

Improve Learning and Teaching Activities by Incorporating

Version Controlling Concepts to Learning Management

Systems

Amarasinghe N.G.C.M.

158750H

Faculty of Information Technology

University of Moratuwa

June 2018

Improve Learning and Teaching Activities by Incorporating

Version Controlling Concepts to Learning Management

Systems

Amarasinghe N.G.C.M

158750H

Dissertation submitted to the Faculty of Information Technology, University
of Moratuwa, Sri Lanka for the fulfilment of the requirements of Degree of

Master of Science in Information Technology

June 2018

 Declaration

I declare that this thesis is my own work and has not been submitted in any form for

another degree or diploma at any university or other institution of tertiary education.

Information derived from the published or unpublished work of others has been

acknowledged in the text and a list of references is given.

Name of Student Signature of Student

Amarasinghe N.G.C.M. …………………………

 Date

Supervised by

Name of Supervisor Signature of Supervisor

Chaman Wijesiriwardana ………………………….

 Date

 ii

 Dedication

We dedicate the output of this research work and thesis to development team of existing

Learning Management Systems. Also I specially dedicate this new features to all those

who generously contributed their valuable time, advising and helping in doing this

research, especially to my supervisor Mr. Chaman Wijesiriwardana. And I hope the

research and the findings described below will provide a useful insight for applying

version controlling mechanisms to existing Learning Management Systems.

 iii

Acknowledgement

First of all, I would Like to thank my research supervisor Mr. Chaman Wijesiriwardana

who spent his valuable time in guiding this research to make it a success. Furthermore,

my next big thank goes to Prof. Asoka Karunanandha who taught us Research

Methodology and Literature Review and Thesis Writing subjects which were the basis

for this research.

Not only that my thanks should go to all the lecturers in M.Sc in Information

Technology degree program of Faculty of IT, who gave their hands to sharpen our

knowledge and ideas throughout these two years as they were the illumination which

lit up our pathways to success.

Apart from the people who were directly involved, many more helped to make this

project successful. Especially the people who engage with two surveys I have done with

this research at the beginning and at the end as the evaluation part. Finally, I would like

to thank all the batch mates of the M.Sc in IT degree program who gave their valuable

feedback to improve the results of the research.

 iv

Abstract
E-Learning is becoming a most needful part of our education system. To the

combination of the teacher and the student is more important like teaching something.

As one of the major features of the existing e learning systems, “uploading documents”

have become to a major functionality. Within this research, the researcher focuses to

do needful validations to this major upload functionality (When updating the uploads

previously done by the same user). After doing some initiate survey among the

stakeholders of LMSs, identified the requirements exactly what the researcher has to

do. Also as a software developer, the researcher always took the experiences from the

version controlling systems (software developers use) like Bitbucket and GIT, which

are in his working environment.

For full fill the requirements, the researcher found sources of some existing LMSs

(Media Share android 1.1 and Moodle 3.5) and tried to apply the solutions on that. As

a critical step, take a time to compare two existing systems like GIT and moodle (a

version controlling system and an LMS), summarized the features, nice to have in

LMSs while uploading. Then could generate own mechanism to compare two files and

give a good validation for the files while uploading contents to the same place. And the

researcher could process a SUS base survey among the lecturers and students about the

new functions and took the SUS final result for that. And as the final result, the survey

gives "Ok, we can improve more". And could handle a performance test for whole new

features and could prove the performance are an acceptable level after the new

implementation.

The reason behind the result is the researcher could give a good outcome from the

research which could keep the existing patterns of the existing system and the new

methods could stay with existing interfaces and keep the other functions as it is. Users

of LMS got the new features without not taking any difficulties. And could give an

answer to an existing problem which was in uploading files. This research didn’t focus

on PDF file uploading, as a future task to do, the researcher like to specially mention

that. And this is only focused on texts. In future, researchers who find solutions for

content comparison and uploading can think about the files which contain videos,

audios, and images also.

 v

 Table	of	Contents	

Abstract .. iv

Chapter 1 .. 1

Introduction .. 1

1.1 Introduction ... 1
1.2 Aim and Objectives ... 3
1.3 Background and Motivation .. 3
1.4 Problem in Brief .. 4
1.5 Proposed Solution .. 5
1.6 Structure of the Thesis ... 6
1.7 Identified Limitations. ... 6
1.8 Summary .. 7

Chapter 2 .. 8

Review of others works .. 8

2.1 Introduction ... 8
2.2 Use of content management in various systems .. 8
2.3 Summary of Challenges .. 10
2.4 Problem Definition .. 10
2.5 Summary .. 10

Chapter 3 .. 11

Technology .. 11

3.1 Introduction ... 11
3.2 Technology basics ... 11
3.3 Pseudocode for the content comparison in file upload validation 12
3.4 Summary .. 13

Chapter 4 .. 14

Approach .. 14

4.1 Introduction ... 14
4.2 Hypothesis ... 14
4.3 Input ... 14
4.4 Output .. 15
4.4.1 UI Changes ... 15
4.4.2 Performance improvement ... 15

 vi

4.5 Users .. 16
4.6 Summary .. 16

Chapter 5 .. 17

Design and Implementation .. 17

5.1 Introduction ... 17
5.2 Implementation overview .. 17
5.1.1 Implement the functionalities ... 17
5.2 Implement the Features. .. 21
5.2.1 Track the changes of strings in lecturer’s panel. .. 21
5.2.2 Media Share android integrations involve with existing UIs 23
5.2.3 API for the data retrieving .. 25
5.2.4 File validates when student uploading multiple files at once. 25
5.3 Multiple file uploading feature - Integrate of “Moodle 3.5” web application. 26
5.4 Summary .. 28

Chapter 7 .. 29

Evaluation ... 29

7.1 Introduction ... 29
7.2 Evaluation .. 29
7.2.1 Performance of the new features .. 29
7.2.2 Usability Scaling .. 30
7.2.4 Summary ... 33

Chapter 8 .. 34

Conclusion and Future Work ... 34

8.1 Introduction ... 34
8.2 Conclusion ... 34
8.3 Future Work ... 35
8.4 Summary .. 35

Chapter 9 ... Error! Bookmark not defined.

 References

Appendix A - Source code to “Media Share 1.1 android” 38

Appendix B - Integrated to “Moodle3.5” ………………………………………….43
Appendix C calculating the speed performance of the MD5 and SHAs. …….......46

Appendix D – SUS Calculation ………..…………………………………………....43

 vii

Table of Contents for Figures

figure 5.1 – Selecting a course and an assignment. (this is from existing application

and keep them as it is). …..………………………………..………………..………. 22

Figure 5.2 – suggested features in assignment creation area. When uploading new

file, system gives alert, informing that ….............……………………………….... 23

Figure 5.2 – suggested features in assignment creation area. When uploading new

file, system gives alert, informing that. …..……… 24

Figure 5.3 – suggested features in assignment creation area. When change the due

date of the assignment, system alerting. …………………………..…….. 24

Figure 5.4 – suggested features in assignment creation area. When uploading a

same file again, system gives an alert, informing that. ...24

Figure 5.5 – suggested features in assignment creation area. When uploading a

new file replacing the existing one, system gives an alert, informing that………24

Figure 5.6 – suggested features in assignment creation area. Emailing the changes

to the users/students. ………..……………………………25

Figure 5.7– suggested features in assignment creation area. Users can see the

history of the file uploaded. ……………………………..........………………….... 25

Figure 5.8 – The existing file uploading are in the Moodle 3.5 web application...25

Figure 5.9 – Users can see what are the files he has already uploaded…………. 26

Figure 5.10 – Suggested file uploading area in the app. ……….………………….27

Figure 5.11 – When user uploading new files, system take them without no

doubts. …………………………………………………………………………….....27

Figure 5.12 – If the user upload same file again, system detect that and not upload,

reject the uploading, select only new files and inform it to the users. ……………27

Figure 5.12 – If the user uploads the same file again, system detects that and not

upload, reject the uploading, select only new files and inform it to the

users. ……………………………………………………………………………….. 28

 viii

	 	 	 	 Table	of	Contents	for	tables	

Table 1.1 comparison the requirements with current Bitbucket ………………. 05

Table 7.1 evaluate performance for existing system …...29

Table 7.2 evaluate performance for existing system ……………………….……..30

Table 7.3 evaluate performance for Introducing system ………………………... 32

Table appendix 1 hashing performance part 1 ……………………………………50

Table appendix 2 hashing performance part 2 ……………………………………50

Table appendix 3 hashing performance part 3 ……………………………………50

Table appendix 4 hashing performance part 4 ……………………………………51

Table appendix 5 hashing performance part 5..………………….……………….51

Table appendix 6 hashing performance part 6 ……………………….……………51

Table appendix 7 hashing performance part 7 ……………………………..…… 52

Table appendix 8 appendix 8 evaluate SUS calculation for Introducing system 55
	

 1

Chapter 1

Introduction

1.1 Introduction

This chapter gives an introduction to overall project on Integrate Version Controlling

to LMS. Learning is the act of acquiring new or modifying and reinforcing existing,

knowledge, behaviours, skills, values, or preferences which may lead to a potential

change in synthesizing information, depth of the knowledge, attitude or behaviour

relative to the type and range of experience. The ability to learn is possessed by humans,

animals, plants and some machines. Progress over time tends to follow a learning curve.

Learning does not happen all at once, but it builds upon and is shaped by previous

knowledge. To that end, learning may be viewed as a process, rather than a collection

of factual and procedural knowledge. Learning produces changes in the organism and

the changes produced are relatively permanent [7]. There is a different kind of

learnings. The Past to present people uses a lot of strategies to learn.

In present, it is promoting with the internet. We call it as e-learning. That is a trend

now. Not only the students who are in Higher studies, even the students in primary

education also use the internet as their learning path. It is the best way for the shoot

ideas from someone to another, from one place to another with speed.

So taking this as a good learning way, a lot of universities using e-learning as their main

education system. Not only for the reading, they are using the systems based on the

internet to a lot of activities. Some of them share the articles and learning materials with

students, online assignments, for good communication between teachers and students

ext.

In that case, In the e-learning systems, teachers do a lot of activities. They are adding,

deleting, submitting the new notice, publishing reading materials, Adding new

assignments with the deadline. And they updating and deleting. Because they are

humans they also do mistakes and regularly they are changing, change their ideas. They

 2

have to update and delete.

Within this research, the researcher focusses the communication areas in the e-learning

systems. If going through the famous e-learning systems in the world, normally we can

see course panel which interacts the students and the course related lecturer. And the

lecturer adding their submissions to assignment creating area in that panel. I do some

modification with the version controlling that is the most suitable place in the system.

Version Controlling! Its big word in software engineering fields. According to some

facts reported on the web, one of most needful part for the software developers is this

[8]. Within this research, the researcher focuses on to the applying the version

controlling features to the e-learning systems. To do that I use the existing UI

functionalities, the interactive area between the lecturer and the students. Because I

identified these are the requirements which came from the users of e-learning platforms

accordance with pre-research.

The users of the e-Learning systems, need version controlling. But not the 100% same

from the famous version controlling systems. Normally the developers, software

engineers in the software engineering field, do the same for store their versions,

modifications and changes time to time. Sometimes this software engineering process

keep the whole project protection. It will keep the outcome of the product. Considering

these heavy expectations, the professional version control systems like BitBucket,

perforce ext. maintain their complex logic and features.

Do we need to implement all the version controlling features in e-learning version

controlling areas? Before giving an answer to that, need to know what the users of the

e-learning system expect from the version control. So as the first step of the research I

did some small sub research on e-learning system’s user’s version controlling

expectations. And I gathered the features what the popular version controlling system

use day today. The sub research I execute Mainly targeting the students of the

universities and their lectures. Identified what they really need, under the version

controlling domain. Then went through the pre findings and understand the capacity

what we can really apply here. Considered what should be the output.

 3

1.2 Aim and Objectives

§ Aim of the research

Aim of this research is to integrate the concept of traditional Version Controlling

Systems to Learning Management Systems and designate the limitations in file

uploading.

§ Objectives:

• Study the limitations of Learning Management Systems.

• Identify the features selected from Version Controlling Systems.

• Integrate the Version Controlling System’s features into a Learning

Management Systems.

• evaluation

1.3 Background and Motivation

Use of version control systems is normal for Software developers/engineers. Every day

at the end of the day or at a milestone of the development, the developers push their

codes to Bitbucket. It is a best practice. And the functions of the Bitbucket, are Merging,

pull requests, commit and push the codes, code reviews, see the history of the code,

conflict resolving and taking alert messages ext. These things, Developers/Software

Engineers do every day in their work life.

And when the researcher uses the Moodle when follow his university-related works, I

feel completely different idea. And sometimes, researcher, I thought as a developer. I

do mistakes and Bitbucket helps me to catch up those things and it makes me do my

developing things with very clean. The same human, when touching the Moodle at the

university for learning functions and do mistakes regularly but Moodle is not acting as

Bitbucket. It takes everything that I do. As the user, I have to again log to the system

and re-correct what I mistakenly did. So I thought if Moodle has version controlling

features, it will be great. And I discussed with some lecturers and students also. I

wanted to know about their feelings. Yes, I was correct. They had the same feeling and

same expectations from the LMSs. That shows me the way to start this research.

 4

When I do my survey among the stakeholders of LMSs. I needed to know, what is the

major expectation from their side. And I choose some major features to implement my

research. That will be a first step to think version controlling apply in Learning

Management Systems.

There are a lot of researchers that have been done for the version control. And also I

could found research documents and blogs for the e-learning systems. And according

to some articles version controlling follows new trends to polish existing features

[7][8]. Some software companies have done some experiments on version controlling

but they have not published the logic and algorithms because of the competition of the

companies which develop version control systems [8].

As an example, GIT has the huge client base. They give interface them to work not give

any logic to use individually, and since its release, become an increasingly common

version control system used by software projects. The service provider Github hosts

approximately 6,100,000 open source repositories. Gaining access to these repositories

would increase the code basis on which researchers can perform software analysis[10].

In that case, if apply the mechanisms of version controlling in our systems, we have to

find out and build our own algorithms and logic. Some of the logic we can take from

the developing language. As an example, if we need to compare two documents and

find the differences, we can just use removeAll() predefine function in Java. But the

difficulty is maintaining the performance. We are going to compare two documents

which can be with the huge amount of words uploading by the students and the

lecturers. There can be more than 100000 words (can be more). So I had to find out

new methodologies and functions to keep high performance

1.4 Problem in Brief

There is a big question on applying version controlling to the e-learning software

platforms. Considering and referring existing version control systems, is it needful to

have that kind of high-level scenarios here? But some far those facts must be applying.

 5

It is a requirement coming from the users. So what kind of features we can apply in the

learning systems? What are the needful facts to consider when applying them to

performance? We have to focus on performance and accuracy about the new

implementations.

BitBucket Moodle

Can Merging Not need Merging

Can Branching Not need Branching

Having approval process Not Having approval process

Can have conflicts No conflicts at all

Multiple users will work on one moment One user use at a time

Need to see history deeply Need to see history

Need Validating before upload Need Validating before upload

Need Notification Need Notification

Table 1.1 comparison the requirements with current Bitbucket

There are a lot of features in Version Controlling Systems. As of the pre-research I have

done, I filtered out what are the features really need for Learning Management Systems.

As the comparison, I took Moodle and Bitbucket.

1.5 Proposed Solution

We proposed, apply version controlling features, when the users of the eLearning

system, upload or adding new items like assignments, notices next to the system, the

users should be able to remind what he has done so far by reviewing his history. And

when updating something he already adds, the system should revise the changes and

detect the user’s mistakes.

As the main focus of this research, I do some validating and reviewing to uploading

and uploaded files. Some example scenarios are mentioned below.

 6

Give notifications for following scenarios.

• Only change the content of the file, no changes in the file name.

• Only change the file name of the file, no changes in file content.

• Change the title and the content.

• Updated the content with adding more lines to existing file.

• Updated the content with removing some lines.

• Updated the lines with adding new lines and removing some lines.

• Updated the content’s line by changing the positions.

And done an initiative for file bulk uploading and prevent upload same files again and

again.

1.6 Structure of the Thesis

The overall thesis is structured as follows, Chapter gives an introduction to fill project

with the objectives, background, problem, and solution. Chapter 2 critically reviews the

literature in the eLearning system with version control features. Chapter 3 is about

details of technology by showing it’s relevant to real Assignment and for tutorials given

by a university lecturer. Chapter 4 present our approach with users, inputs, outputs,

process and features. Chapter 5 is the design of the version controlling which are

famous eLearning systems, while chapter 6 implementation of the solution. Chapter 7

reports on the evaluation of the solution. Chapter 8 concludes the solution with a note

on further work.

1.7 Identified Limitations.

• File comparison research done for text files.

The introducing logic and algorithms have tested and verified for texts only.

Not verified for audios videos and images.

• This document comparison has done with line wise.

In this research, I followed line wise comparison for the documents. The same

 7

logic can apply to word wise, letterwise or paragraph wise. That is depending

on the product and its user base.

• When doing the bulk upload, the system compares the files in root level.

1.8 Summary

This chapter gives an introduction to the overview of the project on version controlling

logics apply in eLearning system. We discussed main objectives and motivations

factors to do the project in a broad manner with supported by citations. We defined the

research problem and our proposed solution in briefly and finally defined the overall

structure of the thesis. Next chapter will discuss the use of version controlling logic in

eLearning system.

 8

Chapter 2

Review of others works

2.1 Introduction

This chapter critically reviews the use of Applying version control mechanism in

Learning management system and how the others have found the solutions to the

problems in applying version controlling in software systems.

2.2 Use of content management in various systems

There are a lot of researches done for version controlling and its related mechanisms.

Also same scenario to the Learning managements. But I couldn’t find any thesis which

directly done research on applying version controlling to LMS. But could happy with

some researchers which have done for version controlling applying in some different

systems like File management systems (File syncing system) ext.

The research named, A Version Control System for Everyone, done by Alexander

Chumbley in Massachusetts Institute of Technology [1], Version control systems have,

for many years, been applications that are developed and maintained with software

engineers in mind. However, other less technical industries and endeavours can benefit

immensely from the functionality these systems provide. Unfortunately, existing

version control systems, such as Git[10][11] and Mercurial, have too steep a learning

curve to make quick adoption feasible, especially for new or less technical users. And

the researcher is focusing on File Syncing system's versioning. And he mentioned more.

File syncing systems, on the other hand, such as Dropbox and Google Drive [7] are

easier to learn and understand. But, they do not offer the same level of functionality as

version control systems. We believe that the best from both of these types of systems

can be combined to provide a simpler version control system, accessible to anyone. In

his research, he has provided two main contributions. He outlines the steps needed to

design a simpler, more powerful version control system by following Conceptual

Design Theory. Then they have described the system, which they created to fulfil this

 9

vision. The system, Snap store, is the result of all the goals and ideas described by that

paper.

Other than that there was a summary report published with a research done by a group

of Jisc Northern Ireland in the UK in 2015 [2] and they do file versioning and its

benefits. As the text in the report, benefits of Version Control when used with the

documents versioning are,

• There is an ‘audit trail’ of how a document developed during the drafting process.

• You can be confident that you have the most up to date version of a document

• You can prove which documents were ‘in force’ at a particular date – this might be

crucial for appeals processes, for example.

• You can confidently delete draft or redundant versions of documents.

And researcher call Miettinen, Antti tried to apply version controlling to his all the using

systems of his university Aalto, by research call Version Control Systems -

development, comprehension and rationalization of usage: Case Aalto University [3].

From his research he was able to find out, how could the usage of version control

systems be improved in Aalto University? What are the preparations prior a version

control system project? and he had focused the security of the existing and suggesting

process. And according to his documents, his all university systems, which were

talking, linked with famous version controlling systems like GIT, SVN and Bitbucket.

The most common uses were coding and the writing process of a research paper. The

Department of Computer Science of his university also used their VCS for their courses

and kept all the learning material stored in the system. The learning material was

distributed with VCS and students could also return their assignments via VCS. And

one of academic base systems, which is mainly used by the lecturers of his university,

also already linked with existing version controlling system GIT. Mainly for research

paper writing they need this versioning. As he mentions, when a group is writing a

research paper they use this VCS. Research paper can have more than one author and

as a group they need to develop a research paper. In that scenario also his system used

a link to GIT. So using a third party tools they do versioning in his university systems.

As the improvement, he suggests and tries to focus his solution to move “centralized

version controlling” for his university. But that is a one system for whole systems in his

university. It is complex. No point to merge developer’s code’s base systems to

lecturers learning base systems together for this versioning. Other than that he was

focused to the data existing. That is good. We have to think about existing details,

 10

already saved in databases. And also as his third view, he focused to app’s security. For

my research, “Version Controlling Logics Apply in Learning Management Systems”, I

used existing security features. With the development of new features for versioning, I

always get this as a responsible thing and focused to exist with existing security features

of particular LMS.

Other than these documents, I referred a lot of thesis of related researches done for

version control. Most of them basics on the Software develop versioning.

2.3 Summary of Challenges

Our discussion of the previous section has identified a large number of version

controlling problems in Learning Management Systems and lack of solutions for in

build version controlling logic based solutions. Showing below, a summary for those

applications.

2.4 Problem Definition

As per literature, all detailed information could found, there is no proper LMS app

which is within build version controlling.

Therefore, it was identified the critical need to develop and integrate version controlling

methods to existing LMSs to overcome above circumstances.

2.5 Summary

This chapter presented a comprehensive critical review use of version controlling

methods use in Learning Management Systems. I reported developments in version

controlling around LMSs. We defined the research problem and also identified the

possible technology addressing the research problem. Also, I identified how do apply

this to already in use systems. Next chapter will discuss the technologies adapted for

solving our problem.

 11

 Chapter 3

Technology

3.1 Introduction

Chapter 2 presented the previous projects and researches done by various researchers

and how far they are tally with this proposing system. Here we are going to discuss the

technology for proposing a system.

3.2 Technology basics

Here these technologies applying into the existing developed already using eLearning

systems. Especially focus to the course panel that interacting the students and the course

lecturer. And mainly, the researcher applied the findings with tallying existing

development languages. As an example one of the famous eLearning systems, Moodle

developed by a framework of PHP. Once applying some parts there, the researcher I

had to follow the architectural patterns exist with selected system. And had to

implement a separate database to store researcher's data because the database has not

been provided to outsiders by the Moodle development team. So I had to make a

separate channel to store my required data in MySQL database.

And for the testing purposes, brave enough to apply some expected features on mobile

eLearning apps (Pearson Mediashare android app). And when developing and research

on new logics always thought about the code complexity and run-time performance of

the logic in the Android code I added. The pseudocode of the logic which introduced

included at the end of this section. And when use some famous technologies like

hashtagging on the saving files, did the small research on the performance. (Regarding

the sub research, included more details and the test and test result in the Appendix part

of the thesis). Hence Used some JSON APIs to transfer data between the MySQL

database and the selected eLearning platform.

 12

As the main technology of file changes detection, I used “hashing”. Using android java

and PHP I could generate hashtags and use them at the code level, and its use to find

out the changes in the files.

3.3 Flow chart for the content comparison in file upload validation

Read the new file and convert the read text to string array.

Create a Hashtag for complete array list

Compare Hashtags, if they are same there are no changes in the content.

If hashtags are not same, pass two lists to the removeAll() method.

Create two Sets using two tree SETs. If there are no changes the method, command to

return from the method.

Compare two hash list values one by one and create the new list which cannot find
any match.

Listing 1: this is the logic for compare two documents with the uploading

Store	
in	DB

 13

3.3 Pseudocode for the content comparison validation

initialize passes SET A

initialize passes SET B

If {

find – SET A != SET B

SET intersection SET A and SET B

print the strings of passes

}

else {

print the there are no changes

}

Listing 2: this is the Pseudocode for compare two contents

3.4 Summary

This chapter presented technologies for conducting our thesis. For the version

controlling development, we use existing mobile and web application to apply the logic.

And especially focus on the requirement, it's performance and the accuracy. And the

final part of the chapter contains the pseudocode for the development of file content

comparison in "Media Share", I added with the research.

 14

Chapter 4

Approach

4.1 Introduction

Chapter 3 presented the technology to be used to solve the research problem. This

chapter described our approach to address the problem of applying Version controlling

mechanism into existing Learning Management Systems. And this chapter highlights

the key features that distinguish this novel approach from existing approach for version

controlling use in Learning Management Systems.

4.2 Hypothesis

Using the existing version controlling systems can identify what we can expect from

the version control. If we follow one of major VCS, there are multiple activities absorb

LMSs. If we apply the same heavy logics which are existing in the existing VC systems,

then the e-learning LMSs will become more complex which we don’t want to get. If we

apply our own logic to take good results from the new introducing features, then we

can handle them easily in our expected way.

4.3 Input

As the main input of this research applied existing key features of version controlling

to Learning Management. As an example, view the history of the uploading contents,

Different between the updated document and previous document. As the first step, I

had to find out what exactly the users need. I did a pre-research and analyzed the results.

Within that pre-research got the idea about, the features and other requirement users

need. As the features, when updating the uploading documents, has to show the changes

with compare to the previous upload what exactly user has changed with new

uploading. And there should be a validation. Example, if they have just changed only

 15

the name of the document but the content is same, even that also has to notify before

uploading. And user should be able to see uploading history. And has to do a proper

validating before uploading files. The system should prevent unnecessary file

uploading. Save data and time. And performance should be high with these new

features. Without law rate performance, these new things will fail from the users.

4.4 Output

Introducing version controlling features to the existing LMSs is the main output of the

research. The features should especially have filtered for LMSs. And one of another

output is, introduce those logics, algorithms and methods with version controlling with

an easily applicable way to the LMSs.

4.4.1 UI Changes

As the UI changes, I introduced a new button and a new UI layer for the file uploading

history. And notification layers for validating all the file uploading. If a user uploads a

new file for the same place in the system, the notification layer shows the changes of

two files. And if the user has changed the due date of the assignment, that message also

shows to the user by the system and system generate notifications via email to the

students.

And Could do a file uploading validate the process. Ex: when uploading a set of

documents at once, and when the user is going to upload the same set again with

changing one document, the system is taking only that file to upload. It prevents

unnecessary uploads.

4.4.2 Performance improvement

 16

To the catch up the changes between two files, researcher I, didn’t use Jave predefine

removeAll() function because of the law performance. And MD5 and SHA 1 used for

the file tags. Didn’t move to SHA2 and other higher level SHA1 file tagging methods

because of the performance issues. To prove these technical things, regarding file

tagging, I did a sub research regarding the tags generating method's performance.

Attached the details of the results and the research of that, in the discussion area of this

thesis.

4.5 Users

The users will be all the LMS users, university lecturers, instructors, system admins and

students who use LMSs for academic purpose. This will make a better connection

between Lecturers and the students.

4.6 Summary

This chapter presented the main approach to this research. Within the chapter mainly

discussed the input when beginning of the research and the output I expect from this

research at the end of development and the target users of this features. With next

chapter, we discuss the design.

 17

 Chapter 5

Design and Implementation

5.1 Introduction

Chapter 4 presented the approach that we consider with this project. This chapter

described the design and Implementation we done and we have already planned.

5.2 Implementation overview

If consider the major requirements of this research, we could implement this as in build

modules. I am not suggesting to use these suggested components as a library. Because

we cannot make a public library which can use with all the existing LMSs. Because

they are built with different technologies. As examples Moodle uses PHP, Media Share

uses Java, Angular and javascript, Learning Studio uses .net.

So, that is the major reason, that I suggest with this research, introducing the logic and

mechanisms which can directly follow in existing products.

5.1.1 Implement the functionalities

I had to follow the same implementation language and the same framework with these

developments.

§ More performance for –diff command

To the fulfil of the proposal given by me at the beginning, I had to develop a new

logic which has better performance to find out the differences of two large string

values.

The development, I did for the “MediaShare” mobile app I followed the android as the

developing language. Android is a framework of Java.

 18

In java removeAll(), it has n square complexity. Because, if I use an example for explain

java removeAll,

Ex:- I have 2 ArrayLists A and B of the same data structure C (hashCode() and equals()

overridden). C represents a student's record. The two lists are of the same size and

represent new student records and old ones respectively (the students are the same in

both the lists, ordering might be different). I wish to keep only those records in A that

have been changed. As such, I do :

A.removeAll(B)

As per the Javadocs, this would take each record of A and compare with each record of

B, and if it finds both equal, it will remove the record from A. If a record of A is not

found to be equal to any record in B, and since all students in A are also in B, it means

that that record of A has changed. The problem is that it easily of n square complexity.

Anyway, I introduce, another removeAll() method home build instead of Java

removeAll() method and used java HashSet.

I have encountered a performance bottleneck in member removeAll in some instances

For ArrayList as mentioned above, just use standard removeAll, but if A is, for instance,

an EList, n^2 can be encountered.

Hence, avoid relying on hidden good properties of specific implementations of List<

T > ; Set.contains() O(1) is a guarantee (if we use a HashSet and have a decent

hashCode, log2(n) for TreeSet with ordering relation), use that to bound algorithmic

complexity.

I use the following code that avoids useless copies; the intention is that you are scanning

a data structure finding irrelevant elements you don't want and adding them to "todel".

 19

For some reason like avoiding concurrent modifications, you are navigating a tree etc...,

you cannot remove elements as you are doing this traversal. So, we cumulate them into

a HashSet "todel".

In the function, we need to modify "container" in place, since it is typically an attribute

of the caller, but using remove(int index) on "container" might induce a copy because

of a left shift of elements. We use a copy "contents" to achieve this.

Template argument is because, during the selection process, I often get subtypes of C,

but feel free to use < T > everywhere.

public static <T> void removeAll (List<T> container, Set<? extends T> todel) {

 if (todel.isEmpty())

 return;

 List<T> contents = new ArrayList<T>(container);

 container.clear();

 int torem = todel.size();

 for (T elt : contents) {

 if (torem==0 || ! todel.contains(elt)) {

 container.add(elt);

 } else {

 torem--;

 }

 }

}

Listing 3: this algorithm gets two set of words as the input and generate differences of

them

MD5 and SHA for track the changed file while uploading [4]

To the implementation of file uploading research, I used Hashtagging techniques.

SHA1sum is a computer program that calculates and verifies SHA-1 hashes. It is

 20

commonly used to verify the integrity of files. It is installed by default in most Unix-

like operating systems. Variants include shasum, sha224sum, sha256sum, sha384sum

and sha512sum, which use a specific SHA-2 hash function, and sha3sum.

The MD5 algorithm is a widely used hash function producing a 128-bit hash value.

Although MD5 was initially designed to be used as a cryptographic hash function, it

has been found to suffer from extensive vulnerabilities. It can still be used as a

checksum to verify data integrity, but only against unintentional corruption.

A cryptographic hash function is a hash function which takes an input (or 'message')

and returns a fixed-size alphanumeric string. The string is called the 'hash value',

'message digest', 'digital fingerprint', 'digest' or 'checksum’. [5]

Although SHA slower than MD5, this larger digest size makes it stronger against brute

force attacks. MD5: MD5 was developed by Professor Ronald L. Rivest in 1994. Its

128 bit (16 byte) message digest makes it a faster implementation than SHA-1. This

means that MD5 executes faster but is less secure than SHA1. [5]

And also I did a small sub research on MD5 and SHA. I wanted to see the outputs of

MD5 and SHA comparison to the speed of MD5. The sub research done with samples

documents and files use by lecturers who use LMSs.

From that sub research, I found MD5 gives 100% accurate output for uploading

documents which can use in our suggesting components. And it is faster than SHA.

SHA also give 100% correct and unique tags. But it is slower than MD5.

So decided we can use both ways, but when to consider timing I suggest to use MD5

hashing techniques here. The samples of the documents lecturers use are acceptable for

MD5. And the files student's uploading can change time to time and it is depending on

the lecturer's questions. So I suggest we can use SHA method in student's file uploading

sections.

Anyway, if the system owners suggest they don’t want to consider the time when

uploading a document and there is a risk to generate equal tags when generating tags,

they can use SHA hashing here.

To prove these things, I use MD5 hashing in lecturer’s features and SHA1 in student’s

interfaces.

Also did this uploading research with the Moodle web application which has own PHP

framework.

Used PHP code for reading the files and generate hash tag for each file. Then store the

tag with the file name in MySQL database tables. When the user is uploading the same

 21

file set with small changes the system's algorithm detect only the changed files and

select them to upload. Exclude already uploaded files which have no change.

5.2 Implement the Features.

5.2.1 Track the changes of strings in lecturer’s panel.

This implementation is done with the "Mediashare 1.1” android application. This helps

to track the changes of the lecturer or the instructor. When they are changing the things

they uploaded previously, the system will detect the changes and before uploading the

changes will show to the user who is uploading.

And also here, with this research, I checked some scenarios when the

user/instructor/lecturer update his previous commit when submitting assignments.

Give notifications for following scenarios.

• Only change the content of the file, no changes in the file name.

• Only change the file name of the file, no changes in file content.

• Change the title and the content.

• Updated the content with adding more lines to existing file.

• Updated the content with removing some lines.

• Updated the lines with adding new lines and removing some lines.

• Updated the content’s line by changing the positions.

The architect of the main system, should not be changed. Because with the research I

suggest only logic, algorithms and mechanisms how we can apply the version

controlling. The final outcome should be with the existing systems. The designs I

suggest after researching on both versions controlling and existing LMSs, all the

suggestion should tally with the existing LMSs.

 22

5.1 figure System diagram for Media Share integration

 23

System detects those changes and alerting to the user what he is updating. Then this

will help to reduce the mistakes while updating the assignment or Notice submitting.

For the detection of these changes in the file content, I use MD5 hash tag techniques

and found and used a logic which founded during the research.

5.2.2 Media Share android integrations involve with existing UIs

figure 5.2 – Selecting a course and an assignment. (this is from existing application and
keep them as it is).

 24

Figure 5.3 – suggested features in
assignment creation area. When
uploading a new file, the system
gives alert, informing that.

Figure 5.4 – suggested features in
assignment creation area. When
change the due date of the assignment,
system alerting.

Figure 5.5 – suggested features in
assignment creation area. When
uploading the same file again, the
system gives an alert, informing that.

Figure 5.6 – suggested features in
assignment creation area. When
uploading a new file replacing the
existing one, the system gives an alert,
informing that.

 25

5.2.3 API for the data retrieving

This part is not containing any research techniques. But it is needful. For the store data

in MySQL database and those data should be pass to the application. For do that I

implemented PHP base APIs. One of those APIs, directly involves with taking the

versioning history of the changes.

5.2.4 File validates when student uploading multiple files at once.

With this scenario, the system tracks the files which are uploading by the students.

When students try to upload the same file again and again mistakenly, system auto-

detect that. As a valid real-world scenario, which I identify with pre researching steps,

a university student mentioned, sometimes they do re-uploading again and again to

same assignment. And if they have the bunch of files to upload, and he just changed

Figure 5.7 – suggested features in
assignment creation area. Emailing
the changes to the users/students

Figure 5.8– suggested features in
assignment creation area. Users can
see the history of the file uploaded.

 26

one file and truly he needs to upload only that changed file again, but he gives to upload

the whole bunch of files. This time within current LMSs, uploading again the whole

set. With this research implementation, the suggested feature is tracking all the files. It

detects the changed files only. Only those files set to upload.

With this file detection feature, I suggest using SHA hashing. Because in that case

students not consider timing when they upload compare to lectures. I needed to prove,

we can use both scenarios SHA1 and MD5. But if some scenarios especially, consider

efficiency we can use MD5.

5.3 Multiple file uploading feature - Integrate of “Moodle 3.5” web application.

Figure 5.9 – The existing file uploading is in the Moodle 3.5 web application

 27

Figure 5.10 – Users can see what are the files he has already uploaded.

Figure 5.11– Suggested file uploading area in the app.

Figure 5.12 – When user uploading new files, system take them without no doubts.

 28

Figure 5.13 – If the user uploads the same file again, system detects that and not upload,
reject the uploading, select only new files and inform it to the users.

5.4 Summary

This section presented the summary of what I have done as implementation and design.

As the major implementation, I had to maintain a MySQL database and APIs which are

retrieving those details from that database. These developments developed with the

existing applications like ‘moodle’, ‘media share' ext. Moodle base development is

done by the tally with PHP Moodle framework. The mediashare application is an

Android based mobile app, all the algorithms developed using the Java. And I included

the main UI's images of my designs in this chapter.

 29

 Chapter 7

Evaluation

7.1 Introduction

Chapter 6 presented the Implementations that we consider with this project. This

chapter describes how testing strategies carried out for the research sub-question in

terms of the evaluations results for the suggesting features in the Learning Management

Systems.

7.2 Evaluation

This part of the document has divided into some areas. First I have mentioned how far

I could fulfill the major requirements, using technical methodologies. Secondly I

focused, how are the users take this new features to their existing app and how far it

success.

7.2.1 Performance of the new features

For this I could calculate the time for various scenarios in the target app. As I mentioned

in the technology chapter I used MySql as the database for this suggesting features. It

is a popular database technique everybody can take as a neutral line. Ex: If MySql

response speed is ‘x’ per second, LMS Blackboard use mongo DB we can guess how it

would be.

API Response time for
100 words
document

Response time for
1000 words
document

Response time for
10000 words
document

api/assignment/create 623ms 1368ms 1971ms
api/assignment/update/{} 636ms 1172ms 2198ms

Table 7.1 evaluate performance for Introducing system

 30

And after summarize the suggesting API results, I took existing feature’s performance

by calculating existing function’s performance. Ex: for Moodle 3.5 file uploading

function, taking this much of response time.

File uploading in.. Response time for
100 words
document

Response time for
1000 words
document

Response time for
10000 words
document

Moodle 3.5 2280ms 3730ms 6440ms
Media Share 1.1.0 2430ms 3890ms 6710ms

Table 7.2 evaluate performance for existing system

After compare those two tables, we can come to the conclusion, the suggesting features

and API structure will not be a performance wise problem to the existing systems.

7.2.2 Usability Scaling

For evaluation, I did a survey among the main users of LMSs. I ask 10 System Usability

Scale questions from the target user base, lecturers and students. It was easy to find

users who used LMSs in their lifetime or who is using LMSs his/her day today life cycle

(students and lecturers). They have real feelings what they really need as version

controlling in LMSs.

The Usability Scale questions I asked from the users. Users could answer like ->

Strongly Agree (5 point), Agree (4 point), Neutral (3 point), Disagree (2 point) and

Strongly Disagree (1 point)

1. I think that I would like to use this features frequently.

2. I found this version controlling features make the system unnecessarily complex.

3. I thought the new version controlling features was easy to use.

4. I think that I would need the support of a technical person to be able to use this

system.

5. I found the various functions in this new Version Controlling features were well

integrated.

 31

6. I thought there was too much inconsistency in this system now. (After integrating

Version controlling)

7. I would imagine that most lectures, students and other users would learn to use this

new features very quickly.

8. I found the Learning Management System with new features very cumbersome to

use.

9. I felt very confident using the version controlling in Learning Management System

with new features.

10. I needed to learn a lot of things before I could get going with this new features a.

Strongly Agree (5 point), Agree (4 point), Neutral (3 point), Disagree (2 point) and

Strongly Disagree (1 point)

As for the calculation,

Users have ranked each of the 10 templates questions above from 1 to 5, based on their
level of agreement.

• For each of the odd numbered questions, subtract 1 from the score.

• For each of the even numbered questions, subtract their value from 5.

• Take these new values which you have found, and add up the total score. Then
multiply this by 2.5.

 32

Table 7.3 evaluate performance for Introducing system

More details and the calculated results are included in Appendix

Calculated of the SUS value = 70.19

(The SUS value calculation steps are mentioned in the discussion part of this thesis)

According to calculated results, 70.19 is belonging to C mark in the SUS measure. It
means “You are doing OK but could improve”).

As a research, the new features took Ok from the audience.

User no Calculated value

1 80

2 57.5

3 75

4 67.5

5 60

6 57.5

7 90

8 70

9 80

10 47.5

11 80

12 70

13 77.5

Avg: 912.5	/	13	=		
70.19	

 33

7.2.4 Summery

After evaluating the results of post-research using the lectures and students, I could get

to know the new version controlling features are ok with the users. There can be more

improvements in the future. And technical vice I could prove the new technology

perform with expected level, and sometimes exceeding the expectations.

 34

Chapter 8

Conclusion and Future Work

8.1 Introduction

This chapter illustrates the results which are generated from the solution and the future

improvements can be done to the solution. List of additional new features has been

identified and these new features are listed in the future works subsection in this

chapter.

8.2 Conclusion

The existing systems can integrate the version controlling features directly with their

current implementations. And the system has to change their database structures to store

the contents and hashtags for track the history. It is not a big deal with modern database

technologies. I followed MySQL with my demonstration purpose implementations and

it makes no barriers to store data.

The UI implementations were the critical part here. If the users feel mismatch compare

to existing feature's performance, it will be a huge barrier. In my research, I always try

to make the good performance for introducing algorithms and logic.

Under the point of good performance, when I implement the feature of filtering the new

lines, that updated by the users to uploading contents, I could develop new methods

which have best performance 0(1). And when make tagging to the contents of the files,

I had to find out the quickest way to make that tags. I did a sub research to find out what

is the best way for making tags. I used MD5 hashtags, SHA1 and other SHA tags for

the experiment. There are no doubts about the output results. Problem was, if we focus

on the performance of the system and if there is a considerable difference between tags

we can use the best quickest way for make tags. It was MD5. In this thesis, I included

details about the sub research in discussion area and included implementation

methodologies related to these techniques in implementation chapters.

 35

And in the Design chapter mainly focused on the UI implementations. I included new

mobile features and their UI with new changes to design chapter.

8.3 Future Work

As the future development, I suggest to research on version controlling for PDF

documents which cannot directly access to content. And if the system can show the

changes in different colours same like GIT do in presents, it would a huge help to the

users who use LMSs regularly.

8.4 Summary

As of the final chapter, including the conclusion and future work sections. In the

conclusion section, concluded the major points which discussed whole over the thesis.

And with the Future Work, I added major findings which can take the next steps of this

research. The researcher needed to add them to new ideas which can develop next.

 36

Key Word Explanation
VC Version Controlling
VCS Version Controlling System
LMS Learning Management System
MD5 Message Digest
SHA Security Hash Algorithm
PDF Portable Document Format
UI User Interfaces
API Application Programming Interface
DB Data Bases
SUS System Usability Scale
UUID Universal Unique Identifier

 37

 Reference

[1] Chumbley, Alexander. A Version Control System for Everyone. 2016,

Chumbley, Alexander. A Version Control System for Everyone.

dspace.mit.edu/bitstream/handle/1721.1/112825/1014182419-MIT.pdf?sequence=1.

[2] https://www.cumbria.ac.uk/media/university-of-cumbria-website/content-

assets/public/vco/documents/recordsmanagement/VersionControl.pdf

[3]===http://www.theseus.fi/bitstream/handle/10024/118000/Miettinen_Antti.pdf;jses

sionid=3B791BAE631440C64FAB718E4EEBD24F?sequence=1

[4] Gupta, Piyush, and Sandeep Kumar. “A Comparative Analysis of SHA and

MD5 Algorithm .”

[5] Secure Hash Algorithms, en.wikipedia.org/wiki/Secure_Hash_Algorithms.

[7] Weber, Sandra. “Automatic Version Control System for Distributed Software
Development.” Automatic Version Control System for Distributed Software
Development, Sept. 2012.

[8] Koc, Ali, and Abdullah Uz Tansel. “A Survey of Version Control Systems .” A
Survey of Version Control Systems.

[9] Carlsson, Emil. “Mining Git Repositories, An Introduction to Repository
Mining.” Mining Git Repositories, An Introduction to Repository Mining, 2 Aug. 2013,
pp. 1–43.

[10] Git, ”git/git · GitHub,” GitHub, [Online]. Available: https://github.com/git/git

 38

Appendix A - Source code to “Media Share 1.1

android”

I could complete admin and lecturers uploading features using media share code.

Especially I integrated admin panel to the mobile app implementation. Here I choose a

mobile application ‘Media Share’, one of famous Learning Management System for

this development.

From admin panel, I could complete the assignment uploading part to the system. It

works like this. The lecturer can create an assignment for the related course. In an

assignment, can include assignment name, date, description and the uploading file.

There is an uploading area to upload the related file.

And as for this research, I added history button to see uploaded file content.

When creating an assignment for the first time, lecturer or the course owner is uploading

a document. And the system auto takes hashtag for the file content and to the file name.

When he re-uploading, the system generates hashtags for new content and for the file

name. And then check these hashtags only, to detect the equality.

This is the Android java logic for reading the uploading file, send the read content to

generate Hashtag and compare hashtags.

@Override
protected void onActivityResult(int requestCode, int resultCode, Intent
data) {
 super.onActivityResult(requestCode, resultCode, data);
 if (resultCode == Activity.RESULT_OK) {
 if (requestCode == PICK_FILE_REQUEST) {
 if (data == null) {
 //no data present
 return;
 }

// Select the file to read.
 Uri selectedFileUri = data.getData();
 selectedFilePath = UOMFilePath.getPath(this, selectedFileUri);

 File file = new File(selectedFilePath);
 currentFileName = file.getName();

// The Content turn to Strings
 fileToString = UOMReading.readDoc(file);

 39

// Pass the String to the String Comparison method.
 stringComparisonForInstructor(fileToString);

 Log.i(TAG, "Selected File Path:" + selectedFilePath);
 pathList.add(selectedFilePath);
 for (int i = 0; i < pathList.size(); i++) {
 if (i == pathList.size() - 1) {
 String fileName = new File(pathList.get(i)).getName();
 fileListName = fileListName + " " + fileName;
 /*notificationLabel.setText(fileListName);*/
 }
 }
 hashValueForUploadingString = mdForString(fileToString);
 if (previousAssignmentHashValues != null) {
 String[] sp = previousAssignmentHashValues.split(" ");
 fileValidating(currentFileName, assignmentBackupString,
hashValueForUploadingString, previousAssignmentHashValues);
 assignmentNameCompare();

 } else {
 String previousFileName = "";
 fileValidating(name.getText().toString(),
assignmentBackupString, hashValueForUploadingString, "");
 }

 String fileName = new File(selectedFilePath).getName();
 notificationLabel.setText(fileName););*/
 }
 }
}

The logic for the read Files.

public static String readDoc(File f) {
 String text = "";
 int read, N = 1024 * 1024;
 char[] buffer = new char[N];

 try {
 FileReader fr = new FileReader(f);
 BufferedReader br = new BufferedReader(fr);

 while (true) {
 read = br.read(buffer, 0, N);
 text += new String(buffer, 0, read);

 if (read < N) {
 break;
 }
 }
 } catch (Exception ex) {
 ex.printStackTrace();
 }

 return text;
}

// The String comparison method, take the previously stored strings (This has stored as
an array and take the new String which has to compare and create another array from
that Strings.

 40

private void stringComparisonForInstructor(String value) {
 if (savedAssignmentFileString != null) {
 parts = new ArrayList <>(Arrays.asList(value.split("\n")));
 String savedValues = savedAssignmentFileString;// this string value
should comes from the Sever
 ArrayList <String> savedParts = new
ArrayList<>(Arrays.asList(savedValues.split("\n")));

// Prepare hash sets for comparison.
 Set <String> set = new HashSet <String>(savedParts);
 Set <String> partset = new HashSet <>(parts);

 removeAll(parts, set);
 }
}

// Prepare hash sets for comparison.

This is a one of famous scenario (Compare two strings an give the difference between
them). As an example,

“I have 2 ArrayLists A and B of the same data structure C (hashCode() and equals()

overridden). C represents a student's record. The two lists are of the same size and

represent new student records and old ones respectively (the students are the same in

both the lists, ordering might be different). I wish to keep only those records in A that

have been changed. As such, I did: A.removeAll(B)”

As per the Javadocs, this would take each record of A and compare with each record of

B, and if it finds both equal, it will remove the record from A. If a record of A is not

found to be equal to any record in B, and since all students in A are also in B, it means

that that record of A has changed. The problem is that its easily of n square complexity.

I have encountered a performance bottleneck in member removeAll (above-mentioned

example, defined functionality use in Java or also –dff in GIT) in some instances.

Hence, avoid relying on hidden good properties of specific implementations of

List< T > ; Set. Contains() O(1) is a guarantee, use that to bound algorithmic

complexity.

I use the following code that avoids useless copies; the intention is that you are scanning

a data structure finding irrelevant elements you don't want and adding them to "todel".

 41

For some reason like avoiding concurrent modifications, you are navigating a tree etc...,

you cannot remove elements as you are doing this traversal. So, we cumulate them into

a HashSet "todel".

In the function, we need to modify "container" in place, since it is typically an attribute

of the caller, but using remove (int index) on "container" might induce a copy because

of left shift of elements. We use a copy "contents" to achieve this.

Template argument is because during the selection process, I often get subtypes of C,

but feel free to use < T > everywhere.

public static <T> void removeAll(List <T> container, Set <? extends T>
toDelete) {
 if (toDelete.isEmpty())
 return;
 List <T> contents = new ArrayList <T>(container);
 container.clear();
 // since container contains no duplicates ensure |B| max contains() operations
 int toRemove = toDelete.size();
 for (T elt : contents) {
 if (toRemove == 0 || !toDelete.contains(elt)) {
 container.add(elt);
 } else {
 toRemove--;
 }
 }
 // Show the lists
 System.out.println("First List: " + container + toRemove);
 System.out.println("Second List: " + toRemove);
 HTMLVIewer.setTextOfATextView(comparisonLabel, "added or removed lines."
+ "\n" + container.toString() + "\n\n" + "to Remove: " + toRemove);
}

// Prepare hashtags for comparison.

public static String mdForString(String input) {
 try {

// MD5 hashtags for comparison.
// MD5 was developed by Professor Ronald L. Rivest in 1994. Its 128 bit (16 byte)

message digest makes it a faster implementation than SHA-1. This means that MD5

executes faster.

 java.security.MessageDigest md =
java.security.MessageDigest.getInstance("MD5");
 byte[] array = md.digest(input.getBytes("UTF-8"));
 StringBuffer sb = new StringBuffer();
 for (int i = 0; i < array.length; i++) {
 sb.append(String.format("%02x", array[i]));
 }

 42

 return sb.toString();
 } catch (NoSuchAlgorithmException | UnsupportedEncodingException e) {
 return null;
 }
}

// Compare two tags.
private boolean compareTag(String uploadingFilePath, ArrayList
savedHashList) {
 String hashValueForLoaclFile = generateMdFiveFlag(uploadingFilePath);
 for (int i = 0; i < savedHashList.size(); i++) {
 if (hashValueForLoaclFile.equals(savedHashList.get(i))) {
 return true;
 }
 }
 return false;
}

These are the major steps to validate Lecturer's updates. The lecturer can see his

mistakes or what is he going to update before he does his uploading.

Basically, I focus on the major requirement came from their side. Users need accurate

and quick results on this. If the system gives valid, correct results but it is performance

vice week, it is not a good move. So the researcher always focuses on the performance

of the application.

 43

Appendix B - Integrated to “Moodle3.5”

I could integrate the suggested feature using Moodle 3.5 one of famous LMS in the

world. It is developed by using PHP. I could attach my development especially thinking

about student's functionality. Focusing to reduce uploading mistakes.

// Here I used hashing techniques to track file changes.

 No problems with the SHA1. It can use for the track more deeply and performance

vice it takes more times than MD5, but I suggest this time is not critical for students

parts.

public function do_upload()

 {

 $this->multiple_upload();

 if (count($this->upload_errors) > 0) {

 $error = array_map(function ($k, $v) {

 return "$k => $v";

 }, array_keys($this->upload_errors),
array_values($this->upload_errors));

 $this->load->view('upload_form', ['error' => implode('', $error),
'success' => '']);

 }

 if (count($this->upload_data) > 0) {

 $error = "";

 $success = "";

 foreach($this->upload_data as $item){

 44

 $sha1_hash = sha1_file($item['full_path']);

 $count = $this->count_hash($sha1_hash);

 if($count > 0){

 $error .= "File (".$item['file_name'].") already uploaded
";

 }else{

 $item['sha1_hash'] = $sha1_hash;

 $this->handle_file($item);

 $success .= "File (".$item['file_name'].") uploaded
successfully
";

 }

 }

 $this->load->view('upload_form', ['error' => $error, 'success' =>
$success]);

 }

 }

 public function handle_file($data)

 {

 $this->db->insert('attempts', [

 'file_name' => $data['file_name'],

 'hash' => $data['sha1_hash'],

 'as_at' => date('Y-m-d H:i A')

]);

 }

 private function count_hash($file_hash)

 {

 45

 $this->db->where('hash', $file_hash);

 $this->db->from('attempts');

 return $this->db->count_all_results();

 }

 public function multiple_upload()

 {

 $this->load->library('upload');

 $number_of_files_uploaded = count($_FILES['userFiles']['name']);

 for ($i = 0; $i < $number_of_files_uploaded; $i++) {

 $_FILES['userfile']['name'] = $_FILES['userFiles']['name'][$i];

 $_FILES['userfile']['type'] = $_FILES['userFiles']['type'][$i];

 $_FILES['userfile']['tmp_name'] =
$_FILES['userFiles']['tmp_name'][$i];

 $_FILES['userfile']['error'] = $_FILES['userFiles']['error'][$i];

 $_FILES['userfile']['size'] = $_FILES['userFiles']['size'][$i];

 $config = array(

 //'file_name' => <your ouw function to generate random names>,

 'allowed_types' => 'gif|jpg|png|pdf|ppt|doc|docx|txt|xls|xlsx|pptx',

 'max_size' => 10000,

 'overwrite' => FALSE,

 'upload_path' => './uploads/'

);

 $this->upload->initialize($config);

 46

 if (!$this->upload->do_upload()) {

 $this->upload_errors[$_FILES['userFiles']['name'][$i]] =
$this->upload->display_errors();

 } else {

 $this->upload_data[] = $this->upload->data();

 }

 }

 }

// Using this, the system track changes of the uploading files.

 If the user changes one of his uploading files and going to upload all the files, not only

the changed one, the system detects only that changed one, and select to upload only

that. It gives some benefits. Reduce time-consuming, Save the internet data.

 47

Appendix C - Calculate the speed performance of the

MD5 and SHAs.

import java.util.UUID;

import org.apache.commons.codec.digest.DigestUtils;

import org.apache.commons.lang.time.StopWatch;

public class Test {

 private static final int TIMES = 1_000_000;

 private static final String UUID_STRING =
UUID.randomUUID().toString();

 public static void main(String[] args) {

 System.out.println(generateStringToHash());

 System.out.println("MD5: " + md5());

 System.out.println("SHA-1: " + sha1());

 System.out.println("SHA-256: " + sha256());

 System.out.println("SHA-512: " + sha512());

 }

 public static long md5() {

 StopWatch watch = new StopWatch();

 watch.start();

 for (int i = 0; i < TIMES; i++) {

 DigestUtils.md5Hex(generateStringToHash());

 }

 watch.stop();

 System.out.println(DigestUtils.md5Hex(generateStringToHash()));

 return watch.getTime();

 48

 }

 public static long sha1() {

System.out.println(DigestUtils.sha1Hex(generateStringToHash()));

 return watch.getTime();

 }

 public static long sha256() {

System.out.println(DigestUtils.sha256Hex(generateStringToHash()));

 return watch.getTime();

 }

 public static long sha512() {

System.out.println(DigestUtils.sha512Hex(generateStringToHash()));

 return watch.getTime();

 }

 public static String generateStringToHash() {

 return UUID.randomUUID().toString() + System.currentTimeMillis();

 }

}

Several measurements were done. Two groups – one with smaller length string to

hash and one with longer. Each group had following variations of

generateStringToHash() method:

cached UUID–no extra time should be consumed

cached UUID + current system time – in this case, time is consumed to get system

time

new UUID + current system time – in this case, time is consumed for generating the

UUID and to get system time

5 Raw results

 49

Five measurements were made for each case an average value calculated. Time is in
milliseconds per 1 000 000 calculations. The system is 64 bits Windows 10 with 1
core Intel i7 2.60GHz and 16GB RAM.

generateStringToHash() with: return UUID_STRING;
Data to encode is ~36 characters in length (f5cdcda7-d873-455f-9902-dc9c7894bee0).
UUID is cached and time stamp is not taken. No additional time is wasted.

Table	appendix	1	hashing	performance	part	1

generateStringToHash() with: return UUID_STRING +
System.currentTimeMillis();

Data to encode is ~49 characters in length (aa096640-21d6-4f44-9c49-
4115d3fa69381468217419114). UUID is cached.

Table	appendix	2	hashing	performance	part	2	

generateStringToHash() with: return UUID.randomUUID().toString() +
System.currentTimeMillis();
Data to encode is ~49 characters in length (1af4a3e1-1d92-40e7-8a74-
7bb7394211e01468216765464).

New UUID is generated on each calculation so time for its generation is included in

total time.

Table	appendix	3	hashing	performance	part	3	

generateStringToHash() with: return UUID_STRING + UUID_STRING;

Data to encode is ~72 characters in length (57149cb6-991c-4ffd-9c98-

 50

d823ee8a61f757149cb6-991c-4ffd-9c98-d823ee8a61f7). UUID is cached and time

stamp is not taken. No additional time is wasted.

Table	appendix	4	hashing	performance	part	4	

generateStringToHash() with: return UUID_STRING + UUID_STRING +

System.currentTimeMillis();

Data to encode is ~85 characters in length (759529c5-1f57-4167-b289-

899c163c775e759529c5-1f57-4167-b289-899c163c775e1468218673060). UUID is

cached.

Table	appendix	5	hashing	performance	part	5	

generateStringToHash() with: final String randomUuid =

UUID.randomUUID().toString();

return randomUuid + randomUuid + System.currentTimeMillis();

Data to encode is ~85 characters in length (2734b31f-16db-4eba-afd5-

121d0670ffa72734b31f-16db-4eba-afd5-121d0670ffa71468217683040). New UUID

is generated on each calculation so time for its generation is included in total time.

Table	appendix	6	hashing	performance	part	6	

4.1 Aggregated results

Results from all iterations are aggregated and compared in the table below. There are

6 main cases. They are listed below and referenced in the table below:

 51

Case 1 – 36 characters length string, UUID is cached

Case 2 – 49 characters length string, UUID is cached and system time stamp is

calculated each iteration

Case 3 – 49 characters length string, new UUID is generated on each iteration and

system time stamp is calculated each iteration

Case 4 – 72 characters length string, UUID is cached

Case 5 – 85 characters length string, UUID is cached and system time stamp is

calculated each iteration

Case 6 – 85 characters length string, new UUID is generated on each iteration and

system time stamp is calculated each iteration

All times below are per 1 000 000 calculations:

Table	appendix	7	hashing	performance	part	7

Compare results

Some conclusions of the results based on two cases with short string (36 and 49 chars)

and longer string (72 and 85 chars).

SHA-256 is faster with 31% than SHA-512 only when hashing small strings. When

the string is longer SHA-512 is faster with 2.9%.

Time to get system time stamp is ~121.6 ms per 1M iterations.

Time to generate UUID is ~670.4 ms per 1M iterations.

SHA-1 is fastest hashing function with ~587.9 ms per 1M operations for short strings

and 881.7 ms per 1M for longer strings.

MD5 is 7.6% slower than SHA-1 for short strings and 1.3% for longer strings.

SHA-256 is 15.5% slower than SHA-1 for short strings and 23.4% for longer strings.

SHA-512 is 51.7% slower that SHA-1 for short strings and 20% for longer.

Hash sizes

Important data to consider is hash size that is produced by each function:

 52

MD5 produces 32 chars hash – 5f3a47d4c0f703c5d83265c3669f95e6

SHA-1 produces 40 chars hash – 2c5a70165585bd4409aedeea289628fa6074e17e

SHA-256 produces 64 chars hash –

b6ba4d0a53ddc447b25cb32b154c47f33770d479869be794ccc94dffa1698cd0

SHA-512 produces 128 chars hash –

54cdb8ee95fa7264b7eca84766ecccde7fd9e3e00c8b8bf518e9fcff52ad061ad28cae49ec

3a09144ee8f342666462743718b5a73215bee373ed6f3120d30351

Purpose of use

In specific case this research was made for hashed string will be passed as API

request. It is constructed from API Key + Secret Key + current time in seconds. So if

API Key is something like 15-20 chars, Secret Key is 10-15 chars and time is 10

chars, total length of string to hash is 35-45 chars. Since it is being passed as request

param it is better to be as short as possible.

Select hash function

Based on all data so far SHA-256 is selected. It is from secure SHA-2 family. It is

much faster than SHA-512 with shorter stings and it produces 64 chars hash.

The conclusion of the sub research

The current post gives a comparison of MD5, SHA-1, SHA-256 and SHA-512

cryptographic hash functions. Important is that comparison is very dependant on

specific implementation (Apache Commons Codec), the specific purpose of use

(generate a secure token to be sent with API call). It is good MD5 and SHA-1 to be

avoided as they are compromised and not secure. If their speed for given context is

several times faster than secure SHA-2 ones and security is not that much important

they can be chosen though. When choosing cryptographic hash function everything is

up to a context of usage and benchmark tests for this context is needed.

 53

Appendix D – SUS Calculation.
To calculate a score between 0 and 100 for the product:

1. Convert SUS responses to numbers, 1 for “Strongly Disagree”, and 5 for

“Strongly Agree”.

2. For odd-numbered questions, subtract 1 from the response.

3. For even-numbered questions, subtract the response from 5.

4. Add the scores from each question and multiply the total by 2.5.

5. Remember to present the numbers as a SUS score, not a percentage.

If there are a small numbers of participants, consider calculating a confidence interval

around the SUS score. This can help you understand the variability.

Here’s an overview of how the scores should measure:

80.3 or higher is an A. People love your site and will recommend it to their
friends

68 or thereabouts gets you a C. You’re doing OK but could improve

51 or under gets you a big fat F. Make usability your priority now and fix this fast.

 54

Table	appendix	8	evaluate	SUS	calculation	for	Introducing	system

 55

