

Enhanced Service Oriented Software Framework for

Embedded Android

P.K.L.S.Wijesekara

158780A

Faculty of Information Technology

University of Moratuwa

May 2018

Enhanced Service Oriented Software Framework for

Embedded Android

P.K.L.S.Wijesekara

158780A

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the fulfillment of the requirements of Degree of Master of

Science in Information Technology.

May 2018

i

Declaration

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

Name of Student: Mr. P.K.L.S.Wijesekara

Signature of the Student: ____________________

Date:

Supervised by:

Name of Supervisor: Mr. C.P. Wijesiriwardhana

Signature of Supervisor: ____________________

Date:

ii

Dedication

I would dedicate this thesis to my beloved family members who have never failed to give

me a tremendous support, for giving all not only throughout my project but also

throughout my life as well. As well they teach me that even the largest task can be

accomplished if it is done one step at a time.

iii

Acknowledgement

I wish to express my eternally grateful and gratitude to my project supervisor Mr. C.P.

Wijeseriwardhana, Senior Lecturer, Faculty of Information Technology, University of

Moratuwawho untiringly shared his knowledge, precious guidance, encouragement,

advices and help given to complete the project successfully. Also, I thank to Prof A.S

Karunananda who gave me guidance and advices to complete the project successfully.

I am also grateful to previous researchers who have contributed to the domain of

embedded application developments, academic and non academic staff of Faculty of

Information Technology, University of Moratuwa and also batch mates who have given me

valuable feedbacks to improve the project.

Importantly I would like to thank my wife and my family members for the

encouragement and undying support not only throughout my project but also throughout

my life.

Finally, the support of University of Moratuwa is also sincerely acknowledged.

iv

Abstract

In early days, embedded systems were limited to apply in scientific researches and to the

devices which supported military requirements. Nevertheless the embedded systems are

much more popular in consumer electronic, cooking, industrial, automotive, medical and

commercial applications today. Current approaches to embedded system related software

development, is having lack of rich frameworks with service orientation to provide

freedom to access embedded system services. There for it is much more important to

develop service oriented software framework that has enhanced features to operate

embedded systems. Out of the embedded systems domain, the research has navigated to

select embedded android and its Linux kernel as the preferred system due to its popularity

and the availability of related resources. The approach to develop EmSOSwas based on

service orientation principles to deliver a software development framework.EmSOS is an

acronym for - Enhanced Service Oriented Software Framework for Embedded Android

We hypothesize that issue of having lack of rich frameworks with service orientation to

access embedded system services, can be addressed by introducing a rich framework.

This hypothesis been inspired by the power of service oriented architecture.

Several categories of users can be identified for EmSOS. They are software architects,

software engineers, System analysts, embedded system developers, and also researchers

of embedded systems domain.

v

Table of Contents

1. Prolegomena ... 1

1.1 Prolegomena ... 1

1.2 Aim and objectives ... 2

1.3 Background and motivation ... 3

1.4 Problem in brief .. 3

1.5 Solution in brief .. 4

1.5.1 Users ... 4

1.5.2 Input .. 4

1.5.3 Output ... 4

1.5.4 Process .. 4

1.5.5 Technology ... 5

1.5.6 Features ... 5

1.6 System requirements .. 6

1.7 Structure of the Thesis.. 7

2 Current issues of embedded systems .. 8

2.1 Introduction .. 8

2.2 Gestation of software frameworks ... 10

2.3 Summary .. 11

3 A framework beyond android APIs .. 13

3.1 Introduction .. 13

3.2 What is a software framework ... 14

3.3 Service oriented architecture .. 14

3.4 Micro services .. 15

3.5 Summary .. 15

4 Service oriented software approach to embedded systems 16

4.1 Introduction .. 16

4.2 Hypothesis .. 16

4.3 Input ... 16

vi

4.4 Output ... 16

4.5 Process .. 17

4.6 Summary .. 18

5 Design and Implementation .. 19

5.1 Introduction .. 19

5.2 Core service .. 20

5.3 Outcomes service ... 20

5.4 Configuration and linking service .. 21

5.5 Implementation... 23

5.6 Core service .. 23

5.7 JSON outcomes service .. 25

5.8 Controller Logic ... 25

5.9 Configuration and linking service .. 27

5.10 Summary ... 27

6 Evaluation ... 28

6.1 Introduction .. 28

6.2 Functionality testing ... 28

6.3 Developer testing.. 30

6.4 Security test .. 33

6.5 Summary .. 33

7 Conclusion and future work .. 34

7.1 Introduction .. 34

7.2 Limitations ... 34

7.3 Future developments .. 34

7.4 Summary .. 35

vii

List of Figures

Figure 2-1Structure of an android system ... 10
Figure 2-2Structure of an embedded Linux system .. 11
Figure 3-1 a sample diagram of a software framework .. 14
Figure 2.1 Finalized design of Core service module .. 18
Figure 5-1-Top level architecture of EmSOS ... 19
Figure 5-2Component diagram of EmSOS Software framework 22
Figure 6-1 jUnit tests .. 31
Figure 4 Coverage chart with the development commits which has done with version
controlling tool. (Git) .. 39
Figure 9 Test class of System test in test driven development .. 40
Figure 6 jUnit test results .. 41
Figure 11 HardwareController class ... 42
Figure 12 Configuration and linking settings ... 43
Figure 9 Configuration and linking settings ... 44
Figure 10 a sample JSON result of API .. 47

viii

List of Tables

Table 2.1 summary of identified issues .. 12
Table 5.1 Packages of EmSOS .. 24
Table 5.2 Java classes of services ... 25
Table 6.1 a functionality test case ... 29
Table 6.2 Entire set of functionality tests ... 30
Table 6.3 coverage .. 32
Table 6.4 Controller test results .. 32
Table 6.5 Security scan results.. 33
Table 6 Security Scan results of code base ... 46
Table 7 API Documentation ... 48

1

 Chapter 1

1. Prolegomena

1.1 Prolegomena

Enterprise software always focuses on enhanced features to be added in to previously

released versions [3]. Over the last decade, most of the software applications have grown

to a level where they are difficult to be maintained and the complexity has increased to

integrate with other applications [4]. Therefore it’s time to migrate legacy applications in

to distribute and SOA based solutions. The same concern is valid for embedded software

which has covered a considerable area of software domain through mobile devices such

as smart phones, Printers, Tablet PC and GPS navigators [2]. It is evident that there is

quiet lot of identified problems to be sorted in the domain of embedded software. One of

the identified problems is power constrain in embedded system [1]. There have been

number of researches that have conducted to include power consumption feature in to

embedded software and still the researches are going on to enhance the feature. That is

not only but also there is a problem of fulfilling dynamic requirements that are coming

from the industry to embedded systems [1]. The other important problem to be addressed

is there is lack of developer support to access the functionalities of peripherals to access

through networks and process scheduling and controlling remotely [2]. It has identified

that there are plenty of requirements to remotely executable system calls of embedded

systems [12, 13, 14].

The growth of embedded software has significantly increased during the last decade.

Today it is evident to see that embedded software are distributed and designed in a

manner to support dynamic requirements [7]. Embedded software can be considered as

one of the major components of large mechanical and electrical systems and the heart of

the mobile devices like GPS navigators, tablet PCs, mobile phones. Together with the

hardware of the device, embedded software provides controlling capability with greater

device functionality. In recent years a movement from distributed systems to automatic,

autonomous, and self-configuring systems is noticeable [3]. SOA approach is capable of

2

addressing issues of service addressing, announcement, service discovery and registering

and looking up for a service registry.

1.2 Aim and objectives

Aim

The aim of the research project is to design and implement a service oriented software

framework that has enhanced features to develop applications for embedded systems

based embedded android and embedded Linux distributions.

Objectives

1. Critical review of literature in the approaches to develop embedded systems. (Problem

related)

2. In depth study of technology used in approaches to develop embedded systems.

3. Design and develop a prototype Framework for embedded systems development.

4. Evaluate the use of the application of Framework for embedded systems development.

5. Prepare the documentation and provide complete guide line for the framework of the

project.

3

1.3 Background and motivation

Widely used kernals to develop embedded systems were Linux and contra in the 90 s But

due to the factors like robustness, customizability and availability of resources, the Linux

have become more popular among all other kernals[3].Embedded Linux have come to a

key point of success after releasing android official versions by goggle in 2008.This

could make a rapid change in the market of mobile phone industry after an year of initial

release of the OS. It was evident to see that the Nokia had stop releases of the Symbian

OS due to the popularity of the android in the market at 2012.All of the mobile phone

vendors have come to a conclusion of going with customized embedded android instead

of other systems. Embedded android were powerful to work in an ARM processor

environment even rather than windows mobile [2].

It is important to consider the resource availability of embedded devices hence they are

unlike personal computers that are capable of upgrading resources as required.

Technologies such as OpenService Gateway Initiative (OSGi), Home Audio/Video

Interoperability (HAVi), Java Intelligent Network Infrastructure (JINI) and Universal

Plug and Play (UPnP) have tried out different approaches to introduce SOA based

solution with lot of difficulties [4].

1.4 Problem in brief

It is evident to see that identified problem of issues in platform dependencies, high

complexity to the developer, additional learning curve of a novel embedded system to the

developer and also issues of scalability due to resource constrains are highlighted as the

problem to be addressed in the research.

4

1.5 Solution in brief

1.5.1 Users

Several categories of users can be identified for EmSOS. They are software architects,

software engineers, System analysts, embedded system developers, and also researchers

of embedded systems domain.

1.5.2 Input

Inputs for the approach, initializes with the architectural design of the intended

framework. The architectural design defines components of the framework and the way

they should be integrated together. Itneeds to provide JDK,android development studio

and operating system. Planned operating systems for testing were .Type of embedded

devices targeted is mobile phones, printers, tablet PCs and smart TVs.

1.5.3 Output

Output of the research consists of EmSOS framework, developer guide and also a test

environment for framework validation. Also a documentation to access end points.

1.5.4 Process

Development process of EmSOS is based on a Java development. This process will be
converting the architectural design of the framework in to a code base which provides
web services. This development consists of number of java micro services to manage as a
combination of smaller services that works cohesively together for larger, application-
wide functionality. Those micro services will be deployed in a third party server
likeNanohttpdor tomcat web server.

The process of the framework development includes J2EE framework development
andframework configurations.

5

1.5.5 Technology

Technologies to be developed the framework is based on Java 8.The framework consists

of micro services which structure loosely coupled services for consumers. The project

refers to an application building frameworks of gradle and spring java micro services.

These building frameworks are necessaries to develop most of the application and other

frameworks in current generation. The selected embedded operating systems to develop

and test are Linux kernel 2.6, embedded android 6.0, 7.0, 8.0 and Windows 7, windows

10.Entire development process is a test driven development using jUnit to ensure

maximum code coverage. Even though the development minimizes possible security

issues by adhering to OWASP version 1.2.1 released in 2017. The coding standards have

adhered to software engineering best practices. The coding stage was done with continues

integration continues deployment, Standardizing the code to security by scanning the

code using sonar framework. Version controlling of the software has done by referring to

a git repository with a master branch for releases and three other branches as

development, bug fixes and security fixes. Once an issue has identified, it has fixed under

issue fix branch or under security fixes branch. Then the code has merged in to

development branch. Final release has done by merging development branch to master

branch of the git repository. The entire development was a test driven development with

unit testing which is done by referring to Junit 4.

1.5.6 Features

This system has many encouraging features as follows.

 Easy integration

 Service oriented

 Micro services

 Web-based

 Easy accessible

 Low cost

6

 Secure connectivity

 Accessibility to system calls

1.6 System requirements

Hardware Profile 1

RAM : 2048 MB (minimum)

Supported device status: Portrait, Landscape

Sensors: Accelerometer, Gyroscope, GPS, Proximity sensor

CPU : ARM 64 bits

Hardware Profile 2

RAM: 2048 MB (minimum)

Supported device status: Landscape

CPU: ARM 64 bits

Software

Embedded android 6.0, 7.0, 7.1 and 8.0

Android development studio 3.0 or higher

Eclipse 4.7.2 or higher

Tomcat web server 8.1 or higher

7

1.7 Structure of the Thesis

This thesis has been structured with 8 chapters. Chapter 1 presents the overall picture of

the thesis. Chapter 2 is on critical review of literature in approaches to embedded system

development by defining the research problem and identification of technology to be used

to address the research problem. Chapter 3 gives an in depth study of technology used for

frameworks for embedded systems development with a particular emphasis on service

oriented architecture. Chapter 4 describes the novel approach to embedded system

development framework using the service oriented architecture. Chapter 5 discusses the

top level architecture of the novel framework. Chapter 6 talks of implementation of the

framework presented in the design chapter. Chapter 7 is on evaluation. Chapter 8

concludes the thesis with the note on limitations and further work for this research.

8

Chapter 2

2 Current issues of embedded systems

2.1 Introduction

The embedded software is capable of controlling a full set of electrical components such

as microprocessors, signal processors, RAM, graphic processors, input output devices

and many more. This software can be seen as embedded software operating systems and

they have been highly specialized to perform relevant operations of the device. The

operating systems like embedded Linux have played a big role in the domain of

embedded software for years [2]. Embedded systems in consumer electronics have used

Linux kernel to operate smart TV s, Networking equipments, industrial automation,

medical instruments, personal video recorders and devices like printers in general.

However the brand name android has recently became more popular within the family of

embedded software. Android was already an embedded operating system since its root

stemming from embedded Linux [6].

Even though embedded software has passed years in the industry, still there seems to be

no proper software framework to access complete set of functionalities of the device

through web services. It is evident to see that there have been no proper researches to

cover the identified problem of accessing resources like CPU, network interfaces,

display, USB devices and memory through web services[10]. There is a valid problem to

provide a language independent solution for developers to minimize the difficulties of

integrations. Embedded systems are having constrains of sharing resources of one device

to be accessed by others due to reasons like difficulties of providing security [11]. The

risk is higher to expose resources without having a proper security mechanism due to

situations like hacking attacks.

When considers the resource limitations of hardwire, it additionally requires scalability.

The existing mechanisms to connect embedded systems such as embedded networks are

still having issues in error detection and recovery in a node failure [5]. Embedded

9

systems needs to be customized for every single installation based on the hardware it

resides. The customization is too costly and time consuming. Even though the embedded

networks built for automation purposes contains nodes with a broad range of different

capabilities. This heterogeneity requires tools that are capable of developing applications

without having prior knowledge of the hardware configurations. Below are the identified

issues in embedded network application development.

• Heterogeneous hardware from various vendors

• Run-time adaptability

• Life cycle management

• Distributed execution of applications

• Resource efficient data processing

• Scalability to capabilities of the underlying hardware

• Error detection and recovery

• End-user programmability

• Automation support for installation and configuration

• Web service based interface for communication with external services

• Semantic support for enterprise integration

The solution to address the problem is a service oriented software framework that has

enhanced features to operate embedded android and Linux systems [7]. The proposed

framework is capable of providing endpoints where the services of embedded android to

be accessed by consumer applications[9]. These endpoints can be integrated to another

application to access the devices and access resources of the service provider. The

framework provides freedom to application developers to build applications that are

capable of controlling hardware resources in their favor [12, 13].

2.2 Gestation of software frameworks

Birth of research in

recent three decades embedded systems has shown multifaceted developments (growing

interest) in many disciplines

people have produced the first reported embedded system applications in web

[2]. This embedded system application was developed to run on Mobile devices.

Subsequently, numerous applications in embedded systems were developed by many

researches [3]. For instance

sensor network. This application used a light weight java platform which specially

designed for systems with limited resources

done a similar research for rob

platform. It should be noted that these applications are rather industry based and

complex in nature.

In contrast, embedded systems in consumer electronics have also been introduced by

many researches [3, 4, 8

home appliances. The rapid growth of IOT [7] has made it required for home appliance

to communicate through web services.

Gestation of software frameworks

Birth of research in software framework researches date back to early 1990.[4]In the

recent three decades embedded systems has shown multifaceted developments (growing

interest) in many disciplines [15, 16]. Undisputedly According to the literature, perhaps

d the first reported embedded system applications in web

]. This embedded system application was developed to run on Mobile devices.

Subsequently, numerous applications in embedded systems were developed by many

. For instance people have applied embedded systems for the domain of

sensor network. This application used a light weight java platform which specially

designed for systems with limited resources [14]. That’s not only but also people have

done a similar research for robotics. However, this work has used slightly powerful java

platform. It should be noted that these applications are rather industry based and

In contrast, embedded systems in consumer electronics have also been introduced by

, 4, 8]. These applications are primarily targeted for automation of

home appliances. The rapid growth of IOT [7] has made it required for home appliance

to communicate through web services.

Figure 2-1Structure of an android system

10

software framework researches date back to early 1990.[4]In the

recent three decades embedded systems has shown multifaceted developments (growing

. Undisputedly According to the literature, perhaps

d the first reported embedded system applications in web services

]. This embedded system application was developed to run on Mobile devices.

Subsequently, numerous applications in embedded systems were developed by many

people have applied embedded systems for the domain of

sensor network. This application used a light weight java platform which specially

. That’s not only but also people have

otics. However, this work has used slightly powerful java

platform. It should be noted that these applications are rather industry based and

In contrast, embedded systems in consumer electronics have also been introduced by

]. These applications are primarily targeted for automation of

home appliances. The rapid growth of IOT [7] has made it required for home appliance

2.3 Summary

 Through a large enough literature survey which has conducted, it has identified that there

are plenty of issues in embedded application development and in embedded systems

domain. In recent years, the functions demanded for embedded systems have grown so

numerous and complex that development time is increasingly difficult to predict and

control. This complexity, coupled with constantly evolving speci

designers to consider intrinsically

For this reason, and

expensive and time-consuming

Figure

Through a large enough literature survey which has conducted, it has identified that there

are plenty of issues in embedded application development and in embedded systems

In recent years, the functions demanded for embedded systems have grown so

numerous and complex that development time is increasingly difficult to predict and

control. This complexity, coupled with constantly evolving speci

designers to consider intrinsically and agile implementations. They can change rapidly.

 also because of the hardware-manufacturing cycles are more

consuming. They have been summarized as below

Figure 2-2Structure of an embedded Linux system

11

Through a large enough literature survey which has conducted, it has identified that there

are plenty of issues in embedded application development and in embedded systems

In recent years, the functions demanded for embedded systems have grown so

numerous and complex that development time is increasingly difficult to predict and

control. This complexity, coupled with constantly evolving specifications, has forced

implementations. They can change rapidly.

manufacturing cycles are more

have been summarized as below.

12

Table 2.1 summary of identified issues

Product
Project

Technologies used Positive Features Negative
features

A.Scholz[4] Service Oriented
Architecture
middleware

Efficient in application
execution

Not
applied in
data
stream
manageme
nt system

Birrer, V. Cechticky,
A. Pasetti, and O.
Rohlik

a tool called
XWeaver

A new synchronization
Mechanism,
An optimized
algorithm

reducing cost of
embedded software
development

Tested
only for
selected
embedded
systems.

DPWS toolkit
implementation
based on C and
gSOAP[5]

Java service platform offers plug-and-play as
well as Quality-of-
service QoS capabilities

semantics
of a
service
are not
clearly
specified

functions demanded
for embedded
systems[6]

New platform to merge
embedded systems

Increased flexibility Hardware
manufactu
ring is
more
expensive

Daquan Feng, Chenzi
Jiang, Gubong Lim
[4]

a universal standard for
embedded systems

Efficiency Costly

Service oriented
architecture based
connectivity of
automotive ECU

Ethernet
SOME/IP

Higher
bandwidth,scalability,re
usability

Costly

Integrated
development of
embedded software

HDSP platform Powerful than existing Costly

A runtime resource
architecture for
embedded systems

JVM
LINUX OS /API

Easy access, less
maintenance cost

Implement
ation is
costly

13

Chapter 3

3 A framework beyond android APIs

3.1 Introduction

Typical Android provides a rich application framework that allows a developer to build

innovative apps and games for mobile devices in a Java language environment.

Nevertheless it does not provide enhanced API s to access services of the android OS to

be accessed through a network. E.g. through a WLAN. This research reveals that it's

possible to provide service orientation with security and with platform independency. We

adhere to java micro services to minimize the complexity of the application through

modularity. This approach will support anyone who wants to develop a web based

solution without hosting the application inside the android application. It simply requires

http or https connectivity to access the device. That’s not only but also the framework

provides facility to override libraries or include additional API s to cater any specific

requirement which has not covered in the scope. There the developer has to refer to the

provided documentation and deploy a new micro service by including the given Core

micro services of the framework.

It is evident from the literature that the embedded systems have moved from scientific

and medical equipments to household appliances today [7]. They have been designed to

run as single task environments with aimed to perform one operation at a time

.Embedded systems which were available in medical equipments were not having

capabilities like network communications [4]. Later on the embedded systems have

innovated to perform multi tasking at run time [17]. Embedded symbian was one of the

famous systems which have been developed by nokia with an aim of reaching higher

number of customer base around the world [8]. In early days, development of embedded

systems happened to be a programming exercise on C language oriented kernels [18].

Since then, the development of embedded systems, have gone through multiple phases

[6].

14

3.2 What is a software framework

Software framework is software written to support developers. It is a skeleton, a complete

set of tools that was built with the purpose of allowing developers to focus on one or

more specific tasks. Developers can take that skeleton and build their application on top

of it [16].

Figure 3-1 a sample diagram of a software framework

3.3 Service oriented architecture

Service-oriented architecture (SOA) is a software development model for distributed

application components that incorporates discovery, access control, data mapping and

security features [19, 20].

15

3.4 Micro services

Micro services refer to an architectural approach that independent teams use to prioritize

the continuous delivery for single-purpose services. The micro services model is the

opposite of traditional monolithic software which consists of tightly coupled modules that

ship infrequently and have to scale as a single unit. Although the monolithic approach

works fine for some organizations and some applications, micro services is becoming

popular with companies that need greater agility and scalability [14].

Java

Java is a robust programming language which is capable of providing solid solutions in

software development industry. The entire development was based on java version 1.8.0.

3.5 Summary

This chapter describes the required technologies to learn and implement the proposed

framework. These technologies become tools to develop the entire solution.

16

Chapter 4

4 Service oriented software approach to embedded
systems

4.1 Introduction

This chapter describes our approach to embedded systems development, EmSOS, with

the use of service oriented software technologies. EmSOS is an acronym for Embedded

systems with Service Oriented Software. We present our approach by highlighting the

hypothesis, input, process, users, and features of the EmSOS.

4.2 Hypothesis

We hypothesize that issue of unavailability of a robust software framework for embedded

system development can be overcome by introducing enhanced service oriented software

architecture. This hypothesis been inspired by the power of service oriented architecture

as a paradigm for development of software framework.

4.3 Input

Architectural design of the intended embedded system is the major input for the research.

It defines modules and their connections. Also needs to provide JDK framework,

operating system. The operating system has been limited to embedded android at the

moment. Type of embedded devices targeted (mobile phones, printers, tablet PCs etc).

4.4 Output

Major output of the research is Enhanced Service Oriented framework .The framework

supports the development of embedded system application for any embedded device that

is running Linux and embedded android. The embedded system framework, EmSOS can

generate a jar file to run on any ARM processor of an embedded device. User guide for

EmSOS is also built in to the framework. There is also test bed to evaluate or validate an

17

embedded system developed before deploying to the target embedded system device. In

summary, output of EmSOS includes the following components.

 EmSOS framework

 Developer guide

4.5 Process

Development process of EmSOS is based on a Java development. This process will be

converting the architectural design of the framework in to a code base which provides

web services. This development consists of number of java micro services to manage as a

combination of smaller services that works cohesively together for larger, application-

wide functionality. Those micros services will be deployed in a third party server like

Nanohttpd Embedded web server.

The architectural design for the proposed framework has designed by taking decisions on

the results of technical analysis. There the existing frameworks and also the layers of

embedded Linux have taken to the consideration. This analysis could identify that the

kernel is the core component which we have to deal with instead of dealing with

customized libraries like android run time. The analysis deeply went through the kernel

components and system calls. Finally it has decided to develop a core module to deal

with the system kernel to cater consumer requests and manipulate the embedded system

logic. Although the outcome service component has included to the design to receive the

consumer requests and convert them for core service. That is not only but also the

outcome service is capable of providing a developer friendly output for every service call.

This has designed to provide a well structures JSON response with required headers.

Then the design has taken to the next step of selecting suitable technologies and

preparing an implementation plan. The selected technologies were Java as the

programming language, spring framework for build support and micro services for every

component.

The implementation was a test driven development to make sure each unit has tested and

released with minimum number of errors.

18

Figure 2.1 Finalized design of Core service module

4.6 Summary

This chapter includes the entire approach of the proposed framework to be completed at

the implementation. It has defined that approach is continues process to input, process

and output.

Kernel calls and responses

Core service module

Logical
Module

System

Libraries

Linux Kernel

Library call + System

System responses

19

Chapter 5

5 Design and Implementation

5.1 Introduction

This chapter presents the design to develop EmSOS. For this purpose, we present high

level design with the components of the EmSOS. The framework consist three major

components, namely core service, outcomes service module and configuration and

linking service module. In this chapter we describe role of each module, connection

among there modules within the top level architecture of EmSOS. Among other modules,

EmSOS API and Core service are specific in this design.

EmSOS top level architecture has been designed with three modules namely core service,

outcomes service module and configuration and linking service module.

EmS

Linux kernel

/android
kernel

EmSOS Core
service

EmSOS
outcomes
service Configuration

and linking
service

Consumer
Application

System call

System call response

Rest calls

JSON
response

Load
configuration
s

Controller calls

Respo
nses

Figure 5-1-Top level architecture of EmSOS

20

5.2 Core service

Core service receives information and executes required system calls of operating system

kernel. This service has designed to communicate with outcomes core service to receive

client requests. These requests may include memory details, CPU, sensor data or any

other resource related data for processing. Having received that information, the core

service initializes the libraries that are required to connect with base operating system.

Core service offers a set of services which are commonly used in major embedded

software system calls. The output of the core services is guided by the different libraries

and system logics. Design of the core service is having java interfaces that are having

abstract methods for implementations of system logic. The interfaces are designed to

implement classes for set of identified hardware and also for every operating system

kernel that targets to be run the framework. This design is capable of including new

interfaces for new hardware components that may arrive in future.

5.3 Outcomes service

This service has specifically designed to reduce the complexity that has to be managed by

the embedded system developer in working with different system resources. Importance

of the outcomes service is the simplicity of the request calls and output. Any programmer

with little knowledge in embedded systems can proceed to develop the code by referring

to the API documentation. This service has designed to provide simple REST calls with

minimum number of headers and return JSON formatted text to the user. The output of

the outcomes service would be a kind of template for programming for the intended

embedded system application. Programmer can extract required data from JSON objects

for processing. This service includes an authentication logic which has designed to

provide security for service calls that are reaching the service from consumers.

This is a module consists of a service logic to be carried out for every REST service call.

The module will process the request that has received from client and validate it at the

beginning. Once it has validated, the requested service will be executed. There it refers to

the above core service to communicate with operating system layer. Then the service

logic will return the received outcome from core service to the user.

21

5.4 Configuration and linking service

This module consists of major configurations for EmSOS core service which needs to be

load at the run time at the entire API. The structure of the configuration can be modified

as it required to be loaded for new libraries that can add in future. Entire configuration is

saved in config.xml file if the service.

22

Figure 5-2Component diagram of EmSOS Software framework

23

5.5 Implementation

Implementation of EmSOShas based on the design explained in the previous chapter. The

framework consists of major two modules as and one minor module. They are as per

below

Major modules: Core service, JSON outcomes service

Minor module: Configuration and linking service

Implementation of the major modules have done as micro services which provide

capability to include future requirements that might arrive based on the developers

requirement. JSON outcomes micro service has referred to core micro service to access

system logic and system calls of operating system kernel. The framework provides an

API to developers. Every core module has implemented in java and JSON outcomes

service module specially referring to the spring framework for java development. API has

implemented to be published as .jar library which can be integrated to embedded systems

development. The .jar files can be included in to an embedded project in IDE s like

eclipse. The API runs as a web service which runs on a web application server.

5.6 Core service

The core service has implemented as below java packages to execute the system logic

and communicate with libraries.

24

Package Activities
emsos Provides accessibility to OS information

and Hardware profile

OS related : OS type, Build version,
Hardware profile : Manufacturer , model
, description , version , serial number

Firmware Related : manufacturer ,
description, version, name , release date

emsos.hd.hardware Provide accessibility to CPU, Display,
Memory Disks, NIC (interfaces), Sensors,
Power and USB Devices

Emsos.com Abstract layer to work with other classes
emsos.hd.plt.linux Provide accessibility to power, memory

and CPU which contains Linux systems.
E.g android, ubuntu core

emsos.hd.plt.unix.solaris Provide accessibility to power, memory
and CPU which contains solaris

emsos.hd.plt.unix.windows Provide accessibility to power, memory
and CPU which contains windows. E.g :
windows mobile

emsos.hd.plt.unix.freebsd Provide accessibility to power, memory
and CPU which contains BSD Unix

emsos.hd.plt.unix.macos Provide accessibility to power, memory
and CPU which contains macos

emsos.jna.* Provides Java Native Access libraries
emsos.json.* Provide JSON formatted text for REST

calls to get above OS access
emsos.sw.os Provide cross platform accessibility for

retrieve process, file systems, OS
emsos.util Access utilities for parsing and formatting
emsos.jna.plt.win.com An special utility to access windows COM

objects
emsos.util.plt.* Provide utility access for different

platforms.

Table 5.1 Packages of EmSOS

25

5.7 JSON outcomes service

This micro service has specifically implemented to receive service calls from consumer

and return a json output. AbstractJsonObject class has implemented as the initial

inheritance to child classes which contains service logic to format strings to json.

HardwareInfoController class contains all of the rest controllers that are required to

execute. This controller receives GET requests including a header which is user-agent.

Based on the header value controller executes the required logic which is available in

Core service module through an intermediate layer. This layer has a series of java classes

to access different services as below.

emsos.json.util Provide special utility methods for json
emsos.json Json formatter package
emsos.json.hardware Format hardware oriented outputs to json

format
emsos.json.hardware.impl Implementation package for hardware

package
emsos.json.os format operating system related output to

json format
emsos.json.os.impl Implementation package for OS package

Table 5.2 Java classes of services

5.8 Controller Logic

HardwareInfoController class contains four methods to cater the service logic of the API.

There the method getOsInfoInJSON() method maps to the request that may arrive as web

service calls. This method capable of accepting GET requests with get headers of User-

agent, auth-key, req-type. User-agent header has defined to pass different parameters to

access hardware and software resources of the embedded system. Auth-key parameter

carries authentication key that is required to access API. User-agent parameter can access

different logics which has implemented to access resources and process system calls. If

the requirement is to access CPU resource details of the system, the consumer has to pass

parameters as per below

26

Below is a sample request to get CPU relation data.

Request-type= GET

User-agent=cpu

Auth-key=abnbddjxxiuiuo%676598iuoi788787ssjhjhxxhjshkjhfe78erhjkxhjxhdjds (sample
key of 256 character length)

Req-type=null

27

5.9 Configuration and linking service

This module is capable of the required configurations for development environment. This

contains the module wise configurations to be loaded at the run time. The implementation

of this module can be changes according to the future requirements of a developer. The

current configurations are available in config.xml and assembly.xml files to be loaded at

the runtime of the API. This module has the adoptability for future changes that can arise.

5.10 Summary

The design of the framework has done based on the analysis done to cater identified

issues to be addressed in the proposed solution. The modularity has introduced to reduce

the complexity and the micro services have included managing scalability of the system.

28

Chapter 6

6 Evaluation

6.1 Introduction

The chapter 6 discussed the detailed implementation of each module mentioned in the

proposed solution. This chapter justifies the method of evaluation to entire EmSOS

framework. The classification of testing has done in to four categories as developer

testing, functionality testing, security testing and a design and a code review by industry

experts.

6.2 Functionality testing

Functionality test includes selected use cases of API calls that has done as web service

calls. The Postman tool has used to test service calls with selected parameters and

expected results. One of the defined test cases is as per below.

Project name EmSOS

Test case 1

Test Name CPU resources

Description This test has conducted to retrieve CPU
related information for application
development.

Input data

Expected Results

Actual Results

 Notes

url:
http://localhost:8080/outcomes-
json/v1/

user-agent: cpu
auth-key :
787aajdkjakjl7\7dfd\7\f
@@
fdfd4fsfjksjkjds5459405

Detailed CPU
information

 "name": "Octa-core
(4x2.0 GHz Cortex-
A53 & 4x1.0 GHz
Cortex-A53) ",

"physicalProcessorCou
nt": 4,

Result was
providing
developer
data

29

09ueoi "logicalProcessorCount
": 4,
 "vendor":
"GenuineIntel",
 "vendorFreq":
2900000000,
 "processorID":
"BFEBFBFF000906E9
",
 "identifier": "Intel64
Family 6 Model 158
Stepping 9",
 "cpu64bit": false,
 "family": "6",
 "model": "158",
 "stepping": "9",
"systemCpuLoadBetwe
enTicks":
0.11179365849633661,

"systemCpuLoadTicks"
: [
 250965906,
 0,
 185362429,
 3478292781,
 0,
 936181,
 530562,
 0
],

Table 6.1 a functionality test case

30

Selected test cases are as per below.

Test case name Functionality / Description
CPU resources To test CPU resources like cache, clock

speed, cores test
System status Entire embedded OS related parameter test
Running processes Access running processes with process ID
Access power resources Access Battery or other power related

information test
Sensor Access available sensor test
Display Access display parameters test
Network parameters Access network interfaces and related ports

test
File system Access file system test
Disk access Access internal storage and resources
USB port USB plugged devices.
Power sources Access battery related information

Table 6.2 Entire set of functionality tests

6.3 Developer testing

Developer testing has done as a unit test and an integration test. Each unit has tested for

expected outcome with inserted input values for parameters. There the method of each

implementation class has been thoroughly tested. The referred unit tests have been done by

jUnit testing framework.

31

Below are some of the jUnit tests that have written to test.

Figure 6-1 jUnit tests

32

Above unit tests are capable of testing the application logic of each and every method of

implemented java classes. That’s not only but also written jUnit tests, able to measure the

coverage of the application logic of java classes. The coverage was as below.

Metric Indication Reached
Level
(Result)

Unit Test
Coverage

For new projects : value should be greater than 82 %
For already implemented codes
(Legacy applications) : value should be greater than 60 %

92.3 %

Code
complexity
coverage

Depends on the nature of the application 67.25 %

Table 6.3 coverage

Detailed test results of Controller class

Package

Coverage Covered

Instructions

Missed

Instructions

Total

Instructions

emsos

Controller

94.3%

492

63

555

Table 6.4 Controller test results

33

6.4 Security test

Entire code base has been tested for security issues to make sure that code is up to the

standards. This was a security scan which is done by tool “sonar lint”. This tool aligns

with OWASP standards for application security. The source code has continuously

improved by referring to the results provided by the security scanning tool. Final results

of the security scan are as below.

Security Analysis Results
Coverage 87.50%
Line Coverage 87.20%
Condition Coverage 90.00%
Bugs 1.3 %

Table 6.5 Security scan results

6.5 Summary

Evaluation of the entire implementation against objectives has covered in this chapter.

Each module has tested with development test, functionality test and a security scan.

34

Chapter 7

7 Conclusion and future work

7.1 Introduction

Previous chapter briefly explained the method of evaluation with performed tests. This

chapter provides the conclusion to the entire research which has conducted in providing

the enhanced service oriented framework for embedded android.

7.2 Limitations

This research does not cover the devices that are not capable of running embedded Linux

or embedded android kernels. That’s not only but also the framework doesn’t support

embedded devices that are not capable of running a web application server. Hence the

web server is a major component in service orientation, it’s mandatory to run a web

server to deploy the EmSOS API to run. Also framework does not cover capabilities such

as accessing UI components; accessing shell commands in Linux systems and any

capability which doesn’t aligning with addressed problem.

7.3 Future developments

Future developments can be implemented to provide solutions to other problems that has

identified in literature survey. The research can be further develop to track application

development life cycle management and also for resource efficient data processing. It is

identified that embedded networks are having issues in error detection and recovery in

small network communications. Therefore the research can be improved to cover those

embedded networks related issues. Today frameworks are having capabilities of

providing automation support for installation and configuration in applications. This also

becomes a great feature to be implemented to minimize deployment effort of embedded

applications.

35

7.4 Summary

This chapter concludes the thesis by describing the solution which has given to the

identified problem of issues in platform independency , reduce complexity of the

developer, reduce the learning curve of a novel embedded system to the developer and

also sort out the scalability issues due to resource constrains. Therefore the outcome API

and documentation of the entire research becomes an enhanced framework.

36

Reference

[1] Cheju halla University, S. H. Moon, C. sick Lee, and Cheju halla University,
“Dynamic Management Software Design in Embedded System using Middle,” 2014,
pp. 186–191.

[2] E. Zeeb, A. Bobek, H. Bohn, and F. Golatowski, “Service-oriented architectures for
embedded systems using devices profile for web services,” in Advanced Information
Networking and Applications Workshops, 2007, AINAW’07. 21st International
Conference on, 2007, vol. 1, pp. 956–963.

[3] A. Scholzet al., “∈ SOA-Service Oriented Architectures adapted for embedded
networks,” in 2009 7th IEEE International Conference on Industrial Informatics,
2009, pp. 599–605.

[4] D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo, “A network-centric
approach to embedded software for tiny devices,” in International Workshop on
Embedded Software, 2001, pp. 114–130.

[5] W.-T. Tsai, X. Sun, and J. Balasooriya, “Service-Oriented Cloud Computing
Architecture,” 2010, pp. 684–689.

[6] G. L. Gopu, K. V. Kavitha, and J. Joy, “Service Oriented Architecture based
connectivity of automotive ECUs,” in Circuit, Power and Computing Technologies
(ICCPCT), 2016 International Conference on, 2016, pp. 1–4.

[7] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture for the web of
things,” in Internet of Things (IOT), 2010, 2010, pp. 1–8.

[8] X. Cai, G. Ouyang, and X. Zhang, “Design of Fan Performance Detection System
Based on ARM Embedded System,” Int. J. Smart Home, vol. 8, no. 1, pp. 311–316,
Jan. 2014.

[9] S. H. Moon, “Designing and Embodiment of Software that Creates Middle Ware for
Resource Management in Embedded System,” Int. J. Softw. Eng. Its Appl., p. 12,
2014.

[10] S. Arulselvi, “Advanced Internet Access System Using Embedded Linux,” p. 4,
2014.

[11] P. Pannuto et al., “A networked embedded system platform for the post-mote
era,” 2014, pp. 354–355.

[12] S. Thilagavathi, J. Sathyapriya, T. M. Minipriya, T. Mohanapriya, and C.
Subashini, “Modern Coding Theory Based On Fountain Code Implementation In
Embedded System,” vol. 3, no. 2, p. 4, 2014.

[13] R. K. Tiwari and S. K. Agrahari, “Arduino Compatible World Wide Web
Controlled Embedded System,” vol. 3, no. 9, p. 4, 2014.

[14] Cheju halla University, S. H. Moon, C. sick Lee, and Cheju halla University,
“Dynamic Management Software Design in Embedded System using Middle,” 2014,
pp. 186–191.

[15] PG. Student of, Sinhagad college of engineering,Pune, P. Kumbhar, and D. S. .
Lokhande, “Embedded Based Compact Fuzzy System to Speed Control of Single
Phase Induction Motor,” IOSR J. Electr. Electron. Eng., vol. 9, no. 5, pp. 56–59,
2014.

[16] S. Salgaonkar, M. J. D. Bhosale, and M. P. Bangde, “Embedded Web Server
based on ARM Cortex for DAC System,” vol. 5, no. 7, p. 6, 2014.

37

[17] J. K. Arthur, T. Robinson, and R. Latha, “Implementation aspects of Bio-Metric
system in Electronic Voting Machine by using embedded security and big data
approach,” vol. 1, no. 3, p. 6.

[18] P. G. Pachpande, “Internet Based Embedded Data Acquisition System,” vol. 5, p.
4, 2014.

[19] S. V. Shinde and M. P. Zaware, “Wi-Fi based Monitoring and Controlling of
Embedded System,” vol. 5, p. 7, 2014.

[20] “International Journal of Combined Research & Development (IJCRD)
eISSN:2321-225X; pISSN:2321-2241 Volume: 2; Issue: 5; May -2014,” vol. 2, no. 5,
p. 4.

38

Appendix A -Acronyms

Endpoint - This is an URL where a service can be accessed by a client application

Peripheral device -This is generally defined as any auxiliary device such as a computer
mouse or keyboard that connects to the computer

EmSOS - Enhanced Service Oriented Software Framework for Embedded Android

API - Application Programming Interface

jUnit – A unit test framework for java programming language

OWASP- Open Web Application Security Project

IDE – Integrated Development Environment

REST – This is an architectural style for designing distributed systems

39

Appendix B -Test results and source codes

Figure 4 Coverage chart with the development commits which has done with version controlling tool. (Git)

40

publicclassSysInfTest {
 */
publicstaticvoid main(String[] args) {

System.setProperty(org.slf4j.impl.SimpleLogger.DEFAULT_LOG_LEVEL_KEY,
"INFO");
System.setProperty(org.slf4j.impl.SimpleLogger.LOG_FILE_KEY,
"System.err");
 Logger LOG = LoggerFactory.getLogger(SystemInfoTest.class);

LOG.info("Initializing System...");
SystemInfosi = newSystemInfo();

HardwareAbstractionLayerhal = si.getHardware();
OperatingSystemos = si.getOperatingSystem();

System.out.println(os);

LOG.info("Checking computer system...");
printComputerSystem(hal.getComputerSystem());

LOG.info("Checking Processor...");
printProcessor(hal.getProcessor());

LOG.info("Checking Memory...");
printMemory(hal.getMemory());

LOG.info("Checking CPU...");
printCpu(hal.getProcessor());

LOG.info("Checking Processes...");
printProcesses(os, hal.getMemory());

LOG.info("Checking Sensors...");
printSensors(hal.getSensors());

LOG.info("Checking Power sources...");
printPowerSources(hal.getPowerSources());

LOG.info("Checking Disks...");
printDisks(hal.getDiskStores());

LOG.info("Checking File System...");
printFileSystem(os.getFileSystem());

LOG.info("Checking Network interfaces...");
printNetworkInterfaces(hal.getNetworkIFs());

Figure 9 Test class of System test in test driven development

41

Figure 6 jUnit test results

42

importemsos.json.SystemInfo;
importemsos.json.hardware.CentralProcessor;
importemsos.json.hardware.Display;
importemsos.json.hardware.HardwareAbstractionLayer;
importemsos.json.software.os.NetworkParams;
importemsos.json.software.os.OperatingSystem;
importoutcomes.auth.AuthTokenGenerator;
importemsos.json.hardware.impl.DisplayImpl;
importjava.util.Arrays;

importjavax.json.JsonString;

importorg.springframework.web.bind.annotation.RequestHeader;
importorg.springframework.web.bind.annotation.RequestMapping;
importorg.springframework.web.bind.annotation.RequestMethod;
importorg.springframework.web.bind.annotation.ResponseBody;
importorg.springframework.web.bind.annotation.RestController;

@RestController
@RequestMapping("v1")
publicclassHardwareInfoController {
 publicstaticvoid main(String args[]) {
 SystemInfosi = newSystemInfo();
 HardwareAbstractionLayerhal = si.getHardware();
 OperatingSystemos = si.getOperatingSystem();

 System.out.println(os.toJSON());
 System.out.println(hal.toJSON());
 }

Figure 11 HardwareController class

43

 System.out.println(os.toJSON());
 System.out.println(hal.toJSON());
 }

public String authToken() {
 returnAuthTokenGenerator.nextToken();
 }
 // Operating System + Hardware related information
 @RequestMapping(headers = "User-Agent", method = RequestMethod.GET
, produces = "application/json")
 public@ResponseBody String getOsInfoInJSON(@RequestHeader("User-
Agent") String userAgent) {
System.out.println(this.authToken());
 SystemInfosi = newSystemInfo();
 OperatingSystemos = si.getOperatingSystem();
 HardwareAbstractionLayerhal = si.getHardware();
 if (userAgent.equals("")) {
 returnos.toPrettyJSON();
 } elseif (userAgent.equals("hw")){
 returnhal.toPrettyJSON();
 }elseif (userAgent.equals("cpu")) {
 returnhal.getProcessor().toPrettyJSON();

 }elseif(userAgent.equals("cpucount")) {
 CentralProcessorprocessor=hal.getProcessor();
 return ("{ \"No of
cpu\":"+processor.getPhysicalProcessorCount()+"}");
 }elseif (userAgent.equals("d")) {
 returnhal.getComputerSystem().toPrettyJSON();
 }elseif (userAgent.equals("disk store")){
 returnhal.getDiskStores()+"";
 }elseif (userAgent.equals("display")){
 returnhal.getDisplays()+"";
 }elseif (userAgent.equals("memory")) {
 returnhal.getMemory().toPrettyJSON();
 }elseif (userAgent.equals("nic")) {
 returnprintNetworkParameters(os.getNetworkParams());
 }elseif (userAgent.equals("power")) {
 returnhal.getPowerSources()+"";
 }elseif (userAgent.equals("sensors")) {
 returnhal.getSensors().toPrettyJSON();
 }elseif (userAgent.equals("usb")) {
 returnhal.getUsbDevices(true)+"";
 }elseif (userAgent.equals("l")) {
 returnhal.getUsbDevices(true)+"";
 }elseif (userAgent.equals("m")) {
 returnhal.getUsbDevices(true)+"";

Figure 12 Configuration and linking settings

44

 Figure 9 Configuration and linking settings

<?xmlversion="1.0"encoding="UTF-8"?>
<assembly
 xmlns="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/plugins/maven-assembly-
plugin/assembly/1.1.3 http://maven.apache.org/xsd/assembly-1.1.3.xsd">
 <id>distribution</id>
 <formats>
 <format>tar.gz</format>
 <format>tar.bz2</format>
 <format>zip</format>
 </formats>
 <!-- Root of archive has files -->
 <includeBaseDirectory>false</includeBaseDirectory>
 <!-- Put all dependency jars (except modules) in /lib -->
 <dependencySets>
 <dependencySet>
 <useProjectArtifact>false</useProjectArtifact>

 <useTransitiveDependencies>true</useTransitiveDependencies>
 <outputDirectory>lib</outputDirectory>
 <unpack>false</unpack>
 <excludes>
 <exclude>${project.groupId}:*:*</exclude>
 </excludes>
 </dependencySet>
 </dependencySets>
 <files>

 </files>
 <!-- Include module jars in root level -->
 <moduleSets>
 <moduleSet>
 <!-- Enable access to all projects in the current
multimodule build! -->

 </binaries>
 </moduleSet>
 </moduleSets>
</assembly>

45

<useAllReactorProjects>true</useAllReactorProjects>
 <!-- Now, select which projects to include in this
module-set. -->
 <includes>
 <include>com.github.emsos:emsos-core</include>
 <include>com.github.emsos:emsos-json</include>
 </includes>
 <binaries>

 <includeDependencies>false</includeDependencies>
 <outputDirectory>/</outputDirectory>
 <unpack>false</unpack>
 </binaries>
 </moduleSet>
 </moduleSets>
</assembly>

46

Security Scan results of code base

Matrix Reached Level

Unit Test Coverage 92.30%

Security Analysis

Coverage 87.50%

Line Coverage 87.20%

Condition Coverage 90.00%

Bugs 0

Complexity Function 1.2

Table 6 Security Scan results of code base

47

Figure 10 a sample JSON result of API

48

Appendix C –API documentation

Package Description
emsos Provides accessibility to OS information

and Hardware profile

OS related : OS type, Build version,
Hardware profile : Manufacturer , model
, description , version , serial number

Firmware Related : manufacturer ,
description, version, name , release date

emsos.hd.hardware Provide accessibility to CPU, Display,
Memory Disks, NIC (interfaces), Sensors,
Power and USB Devices

Emsos.com Abstract layer to work with other classes
emsos.hd.plt.linux Provide accessibility to power, memory

and CPU which contains Linux systems.
E.g. android, ubuntu core

emsos.hd.plt.unix.solaris Provide accessibility to power, memory
and CPU which contains solaris

emsos.hd.plt.unix.windows Provide accessibility to power, memory
and CPU which contains windows.
E.g. windows mobile

emsos.hd.plt.unix.freebsd Provide accessibility to power, memory
and CPU which contains BSD Unix

emsos.hd.plt.unix.macos Provide accessibility to power, memory
and CPU which contains macos

emsos.jna.* Provides Java Native Access libraries
emsos.json.* Provide JSON formatted text for REST

calls to get above OS access
emsos.sw.os Provide cross platform accessibility for

retrieve process, file systems, OS
emsos.util Access utilities for parsing and formatting
emsos.json.util Provide special utility methods for JSON
emsos.jna.plt.win.com An special utility to access windows COM

objects
emsos.util.plt.* Provide utility access for different

platforms.

Table 7 API Documentation

49

REST endpoints

 GET <host hostip>/cpu
 GET <host ip>/v1/

 Header parameters : User-agent : (cpu/ram/file/,ded,ems,hw,fm)

 GET <host ip>/gpu
 GET <host ip>/mem
 POST <host ip>/niclist
 POST <host ip>/nicaccess/{id}
 GET <host ip>/sensors
 GET <host ip>/cpus
 GET <host ip>/vcpus

 GET <host ip>/staccess
 GET <host ip>/staccess/{name}
 GET <host ip>/systemaccess

 GET <host ip>/mbd

 GET <host ip>/pwrsources (get power resources)
 GET <host ip>/PRO/ (retrieve processes that are currently running)
 GET <host ip>/PID/{pid} (retrieve PID related details)
 GET <host ip>/PROALLOCATE/ (allocating processors)
 GET <host ip>/cpulgcore (get cpu logical cores)

