IN-RUSH CURRENT MITIGATION ON TOROIDAL TRANSFORMERS WITH COMPOSITE CORES

Warnakula Patabendige Thushan Sameera Perera

(149318P)

Degree of Master of Science

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2018

IN-RUSH CURRENT MITIGATION ON TOROIDAL TRANSFORMERS WITH COMPOSITE CORES

Warnakula Patabendige Thushan Sameera Perera

(149318P)

Dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical Installation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

March 2018

DECLARATION OF THE CANDIDATE AND SUPERVISORS

I declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

.....

Signature of the candidate (W. P. T. S. Perera)

Date

The above candidate has carried out research for the Masters dissertation under my supervision.

.....

Signature of the supervisor

Date

(Prof. J.P. Karunadasa)

ACKNOWLEDGEMENT

First of all, the pride, praise and perfection belong to the almighty alone.

Then, I would like to express my sincere gratitude to my supervisor Prof. J. P. Karunadasa for the continuous guidance given me to drive this research to the success, through motivation, enthusiasm and with his immense knowledge.

Further, I would like to pay my gratitude to all the lecturers engaged in the MSc course programme, for making our vision broader and providing us the opportunity to improve our knowledge in various fields.

Then I would like to extend my appreciation to the company I am currently working Noratel International (Pvt) Ltd. for providing the necessary research material and facilities required to complete this study.

Warmest thanks go to the prototype division of the company for the support given to me by sampling, which greatly helped me for the collection of required data.

Moreover, I appreciate the help given by my colleagues Sumith and Suresh in my work place and for the continuous encouragement throughout this post graduate programme and in the research work.

Finally my special thanks go to my wife, my mother, my father and my brother for their love, unwavering and resolute support during this eventful period.

W. P. T. S. Perera

ABSTRACT

Toroidal transformers play an important role in the transformer industry specially in high end applications due to their superior performance, over the conventional laminated transformers. But toroidal transformers lag in performance when comes to high power requirements, specially due to their extremely high inrush currents compared to the laminated transformers.

There are many options that can be used externally to the toroidal transformer to avoid this issue, but due to the reliability concerns, transformer based inrush current mitigation methods are always preferred in the industry. Conventional transformer based inrush current mitigation methods fall short on toroidal transformers, because those methods tend to mitigate their superior performance also, together with the inrush current.

The proposed transformer based inrush current mitigating method with composite cores will reduce the inrush current extensively, while protecting the typical superior performance characteristics of toroidal transformers. Also the proposed method will have better control over the inrush current than the conventional methods, while being competitive in the market.

The proposed method involves two cores; one is lower grade NGOSS (Non Grain Oriented Silicon Steel) core in the centre for the normal operation, and the other is higher grade GOSS (Grain Oriented Silicon Steel) core positioned around the NGOSS core with a controlled air-gap, for inrush current controlling purpose. Due to the uncut NGOSS core in the centre, the composite core retains high performance in the normal operation without compromising.

This dissertation includes practical development of the composite core together with silicon steel types CK37-35H300 and M0H-M103-27P, and then experimental testing on inrush current and finally converge the research findings for developing a new design guideline for the optimized solution, while discussing the cost and the manufacturing aspects.

TABLE OF	CONTENTS
----------	----------

DECLARA	TION OF	F THE CA	ANDIDATE AND SUPERVISORS	i
ACKNOW	LEDGEN	1ENT		ii
ABSTRAC	Т	•••••		iii
LIST OF F	IGURES.			viii
LIST OF T	ABLES	•••••		Х
LIST OF A	BBREVI	ATIONS.		xi
LIST OF A	PPENDI	CES		xii
Chapter 1	– INTRC	DUCTIO	DN	
1.1	Toroidal	l transform	ner construction	2
1.2	Motivati	ion to the	research	4
1.3	Objectiv	e of the re	esearch	5
Chapter 2	- INRUS	H CURR	ENT IN TOROIDAL TRANSFORMERS	
2.1	Theoreti	cal backg	round of inrush current	7
2.2	Toroidal	core		9
	2.2.1	Silicon s	teel	10
	2.2.2	Silicon s	teel on toroidal core	10
2.3	Saturatio	on inducta	nce and inrush current	12
Chapter 3	- RESEA	RCH DE	SIGN	
3.1	Existing	inrush cu	rrent mitigation methods	16
	3.1.1	NTC the	rmistor in primary winding	16
	3.1.2	Use of N	IGOSS	18
	3.1.3	Cut core	toroidal transformers	21
3.2	Propose	d compos	ite core concept for inrush current mitigation	23
	3.2.1	Design f	lux density	24
	3.2.2	Airgap s	ize in cut core	25
		3.2.2.1	Flux distribution in the composite core	26
		3.2.2.2	Calculation of saturation inductance Ls	30
		3.2.2.3	Calculation of inrush current	32

3.2.3 Uncut – Cut core cross-sectional area ratio	35
3.3 Importance Of Source Impedance On Inrush Current	35
3.4 Scope of the research	37
Chapter 4 - EXPERIMENTAL DATA COLLECTION	
4.1 Inrush current measurement on samples	38
4.2 Finding the optimum air gap for outer core	39
4.3 Summary of inrush current measurements	47
4.4 Inrush current measurements for different area ratios	48
Chapter 5 - ANALYSIS OF DATA	
5.1 Selection of optimum air-gap	50
5.2 Calculation of relative permeability	52
5.3 Calculation of inrush current for different core cross-sectional	
area ratios	53
5.4 Development of design tool for composite core	55
5.5 Comparison between measured and calculated inrush current	
values	57
Chapter 6 - RESULTS DISCUSSION AND MOTIVATION	
6.1 Comparison of electrical parameters	60
6.1.1 Comparison of inrush current values	60
6.1.2 Comparison of no-load current values	62
6.1.3 Comparison of reactive power loss	63
6.1.4 Comparison of active power loss	64
6.2 Use of recycle steel cores	66
6.3 Comparison of manufacturing aspects	67
6.3.1 Manufacturing of conventional cut core	67
6.3.2 Manufacturing of composite core	68
6.4 Comparison of mechanical parameters	69
Chapter 7 - CONCLUSION AND SUGGESTIONS FOR FUTURE	
RESEARCH	
7.1 Conclusion	72
7.2 Suggestions for future research	73

Reference List	74
Appendices	75

LIST OF FIGURES

Figure No.	Description	Page
Figure 1.1:	Inrush current transient waveform	2
Figure 1.2:	Toroidal transformer	3
Figure 1.3:	EI laminated transformer	4
Figure 2.1:	Graphical interpretation of inrush current with remanence	9
Figure 2.2:	Silicon steel mother coils	10
Figure 2.3:	BH characteristics for AISI CK37 (35H300)	13
Figure 2.4:	BH characteristics for AISI M-0H M103-27P	14
Figure 2.5:	BH characteristics for AISI M-5	15
Figure 3.1:	Typical characteristic curve for NTC	17
Figure 3.2:	Magnetization characteristics for GOSS-AISI Grade M5	18
Figure 3.3:	Core loss curve for GOSS-AISI Grade M5	19
Figure 3.4:	Magnetization characteristics for NGOSS 35H300	19
Figure 3.5:	Core loss curve for NGOSS 35H300	20
Figure 3.6:	BH loops before and after core cut	21
Figure 3.7:	Composite core arrangement	23
Figure 3.8:	Real manufactured composite core	23
Figure 3.9:	Variation of inrush current with outer core airgap	26
Figure 3.10:	Flux density distribution between Cut/Uncut cores	27
Figure 3.11:	BH curve for AISI M0H - M103-27P	28
Figure 3.12:	Experimentally calculated µH characteristic curve	28
Figure 3.13:	Extract of calculated µH characteristic	29
Figure 3.14:	Calculated Bµ characteristic	30
Figure 3.15:	BH loops at different air-gaps	33
Figure 3.16:	BH loop at deep saturation	34
Figure 3.17:	Inrush current measured with high source impedance	36
Figure 3.18:	Inrush current measured with low source impedance	37
Figure 4.1:	Test setup for inrush current measurement	38
Figure 4.2:	Variation of inrush current with outer core airgap	40

Figure 4.3:	Inrush current wave form TI-173622	40
Figure 4.4:	Flux density distribution of Cut/Uncut cores	41
Figure 4.5:	Variation of inrush current with outer core airgap	42
Figure 4.6:	Inrush current wave form TI-173618C	42
Figure 4.7:	Flux density distribution of Cut/Uncut cores	43
Figure 4.8:	Variation of inrush current with outer core airgap	44
Figure 4.9:	Inrush current wave form TI-173618D	44
Figure 4.10:	Flux density distribution of Cut/Uncut cores	45
Figure 4.11:	Variation of inrush current with outer core airgap	46
Figure 4.12:	Inrush current wave form TI-173618E	46
Figure 4.13:	Flux density distribution of Cut/Uncut cores	47
Figure 4.14:	Inrush Current (x Iload) Vs Steel cross-sectional area ratio	49
Figure 5.1:	Optimum air-gap to the cut core cross sectional area	51
Figure 5.2:	Relative permeability Vs Cut-core cross-sectional area	53
Figure 5.3:	Inrush Current (x Iload) Vs Steel cross-sectional area ratio	54
Figure 5.4:	Flow chart of Design tool	56
Figure 5.5:	Design tool	57
Figure 6.1:	Inrush current of composite / conventional designs	61
Figure 6.2:	No-load current of composite / conventional designs	63
Figure 6.3:	Reactive power loss of composite / conventional designs	64
Figure 6.4:	Active power loss of composite / conventional designs	65
Figure 6.5:	Recycle core including joints in steel strips	66
Figure 6.6:	Conventional cut core	67
Figure 6.7:	Composite core	68
Figure 6.8:	Humming test set up	70

LIST OF TABLES

Table No.	Description	Page
Table 3.1:	Flux densities at normal/inrush condition	27
Table 3.2:	Experimental test data on AISI M0H - M103-27P	29
Table 4.1:	Design parameters for TI-173622	39
Table 4.2:	Design parameters for TI-173618C	41
Table 4.3:	Design parameters for TI-173618D	43
Table 4.4:	Design parameters for TI-173618E	45
Table 4.5:	Summary of inrush current measurements	48
Table 4.6:	Inrush current measurements for different area ratios	48
Table 4.7:	Inrush current measurements for all samples	49
Table 5.1:	Optimum air-gap to the cut core cross sectional area	51
Table 5.2:	Relative permeability to the core cross sectional area	52
Table 5.3:	Comparison between measured and calculated inrush current	
	values	58
Table 6.1:	Inrush current measurements of composite / conventional	
	designs	60
Table 6.2:	No-load current measurements of composite / conventional	
	designs	62
Table 6.3:	Reactive power loss measurements of composite/conventional	
	designs	63
Table 6.4:	Active power loss measurements of composite / conventional	
	Designs	65

LIST OF ABBREVIATIONS

Abbreviation	Description
AC	Alternative Current
AISI	American Iron and Steel Institute
DC	Direct Current
EMI	Electro Magnetic Interference
GOSS	Grain Oriented Silicon Steel
Н	Height
ID	Inner Diameter
IEC	International Electrotechnical Commission
MMF	Magneto Motive Force
MPL	Magnetic Path Length
NC	Nano Crystalline
NGOSS	Non Grain Oriented Silicon Steel
NTC	Negative Temperature Coefficient
OD	Outer Diameter
RMS	Root Mean Square

LIST OF APPENDICES

Appendix	Description	Page
Appendix A:	Design simulations with ToroidEZE programme for designs	
	with steel area ratio Uncut : Cut – 1.0 : 0.7	75
Appendix B:	Design simulations with ToroidEZE programme for designs	
	with different steel area ratios	83
Appendix C:	Test equipment details	91