COMPARATIVE STUDY OF EMULSION AND WATER GEL EXPLOSIVES FOR ROCK QUARRYING

Bandula Herath

138453 G

Degree in Master of Science

Department of Earth Resources Engineering

University of Moratuwa

Sri Lanka

October 2017

COMPARATIVE STUDY OF EMULSION AND WATER GEL EXPLOSIVES FOR ROCK QUARRYING

Bandula Herath

138453 G

Thesis submitted in partial fulfillment of the requirements for the degree

Master of Science in Earth Resource Engineering

Department of Earth Resources Engineering
University of Moratuwa
Sri Lanka

October 2017

DECLARATION I declare that this my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person unless where the acknowledgement is made in the text. I do hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part, in future works (such as articles or books). Signature of the candidate: 2017 - -..... Bandula Herath The above candidate has carried out research for the Masters under my supervision. Signature of the supervisors: 2017 - -..... Eng.P.V.A.Hemalal Senior Lecturer, Department of Earth Resources Engineering, University of Moratuwa, Sri Lanka. 2017 - -Prof P.G.R .Dhramarathna Senior Professor, Department of Earth Resources Engineering,

University of Moratuwa, Sri Lanka

Dr L.P.S Rohitha

Senior Lecturer,

Department of Earth Resources Engineering,

University of Moratuwa, Sri Lanka.

Abstract

In the mining field, blasting is the predominant method for breaking of consolidated rocks and the main objectives are to extract the large quantity at both minimum cost and having minimum damage to the environment.

Rock breaking, over the years, which was limited to just breaking of boulders for the use of building and road construction has developed vastly to various aspects of mining namely, open cast, underground and underwater blasting. Manually drilled single shot bore holes are disappearing and making way to multiple bore holes of immense depth with the introduction of the latest blasting technologies.

Result of the introduction of optimum blasting techniques and sustainable development criteria, mining industry has twisted in the path of eco-friendly mining. Explosives and blasting techniques that are used nowadays are based on the above concept.

Use of Dynamite changed to lesser powerful explosives such as Water Gel and then to Emulsion explosives. Our country also discarded the use of Dynamite several years ago and Water Gel explosives was introduced. Water Gel explosives is eco friendlier than Dynamite but could not be substituted in areas underground and underwater blasting. Introduction of Emulsion explosives was mainly to overcome these disadvantages of Water Gel Explosives.

Aim of this study is to carry out a comparative study in all areas of open cast mining and to ascertain the most appropriate high explosive type for optimum output.

Acknowledgment

I would like to extend my sincere gratitude to my supervisors Professor P.G.R .Dhramaratna ,Senior Lecture Engineer P.V.A. Hemalal and Senior Lecturer Dr L.P.S. Rohitha of the Department of Earth Resources Engineering, University of Moratuwa Sri Lanka for the moral support and immense guidance given to me from the moment of choosing the appropriate thesis topic up to the completion of this MSc study.

I would also like to extend my gratitude to my past course coordinator Dr.A.M.K.B.Abesinghe and the present course coordinator, who is also the Department Head of the Earth Recourses Engineering Department Dr H.M.R.Premasiri and the academic staff of the Department of Earth Resources Engineering Department, University of Moratuwa Sri Lanka are acknowledged for the type of value support extended me to complete the above.

Laboratory tests conducted at Moratuwa University Earth Resources Departments laboratory were facilitated by Department Head of the Earth Recourses Engineering Department Dr. H.M.R.Premasiri and the Technical Officer Mr W.W.S Perera and like to forward my gratitude for that. The blast monitor instruments, Mining Engineer's support and the technical facilities were provided by the Geological Survey and Mines Bureau (GSMB) and would like to extend my gratitude to the Director General of GSMB Engineer S. De Silva, Mining Engineer Mr D.Nuwan and Mr S.Jayabandara and their staff.

Blasting tests were performed at the "Metal Mix" quarries in Hanwella, Meepe area, which is belonging to Mr T.Illeperume, Senior Mining Engineer Mr M.D Wimal and Mining Engineer, Mr.S.Abeysundara extended valuable support and wish to extend my gratitude to them.

I wish to extend my gratitude to Secretary, Ministry of Defence and his staff for granting me the relevant funds and official leave to complete the Masters Degree.

Finally, I wish to extend my loving gratitude to my wife and sons for their moral support and unblemished encouragement made in fulfilling this enormous task.

List of Figures		vii		
List	List of Tables			X
СН	APTE	R 1		1
1.	INTRODUCTION		1	
	1.1.	Problem	Statement and Justification	1
	1.2.	Objectiv	ves	3
	1.3.	Structur	e of the Thesis	3
CH	APTE	R 2 - LITI	RETURE REVIEW	4
2.	LITRETURE REVIEW		4	
	2.1.	Primit	ive Methods of Rock Breaking	4
	2.2.	Histor	y of Blasting Accessories in Sri Lanka	5
	2.3.	Proper	ties of Explosives	6
		2.3.1.	Definition of Explosives	6
		2.3.2.	Classification of Explosives	6
		2.3.3.	Properties of Explosive Materials	11
		2.3.4.	Chemically pure compounds and mixture of oxidizer and fuel	21
4	2.4.	Comme	rcial Explosives Oriented Industries in Sri Lanka	23
2	2.5.		only Used Explosives in Sri Lanka	24
		2.5.1.	Blasting Powder	24
			Dynamite	25
			ANFO (Ammonium Nitrate Fuel Oil)	26
			Water Gel Explosives	28
			Emulsion Explosives	29
			Initiating Explosives	36
2	2.6.		nism of Rock Breaking	41
			Effect of gas pressure	44
		2.6.2.	Effects of Geology on Blasting	44
CH.	APTE	R 3 – ME	THDOLOGY	45
3.	MET	THDOLO	GY	45
3.1.	Blasting Performance, Fragmentation Analysis, Calculation of Mean Fragmenta			
		and R	Rock Properties	45
		3.1.1.	Blasting Performance Analysis	45
		3.1.2.	Fragmentation Analysis and Calculation of Mean Fragmentation	46
		3.1.3	Discuss rock properties	52

CHAPTER 4 – RESULTS AND DISSCUSSION	57
4. RESULTS AND DISSCUSSION	57
4.1. Results	57
4.1.1. Ground Vibrations and Air over Blast Over Pressure measurements	57
4.1.2. Comparison of Air Blast Over Presure and Ground Vibration	58
4.1.3. Detailed Study On Selected Properties Of Emulsion Explosives	59
4.2. Calculation of Aggregate Impact and Los Angeles Abrasion Values	61
4.3 Calculation of the mean fragmentation using the manual method	61
4.3.1 Analysis of samples using grid diagrams for zones A to K	62
4.3.2. Results of Fragmentation Distribution	72
4.4. Discussion	73
4.4.1 Overall analysis	79
CHAPTER 5- CONCLUSION	80
5. CONCLUSION	80
CHAPTER 6- RECOMMENDATION AND FUTURE RESEARCH	81
6 RECOMMENDATION AND FUTURE RESEARCH	81
6.1 Recommendation	81
6.2 Future Research	81
7 . ANNEXURES	82
Referances .	118
List of Figures	
Figure 2.1 Image rock bash method	4
Figure 2.2 Image of bi polar percussion	4
Figure 2.3 Image of percussion flaking	5
Figure 2.4 Dautriche method	12
Figure 2.5 Image of blasting powder	24
Figure 2.6 Image of Dynamite	25
Figure 2.7 Image of Ammonium Nitrate	26
Figure 2.8 ANFO detonation curve	27
Figure 2.9 Image of Water Gel explosives	28
Figure 2.10 Image of Emulsion explosives	30
Figure 2.11 Oxidizer surrounded by fuel	33
Figure 2.12 Typical water-in oil seen under microscope	33
Figure 2.13 Image of bulk emulsion loaded in a truck	35
Figure 2.14 Image of Safety Fuse	36
Figure 2.15 Image of an electrical detonator	37

Figure 2.16 Cross section of an electrical detonator	37
Figure 2.17 Image of a detonating cord	38
Figure 2.18 Image of an electronic detonator	39
Figure 2.19 Images of NONEL detonators	40
Figure 2.20 Images of NONEL detonators	41
Figure 2.21 Image of mechanism of rock breaking	42
Figure 2.22 Image of mechanism of burden movement	43
Figure 3.1 Image of cleared zone before blast	47
Figure 3.2 Image of cleared zone after blast	47
Figure 3.3 Demarcation of zones A to K	48
Figure 3.4 Grid diagram used to analyze mean fragmentation	49
Figure 3.5 Image of Los Angeles Abrasion Machine and steel balls used	54
Figure 4.1 Demarcation of blasting phases	59
Figure 4.2 Analysis of samples using grid diagram in zone-A	62
Figure 4.3 Analysis of samples using grid diagram in zone-B	63
Figure 4.4 Analysis of samples using grid diagram in zone-C	64
Figure 4.5 Analysis of samples using grid diagram in zone-D	65
Figure 4.6 Analysis of samples using grid diagram in zone-E	66
Figure 4.7 Analysis of samples using grid diagram in zone-F	67
Figure 4.8 Analysis of samples using grid diagram in zone-G	68
Figure 4.9 Analysis of samples using grid diagram in zone -H	69
Figure 4.10 Analysis of samples using grid diagram in zone-J	70
Figure 4.11 Analysis of samples using grid diagram in zone-K	71
Figure 4.12 Fragmentation analysis curve of Emulsion and Water Gel explosive	72
Figure 4.13 Fragmentation Analysis Curve of Water Gel Explosives	73
Figure 4.14 Fragmentation Analysis Curve of Water Gel Explosives	74
ANNEXURES	82
Figure 7.1 Arrangement of bore holes in phase 1	82
Figure 7.2 Loading of bore holes in phase 1	83
Figure 7.3 After the blast in phase 1	83
Figure 7.4 After the blast in phase 1	84
Figure 7.5 Arrangement of bore holes in phase 2	85
Figure 7.6 Arangement of bore holes in phase 2	86
Figure 7.7 After the blast in phase 2	86
Figure 7.8 After the blast in phase 2	87
Figure 7.9 Arrangement of bore holes in phase 3	88
Figure 7.10 Arrangement of bore holes in phase 3	89
Figure 7.11 After the blast in phase 3	89
Figure 7.12 After the blast in phase 3	90
Figure 7.13 Arrangement of bore holes in phase	91
Figure 7.14 After the blast in phase 4	92
Figure 7.15 Arrangement of bore holes in phase 5	93
Figure 7.16 Arrangement of bore holes in phase 5	94

Figure 7.17 After the blast in phase 5	94
Figure 7.18 After the blast in phase 5	95
Figure 7.19 Arrangement of bore holes in phase 6	96
Figure 7.20 After the blast in phase 6	97
Figure 7.21 Arrangement of bore holes in phase 7	98
Figure 7.22 Arrangement of bore holes in phase 7	99
Figure 7.23 Loading of bore holes in phase7	99
Figure 7.24 After the blast in phase 7	100
Figure 7.25 Arrangement of bore holes in phase 8	101
Figure 7.26 Arrangement of bore holes in phase 8	102
Figure 7.27 Loading of bore holes in phase 8	102
Figure 7.28 After the blast in phase 8	103
Figure 7.29 Arrangement of bore holes in phase 9	104
Figure 7.30 Arrangement of bore holes in phase 9	105
Figure 7.31 Loading of bore holes in phase 9	106
Figure 7.32 After the blast in phase 9	106
Figure 7.33 Arrangement of bore holes in phase 10	107
Figure 7.34 Checking connection in phase 10	108
Figure 7.35 Arrangement of bore holes in phase 10	108
Figure 7.36 After the blast the rocks which fell below in phase 10	109
Figure 7.37 Preparing blast mate A for recording	110
Figure 7.38 Preparing blast mate A for recording	110
Figure 7.39 Preparing blast mate B for recording	111
Figure 7.40 Preparing blast mate B for recording	111
Figure 7.41 Cleared area which is expected to receive the products of blasts	112
Figure 7.42 Cleared area which is expected to receive the products of blasts	112
Figure 7.43 Getting prepared to sample rocks	113
Figure 7.44 Samples of $0-5$ centimeters in length.	113
Figure 7.45 Samples of 10-20 centimeters in length	114
Figure 7.46 Samples above 20 centimeters in length	114
Figure 7.46 Samples above 20 centimeters in length	114
Figure 7.47 Location and site maps	117
List of Tables	
Table 2.1 List of military explosives	7
Table 2.2 List of commercial explosives	9
Table 2.3 List of improvised explosives	10
Table 2.4 Velocity of detonation on common explosives	14
Table 2.5 Water resistant testing schedule	20
Table 2.6 Chemically pure explosive compounds	21
Table 2.7 Explosives with mixture of oxidizer and fuel	23
Table 3.1 Blasting test schedule	46
Table 4.1 Ground Vibrations and Air Blast Over Pressure measurements	57

Table 4.2	Compaision of Air Blast Over Pressure and Ground Vibration with respect to	
	Water Gel and emulsion explosives	57
Table 4.3	Study on the application of emulsion explosive district wise	60
Table 4.4	Calculated Aggregate Impact Value as per laboratory test - AIV	61
Table 4.5	Calculated Los Angeles Abrasion Value as per laboratary test-	61
Table 4.6	Fragmentation analysis data in Zone A	62
Table 4.7	Fragmentation analysis data in Zone B	63
Table 4.8	Fragmentation analysis data in Zone C	64
Table 4.9	Fragmentation analysis data in Zone D	65
Table 4.10	Fragmentation analysis data in Zone E	66
Table 4.11	Fragmentation analysis data in Zone F	67
Table 4.12	Fragmentation analysis data in Zone G	68
Table 4.13	Fragmentation analysis data in Zone H	69
Table 4.14	Fragmentation analysis data in Zone J	70
Table 4.15	Fragmentation analysis data in Zone K	71
Table 4.16	Summary of fragmentation analysis of Emulsion and Water Gel explosives	72
Table 4.17	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 1 and 8	75
	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 2 and	76
Table 4.19	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 3 and 10	76
Table 4.20	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 4 and 9	76
Table 4.21	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 5 and 6	77
Table 4.22	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 1 and 2	77
Table 4.23	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 1 and 4	77
Table 4.24	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 2 and 3	78
Table 4.25	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 7 and 10	78
Table 4.26	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 8 and 9	78
Table 4.27	Comparison of GV and ABOP for Water Gel and Emulsion explosives in phase 7 and 8	79
Table 7.1	Results received from Blast mates in phase 1	84
Table 7.2	Results received from Blast mates in phase 2	89
Table 7.3	Results received from Blast mates in phase 3	90
Table 7.4	Results received from Blast mates in phase 4	92
Table 7.5	Results received from Blast mates in phase 5	95
Table 7.6	Results received from Blast mates in phase 6	97
Table 7.7	Results received from Blast mates in phase 7	.00
Table 7.8	Results received from Blast mates in phase 8	03
Table 7.9	Results received from Blast mates in phase 9	06
Table7.10	Results received from Blast mates in phase 10	09
		15
Table7.12	The completed specimen format of the Emulsion testing prepared by the	1.0
	Assistant Cotroller Kandy district	16