	0.00	kW
Maximum output	10.91	kW
PV penetration	23.63	%
Hours of operation	4358	hrs/yr
Levelized cost	0.086	\$/kWh

Wind Turbine:Windspot 3.5

Quantity	Value	Units
Total rated capacity	18	kW
Mean output	2	kW
Capacity factor	10.46	%
Total production	16492	kWh/yr
Minimum output	0.00	kW
Maximum output	22.53	kW
Wind penetration	23.88	%
Hours of operation	8760	hrs/yr
Levelized cost	0.440	\$/kWh

Generator:50kW Genset

Quantity	Value	Units
Hours of operation	1590	hrs/yr
Number of starts	707	starts/yr
Operational life	9	yr
Fixed generation cost	2.89	\$/hr
Marginal generation cost	0.27	\$/kWh
Electrical production	38111	kWh/yr
Mean electrical output	24	kW
Min. electrical output	8	kW
Max. electrical output	30	kW
Fuel consumption	11978	L/yr
Specific fuel consumption	0.31	L/kWh
Fuel energy input	117867	kWh/yr
Mean electrical efficiency	32	%

Battery:Li-Ion 27.5 kWh

Quantity	Value
String size	1
Strings in parallel	3
Batteries	3
Bus voltage	48

Quantity	Value	Units
Nominal capacity	76	kWh
Usable nominal capacity	46	kWh
Autonomy	6	hr
Battery wear cost	0.065	\$/kWh
Average energy cost	0.199	\$/kWh
Energy in	26209	kWh/yr
Energy out	25193	kWh/yr
Storage depletion	34	kWh/yr
Losses	982	kWh/yr
Annual throughput	25713	kWh/yr

Converter

Quantity	Inverter	Rectifier	Units
Capacity	100	95	kW
Mean output	3	2	kW
Minimum output	0	C	kW
Maximum output	26	28	kW
Capacity factor	3	2	%
Hours of operation	3,975	2,058	hrs/yr
Energy in	26,310	21,591	kWh/yr
Energy out	24,994	20,512	kWh/yr
Losses	1,315	1,080	kWh/yr

Emissions

Pollutant	Emissions	Units
Carbon dioxide	31358	kg/yr
Carbon monoxide	196	kg/yr
Unburned hydrocarbons	9	kg/yr
Particulate matter	1	kg/yr
Sulfur dioxide	77	kg/yr
Nitrogen oxides	184	kg/yr

HOMER Energy, LLC © 2017