DETERMINATION OF MAXIMUM POSSIBLE LOADING CAPACITY OF A SINGLE GENERATOR UNIT: A CASE STUDY FOR THE PRESENT SRI LANKAN POWER SYSTEM

Rathuge Sasanka Ranjitha

(139582H)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

January 2018

DETERMINATION OF MAXIMUM POSSIBLE LOADING CAPACITY OF A SINGLE GENERATOR UNIT: A CASE STUDY FOR THE PRESENT SRI LANKAN POWER SYSTEM

RATHUGE SASANKA RANJITHA

(139582H)

Thesis submitted in partial fulfillment of the requirements for the degree Master of Science in Electrical Installations

Department of Electrical Engineering

University of Moratuwa Sri Lanka

January 2018

Declaration

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature: (R.S.Ranjitha) Date:

The above candidate has carried out research for the Masters under my supervision.

Signature of the supervisor: (Dr. W.D.A.S. Rodrigo) Date:

Abstract

Present Sri Lankan power system consists of a rich energy mix and a vast diversity within all over the island, out of which hydro power generation is predominant. Even though hydro power generation is predominant and has least operational cost, the emerging consumer demand growth cannot be catered by hydro power generation only. In addition to hydro power, nearly 50% of country's energy demand is fulfilled by three number of coal power plants which are considered as largest capacity low cost thermal power plants in the country and are operated in base load basis.

Even though these large scale coal power plants are very much cost effective and have large net output power capacity, considering the system reliability, they cannot be dispatched in full load manner during certain demand conditions and different dispatch conditions which are currently practiced by Ceylon Electricity Board, which is the country's main power utility which has the authority to large scale electricity generation, transmission and distribution. The reason is when such a large generator gets tripped, the frequency stability and voltage stability would be highly vulnerable for resulting the system collapsing due to such large generation rejection from the system.

Recently the national power network has experienced several failures due to tripping of such large generators during certain demand condition under different dispatch conditions. Hence, it has become a challenging decision to determine the loading capacity of the large generators when it comes to system operations.

A model has been implemented with PSS/E software and has been validated with actual system incidents considering latest power system parameters. This validated model has been used for simulating generation rejections according to the appropriate generation percentages during all the dispatch scenarios considering worst case demand conditions. This study evaluates the capacity percentage range of the maximum loading capacity of single generator unit considering both frequency stability and voltage stability, compromising both power system operational cost and power system reliability as a case study which is carried out considering the parameters of operational guide lines of present Sri Lankan national power system.

Dedication

I dedicate this thesis to my beloved parents, who have guided and motivated me unconditionally to reach my best.

To all supporters who have encouraged me in various ways for achieving this life milestone.

Acknowledgements

First, I pay my sincere gratitude to Dr. Asanka Rodrigo who encouraged me and guided me to develop this research idea and journey so far up to preparation of final thesis.

I take this opportunity to extend my sincere thanks to all engineers of national System Control Centre of Ceylon Electricity Board, who supported me generously and facilitated with necessary data and information whenever needed, in spite of their heavy work load.

It is a great pleasure to remind all my lecturers of University of Moratuwa, all friends in the post graduate program and all the supporters for backing me from beginning to end of this course.

TABLE OF CONTENTS

Content

Page

Decl	aration o	of the candidate and supervisor	i
Abst	ract		ii
Dedi	cation		iii
Ackr	nowledg	ements	iv
Table	e of con	tent	v
List o	of figure	28	ix
List o	of tables	;	xiv
List o	of abbre	viations	XV
List o	of appen	ndices	xvi
1.	Back	ground	1
	1.1	Introduction	1
	1.2	Issues regarding the loading percentage of large capacity	
		generators	3
	1.3	Motivation	4
	1.4	Objective of the Study	5
	1.5	Outcomes of the study	6
	1.6	Scope of the study work	6
2.	Prese	ent Generation Dispatch Scenarios and Demand Scenarios	8
	2.1	Generation Dispatch Scenarios	8
	2.2	Demand Scenarios	9
	2.3	Economical cost analysis of loading operations	
		of LVPS capacity under different dispatch scenarios	9
		2.3.1 Hydro Maximum Scenario	9
		2.3.2 Thermal maximum Scenario	10
		2.3.3 Extreme Thermal maximum Scenario	11
	2.4	Determination of contribution percentage range of	
		a single LVPS generator, at off peak demand scenario	

		under	each dispatch scenario	12	
		2.4.1	Methodology of calculation LVPS generation		
			contribution	12	
		2.4.2	LVPS contribution percentage at Off Peak		
			demand scenario under Hydro Maximum Scenario	14	
		2.4.3	LVPS contribution percentage at Off Peak		
			demand scenario under Thermal Maximum Scenario	14	
		2.4.3	LVPS contribution percentage at Off Peak demand		
			scenario under Extreme Thermal Maximum Scenario	15	
		2.4.4	Study range consideration	15	
3.	Exist	ing Tran	smission System of Sri Lanka	16	
	3.1	Existi	ng Power system and the max loading capacity of a		
		single	generator unit	16	
	3.2	Frequency criteria of Sri Lanka		16	
	3.3	Voltag	ge criteria of Sri Lanka	17	
	3.4	Present UFLS scheme		18	
	3.5	Dispat	Dispatch scenario consideration and demand scenario		
		consid	considerations for the study		
	3.6	Power	system limitations	21	
		3.6.1	Frequency limitations	21	
		3.6.2	Voltage limitations	22	
	3.7	System	n cascade disturbances occurred with related		
		to may	ximum loading capacity of a single generator unit	22	
		3.7.1	Tripping incident initiated with of		
			Kosgama – Kolonnawa 132kV single circuit		
			on 18.02.2017	23	
		3.7.2	LVPS governor responding behavior during		
			the failure period	25	
	3.8	Transi	ent over voltage on Sri Lankan transmission network	27	
4.	Over	view and	PSS®E Model Validation	28	

4.1	Overv	view	28
	4.1.1	Overview of Sri Lankan power system	28
	4.1.2	Overview of PSS/E	28
	4.1.3	Steady State and Dynamic State analysis of power system	30
		4.1.3.1 Steady state simulation of Sri Lankan	
		Power System in PSS/E	31
		4.1.3.2 Dynamic state simulation of Sri Lankan	
		power system in PSS/E	31
		4.1.3.3 Analyzing results of dynamic simulation	32
4.2	Active	e power and Reactive power response of LVPS	
	at a d	listurbance	32
4.3	Study	Cases	33
	4.3.1	Study case 01: The tripping of Kelanithissa	
		Combined Cycle Power plant (KCCP) on 15.04.2016	34
		4.3.1.1 Incident description of study case 01	34
		4.3.1.2 Frequency analysis of the study case 01	36
		4.3.1.3 Frequency analysis of the study case 01	38
	4.3.2	Study case 02: The tripping of LVPS	
		unit 01-plant on 06.07.2016	40
		4.3.2.1 Incident description of study case 02	40
		4.3.2.2 Frequency analysis of the study case 02	42
		4.3.2.3 Voltage analysis of the study case 02	45
Simu	lation ar	nd Analysis of Generator Rejection Incidents	47
5.1	Metho	odology	47
5.2	Case s	study of Hydro Maximum Scenario	48
	5.2.1	Generator (LVPS unit 01-216MW) tripping of 27%	
		of total system generation	51
	5.2.2	Generator (LVPS unit 01-216MW) tripping of 25%	
		of total system generation	54
	5.2.3	Generator (LVPS unit 01-216MW) tripping of 23%	
		of total system generation	56
	5.2.4	Generator (LVPS unit 01-216MW) tripping of 21%	

5.

		of total system generation	58
	5.2.5	Generator (LVPS unit 01-216MW) tripping of 19%	
		of total system generation	60
5.3	Case s	study of Thermal Maximum Scenario	62
	5.3.1	Generator (LVPS unit 01-270MW) tripping of 27%	
		of total system generation	65
	5.3.2	Generator (LVPS unit 01-250MW) tripping of 25%	
		of total system generation	67
	5.3.3	Generator (LVPS unit 01-230MW) tripping of 23%	
		of total system generation	69
	5.3.4	Generator (LVPS unit 01-210MW) tripping of 21%	
		of total system generation	71
	5.3.5	Generator (LVPS unit 01-190MW) tripping of 19%	
		of total system generation	73
5.4	Case s	study of Extreme Thermal Maximum Scenario	75
	5.4.1	Generator (LVPS unit 01-270MW) tripping of 27%	
		of total system generation	78
	5.4.2	Generator (LVPS unit 01-250MW) tripping of 25%	
		of total system generation	80
	5.4.3	Generator (LVPS unit 01-230MW) tripping of 23%	
		of total system generation	82
	5.4.4	Generator (LVPS unit 01-210MW) tripping of 21%	
		of total system generation	84
	5.4.5	Generator (LVPS unit 01-190MW) tripping of 19%	
		of total system generation	86
Obs	ervations	and Discussion	80
6.1	Obser	vations and Discussion summary	80
	6.1.1	Observation of complete case study of	
		Hydro Maximum Scenario	89
		6.1.1.1 Observations of Hydro Maximum	
		Scenario case study-Frequency analysis	89
		6.1.1.2 Observations of the Hydro Maximum	

6.

			Scenario case study-Voltage analysis	90
			6.1.1.3 Generator (LVPS unit 01-176MW)	
			tripping of 22% of total system generation	
			at Hydro Maximum Scenario	92
		6.1.2.	Discussion of complete case study of	
			Hydro Maximum Scenario	94
		6.1.3	Observation of complete case study of	
			Thermal Maximum Scenario	94
			6.1.3.1 Observations of Thermal Maximum Scenar	rio
			case study-Frequency analysis	94
			6.1.3.2 Observations of Thermal Maximum Scenar	rio
			case study-Voltage analysis	95
			6.1.3.3 Generator (LVPS unit 01-260MW)	
			tripping of 26% of total system generation	
			at Thermal Maximum Scenario	97
		6.1.4	Discussion of case study of Thermal Maximum Scenario	99
		6.1.5	Observation of complete case study of Extreme	
			Thermal Maximum Scenario	99
			6.1.5.1 Observations of Extreme Thermal Maximum Scen	ario
			case study-Frequency analysis	99
			6.1.5.2 Observations of Extreme Thermal Maximum	
			Scenario case study-Voltage analysis	100
			6.1.5.3 Generator (LVPS unit 01-260MW)	
			tripping of 26% of total system generation	
			at Extreme Thermal Maximum Scenario	102
		6.1.6	Discussion of case study of Extreme Thermal Maximum	
			Scenario	104
7.	Concl	usion ar	nd Recommendation	105
	7.1	Concl	usion	105
	7.2	Recon	nmendation	108
Refer	ences Li	ist		110
Appe	ndix A			111

LIST OF FIGURES

Figure

Page

Figure 1.1:	Average demand of a typical day variation of five years	
	(2012 to 2016)	2
Figure 2.1	Graphical represent of LVPS single unit contribution	
	to the national grid	13
Figure 3.1	Frequency variation during the fault period at	
	Biyagama 220kV bus	24
Figure 3.2	Voltage variation during the disturbance period at	
	New Anuradhapura 220kV bus	25
Figure 3.3	Frequency variation at Biyagama 220kV bus and active power	
	variation of LVPS each generator, during the disturbance period	26
Figure 3.4	Voltage variations at different 220kV busses	
	during the total system failure on 27/09/2016	27
Figure 4.1	PSS/E steady stare power flow interface of	
	Sri Lankan power system	29
Figure 4.2	PSS/E interface of generator governor and exciter	
	parameter console	33
Figure 4.3	Simulation frequency plot of the failure-study case 01	
	at Biyagama 220kV bus	36
Figure 4.4	Simulation frequency and actual frequency comparison	
	of the failure-study case 01	36
Figure 4.5	Simulation voltage plot of the failure-study case 01	
	at New Anuradhapura 220kV bus	38
Figure 4.6	Simulation voltage and actual voltage comparison	
	of the failure-study case 01	39
Figure 4.7	Simulation frequency plot of the failure-study case 02	
	at Biyagama 220kV bus	42

Figure 4.8	Simulation frequency and actual frequency comparison	
	of the failure-study case 02	42
Figure 4.9	Simulation voltage plot of the failure-study case 02	
	at New Anuradhapura 220kV bus	45
Figure 4.10	Simulation voltage and actual voltage comparison	
	of the failure-study case 02	45
Figure 5.1	Generator tripping simulation of LVPS unit-01 in PSS/E	47
Figure 5.2	Incident 5.2.1-Frequency variation at Biyagama 220kV bus	51
Figure 5.3	Incident 5.2.1-220kV Voltage variation at	
	New Anuradhapura 220kV bus	51
Figure 5.4	Incident 5.2.2-Frequency variation at Biyagama 220kV bus	54
Figure 5.5	Incident 5.2.2-220kV Voltage variation at	
	New Anuradhapura 220kV bus	54
Figure 5.6	Incident 5.2.3-Frequency variation at Biyagama 220kV bus	
		56
Figure 5.7	Incident 5.2.3-220kV Voltage variation at	
	New Anuradhapura 220kV bus	56
Figure 5.8	Incident 5.2.4-Frequency variation at Biyagama 220kV bus	58
Figure 5.9	Incident 5.2.4-220kV Voltage variation at	
	New Anuradhapura 220kV bus	58
Figure 5.10	Incident 5.2.5-Frequency variation at Biyagama 220kV bus	60
Figure 5.11	Incident 5.2.5-220kV Voltage variation at	
	New Anuradhapura 220kV bus	60
Figure 5.12	Incident 5.3.1-Frequency variation at Biyagama 220kV bus	65
Figure 5.13	Incident 5.3.1-220kV Voltage variation at	
	New Anuradhapura 220kV bus	65
Figure 5.14	Incident 5.3.2-Frequency variation at Biyagama 220kV bus	67
Figure 5.15	Incident 5.3.2-220kV Voltage variation at	
	New Anuradhapura 220kV bus	67
Figure 5.16	Incident 5.3.3-Frequency variation at Biyagama 220kV bus	69
Figure 5.17	Incident 5.3.3-220kV Voltage variation at	

	New Anuradhapura 220kV bus	69
Figure 5.18	Incident 5.3.4-Frequency variation at Biyagama 220kV bus	71
Figure 5.19	Incident 5.3.4-220kV Voltage variation at	
	New Anuradhapura 220kV bus	71
Figure 5.20	Incident 5.3.5-Frequency variation at Biyagama 220kV bus	73
Figure 5.21	Incident 5.3.5-220kV Voltage variation at	
	New Anuradhapura 220kV bus	73
Figure 5.22	Incident 5.4.1-Frequency variation at Biyagama 220kV bus	78
Figure 5.23	Incident 5.4.1-220kV Voltage variation at	
	New Anuradhapura 220kV bus	78
Figure 5.24	Incident 5.4.2-Frequency variation at Biyagama 220kV bus	80
Figure 5.25	Incident 5.4.2-220kV Voltage variation at	
	New Anuradhapura 220kV bus	80
Figure 5.26	Incident 5.4.3-Frequency variation at Biyagama 220kV bus	82
Figure 5.27	Incident 5.4.3-220kV Voltage variation at	
	New Anuradhapura 220kV bus	82
Figure 5.28	Incident 5.4.4-Frequency variation at Biyagama 220kV bus	84
Figure 5.29	Incident 5.4.4-220kV Voltage variation at	
	New Anuradhapura 220kV bus	84
Figure 5.30	Incident 5.4.5-Frequency variation at Biyagama 220kV bus	86
Figure 5.31	Incident 5.4.5-220kV Voltage variation at	
	New Anuradhapura 220kV bus	86
Figure 6.1	Summary of the final stabilization frequency value variation	
	in Hydro Maximum Scenario	90
Figure 6.2	Summary of the final stabilization voltage value variation	
	in Hydro Maximum Scenario	91
Figure 6.3	6.1.1.3 incident-Frequency variation at Biyagama 220kV bus	
	due to the generator (LVPS unit 01-176MW) tripping of 22% of	
	total system generation	92
Figure 6.4	6.1.1.3 incident-Voltage variation at New Anuradhapura 220kV bu	15
	due to the generator (LVPS unit 01-176MW) tripping of 22% of	

	total system generation	92
Figure 6.5	Summary of the final stabilization frequency value variation	
	in Thermal Maximum Scenario	95
Figure 6.6	Summary of the final stabilization voltage value variation	
	in Thermal Maximum Scenario	96
Figure 6.7	6.1.3.3 incident-Frequency variation at Biyagama 220kV bus	
	due to the generator (LVPS unit 01-260MW) tripping of 26% of	
	total system generation	97
Figure 6.8	6.1.3.3 incident-Voltage variation at New Anuradhapura 220kV b	us
	due to the generator (LVPS unit 01-260MW) tripping of 26% of	
	total system generation	97
Figure 6.9	Summary of the final stabilization frequency value variation	
	in Extreme Thermal Maximum Scenario	100
Figure 6.10	Summary of the final stabilization voltage value variation	
	in Extreme Thermal Maximum Scenario	101
Figure 6.11	6.1.5.3 incident-Frequency variation at Biyagama 220kV bus	
	due to the generator (LVPS unit 01-260MW) tripping of 26% of	
	total system generation	102
Figure 6.12	6.1.5.3 incident-Voltage variation at New Anuradhapura 220kV b	us
	due to the generator (LVPS unit 01-260MW) tripping of 26% of	
	total system generation	102
Figure 7.1	Summary of the complete case study	107

LIST OF TABLES

Table

Page

Table 3.1	Allowable frequency variation	17
Table 3.2	Allowable voltage variation	17
Table 3.3	Prevailing Under frequency load shedding scheme	18
Table 3.4	Features of different dispatch Scenarios	20
Table 3.5	Typical average demand values of different demand scenarios	
	under different dispatch scenarios in 2016	20
Table 3.6	Largest generator (LVPS) capacity percentages when	
	dispatched full load, during different demand scenarios under	
	different dispatch scenarios in 2016	21
Table 4.1	Generation status just before initiating the failure-study case 01	35
Table 4.2	Generation status just before initiating the failure-study case 02	41
Table 5.1	Study cases for Hydro Maximum Scenario	49
Table 5.2	Sample generator dispatch for the study cases of	
	Hydro Maximum Scenario	50
Table 5.3	Study cases for Thermal Maximum Scenario	63
Table 5.4	Sample generator dispatch for the study cases of	
	Thermal Maximum Scenario	64
Table 5.5	Study cases for Extreme Thermal Maximum Scenario	76
Table 5.6	Sample generator dispatch for the study cases of	
	Extreme Thermal Maximum Scenario	77
Table 7.1	Summary of the simulation case studies	105
Table 7.2	Summary of the complete case study	106

LIST OF ABBREVIATIONS

Abbreviation	Description
CEB	Ceylon Electricity Board
LECO	Lanka Electricity Company
GSS	Grid Sub Station
NCRE	Non Conventional Renewable Energy
LVPS	Lakvijaya Power Station
PSS/E	Power System Simulator for Engineers
КССР	Kelanitissa Combined Cycle Plant
WCP	West Coast Plant
GT	Gas Turbine
Gen	Generator
T/F	Transformer
SCC	System Control Centre
PS	Power Station
UFLS	Under Frequency Load Shedding
SCADA	Supervisory Control And Data Acquisition
DFR	Digital Fault Recorder
IPP	Independent Power Producers

LIST OF APPENDICES

Appendix	Description	Page
Appendix A	The map of Sri Lankan Transmission System in 2016	110