LB/DON/149/04

IDENTIFICATION OF ROAD DEFECTS, CAUSES OF ROAD DETERIORATION AND RELATIONSHIP AMONG THEM FOR BITUMEN PENETRATION MACADAM ROADS IN SRI LANKA

BY

A.S.P.RANDU HARISCHANDRA

Thesis submitted to the Department of Civil Engineering of

The Ministers (1911)

the University of Moratuwa in Partial Fulfillment of the

requirement for the Degree of Master of Science

624°04" 624 (043)

82434

Supervised by

Prof. J.M.S.J. Bandara

Department of Civil Engineering

University of Moratuwa, Sri Lanka

University of Moratuwa

August 2004

August 200

82434

Dedication

١

.

4

4

.

To My Mother & Father

For their continuous dedication and encouragement for all the endeavors towards my advancement.

Declaration

This thesis is a report on the research work carried out in the Department of Civil engineering, University of Moratuwa, Sri Lanka, during January 2003 to August 2004. This submission is original and does not have any materials previously published or written by any others anywhere, except where citing is made

-~....

X

3

A.S.P.Randu Harischandra Department of Civil Engineering University of Moratuwa, Sri Lanka.

UOM Verified Signature

Prof. J.M.S.J.Bandara Department of Civil Engineering University of Moratuwa, Sri Lanka.

Abstract

The study was particularly concentrated on identifying the causes of road deterioration, road defects and determining the most important parameters which could be used to predict the rate of deterioration particularly in Bitumen penetration macadam roads.

A comprehensive literature review was conducted with literature related to both local an international context to determine the road deterioration factors, road defects, rate of deteriorationetc both locally and foreign countries. Moreover, the literature review was accompanied with the road condition surveys where sophisticated equipments were used in developed countries while manual data collection methods were used in developing countries like ours.

4

In achieving the above objectives, a suitable surface condition survey form was developed. Surface condition survey form was accompanied with road surface information, road geometry, sand sealing history and road deformations. Traffic data and sand sealing history were obtained from Provincial Road Development Authority (PRDA) and the rest was obtained by field observations. Data collection was carried out in selected Bitumen penetration macadam roads for about nine months.

Cracks, potholes, edge defects, depressions, corrugations are the significant road defects observed in the field. Traffic, age, road geometry, weather, drainage, construction quality as well construction material, maintenance policy play the major role as road deteriorate agents.

Potholes and cracks were mainly considered in the field observations of road deformations. The data was analysed by using the statistical softwares SPSS and SAS. Category data was used for data analysis and statistical tests were carried out to check the significance of the road deterioration agents. It was found that both potholes and cracks were having significant relationship with age as well as traffic.

Acknowledgement

The author wishes to extend her sincere gratitude to Vice Chancellor, Dean Engineering and the Senate Research Committee of University of Moratuwa for considering the research proposal favorably and granting the necessary fund.

The author is immensely grateful to the supervisor Prof. J.M.S.J. Bandara of the Department of Civil Engineering for his guidance and support.

Acknowledgment are due to Prof.(Mrs.) N. Ratnayake, Director Postgraduate studies, Prof. A.K.W. Jayawardena, Head, Department of Civil Engineering, Dr.S.A.S. Kulathilake, Research Co-coordinator, Department of Civil Engineering, Mr. M.B.S.Fernando, Senior lecturer, Department of Civil Engineering, Mr.R.M. Amarasekara, Provincial Director, RDA, Uva Province, Dr.(Mrs) U.L.D.M.A. Judith, Development and Research Division, RDA, Borupana, Rathmalana, Mr.Wanigapura, Engineer, PRDA, Western Province, Katubedda and the other lecturers the department of Civil Engineering for the positive attitude they adopted in promoting this research

project.

\$

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Assistance offered by fellow researchers Mrs. Y. De Silva and Mrs. A. Ekanayake, is greatly acknowledged.

The author wishes to thank the following parties outside the university: Asian Development Bank for providing necessary funds for this Master of Engineering Project.

Last, but not least, I wish to pay special thanks to my husband Mr. Saman Cooray for his unfailing support and encouragement.

Finally, the author wishes to thank all others who contributed to the completion of this project.

A.S.P.Randu Harischandra

Table of Content

Declaration	i
Abstract	ii
Acknowledgement	iii
Table of Contents	iv
List of Figures	vii
List of Tables	viii
List of Charts	ix

CHAPTER 1 – Introduction

1

\$

4

.

1.1	Background	1
1.2	Research Objective	2
1.3	Research Methodology	2
1.4	Main Findings	3
1.5	Guide to report	3

CHAPTER 2 - Literature Review of Moratuwa, Sri Lanka.

2.1	Introduction	4
2.2	Road network in Sri Lanka	4
2.3	Road defects	5
2.3.1	Cracks	6
2.3.2	Block cracking	8
2.3.3	Crocodile cracking	9
2.3.4	Longitudinal cracking	10
2.3.5	Transverse cracking	11
2.3.6	Potholes	12
2.3.7	Deformations	13
2.3.8	Edge defects	15
2.4	Causes of road deterioration	16
2.4.1	Age and weathering	16
2.4.2	Environment	17
2.4.3	Deterioration caused by poor drainage	18

2.4.4	Traffic	19
2.5	Summary	20

CHAPTER 3 – Surface Condition Form

1

*

4

Y

3.1	Introduction	21
3.2	Surface condition form	21
3.2.1	Cracking	24
3.2.2	Surface texture	26
3.2.3	Aggregate polishing	27
3.2.4	Potholes	29
3.2.5	Drainage	29
3.2.6	Pilot survey	30
3.3	Data collection	31
3.3.1	Data collection – General Information	31
3.3.2	Data collection – Information about selected roads	32
3.4	Data analysis and results	33
3.4.1	Cross tabulation & measures of Association: Cross tabs	33
3.4.2	Data analysis and Results – General Information	36
3.4.3	Data analysis and Results –Information about recode data	36
3.4.3.1	Age	36
3.4.3.2	Cumulative traffic after last sand sealing	37
3.4.3.3	Drain	37
3.4.4	Data analysis and Results – Other Information	39
3.4.5	Conclusion	47

CHAPTER 4 – Development of Road deterioration factors

4.1	Introduction	48
4.2	The objective and methodologies	48
4.2.1	Contingency tables with ordered categories	48
4.2.1.1	The continuation Ratio Model	50
4.2.1.2	The Proportional Odds Model	51
4.3	Development of deterioration factor, Pothole Vs age	53
4.4	Development of deterioration factor, Crack extent Vs age	62

4.5	Development of deterioration factors; Pothole Vs Traffic	70
4.6	Development of deterioration factors; Crack extent Vs Traffic	72
4.7	Conclusion	74

CHAPTER 5 – Conclusion and Recommendation

5.1	Summary and Conclusions	75
5.2	Future work	77
Refer	rences	78
Appe	ndix A	82
Appe	ndix B	83
Appe	endix C	86
Appe	endix D	100

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

4

1

*

List of Figures

فر

*

•6

4

*

Figure 2.1	Crack types		7
Figure 2.2	Block cracking		8
Figure 2. 3	Crocodile cracking		9
Figure 2.4	Longitudinal cracking		10
Figure 2.5	Transverse cracking	Surface texture deficiencies	11
Figure 2.6	Potholes		12
Figure 2.7	Deformations		13
Figure 2.8	Edge defects		15
Figure 2.9	Poor drainage		18
Figure 3.1	Low severity cracks		24
Figure 3.2	Medium severity cracks		24
Figure 3.3	High severity cracks		24
Figure 3.4	Harsh surface		28
Figure 3.5	Angular surface		28
Figure 3.6		va, Sri Lanka.	28
Figure 3.7	Low severity pothole	Dissertations	29
Figure 3.8	Medium severity pothol	e	29
Figure 3.9	High severity pothole		29

THE HERE

List of Tables

1

*

4

Table 2.1	Road lengths in Sri Lanka	5
Table 3.1	Terms on the surface condition form	23
Table 3.2	Extent of the defects (Cracks)	25
Table 3.3	Crack position	25
Table 3.4	Crack width	26
Table 3.5	Visual assessment of surface texture	26
Table 3.6	Visual assessment of aggregate polishing	27
Table 3.7	Extent of potholes	29
Table 3.8	Availability of drains	29
Table 3.9	Selected road's data	32
Table 3.10	Contingency table of factor A and factor B	33
Table 3.11	Recode data (age)	36
Table 3.12	Recode data (Cumulative traffic after last sand sealing)	37
Table 3.13	Recode data (Drain)	37
Table 3.14	Age Vs Pothole (% of length affected)	39
Table 3.15	Pothole Vs Age cross tabulation	39
Table 3.16	Age Vs Cracks (% of area affected)	41
Table 3.17	Pothole Vs Age cross tabulation	41
Table 3.18	Cumulative traffic Vs Pothole (% of length affected)	43
Table 3.19	Pothole Vs Cumulative traffic cross tabulation	43
Table 3.20	Cumulative traffic Vs Cracks (% of area affected)	45
Table 3.21	Cracks Vs Cumulative traffic cross tabulation	45
Table 4.1	Model1:Compares low potholes with medilum & high	54
	pothloes	
Table 4. 2	Model 2 : Compares medilum potholes with high pothloes	58
Table 4.3	Model 1 : Compares crack extent1 with crack extent 2 and 3	62
Table 4.4	Model 2 : Compares crack extent 2 with crack extent 3	66
Table 4.5	Models 1 and 2, Pothole Vs Traffic	70
Table 4.6	Model 1 and 2. Crack extent Vs Traffic	72

List of Charts

Chart 3.1	Total pothole % Vs Recode age	40
Chart 3.2	Cracks (Area of block affected %) Vs Recode age	42
Chart 3.3	Total pothole% Vs Recode cumulative traffic	44
Chart 3.4	Cracks (Area of block affected %) Vs Recode cumulative	46
	traffic	
Chart 4.1	Potholes, R_{ij} Vs Age (Model 1)	56
Chart 4.2	Potholes, R $_{ij}$ Vs Age (Model 2)	60
Chart 4.3	Cracks; R_{ij} Vs Age (Model 1)	64
Chart 4.4	Cracks; R _{ij} Vs Age (Model 2)	68

1

+

4

-

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk