LB/DON/154/04

DCE 15103

USE OF LIGHTWEIGHT FILL MATERIALS IN CONSTRUCTION OF ROAD EMBANKMENTS ON SOFT PEATY CLAY

A.MUHUNTHAN

LISRAWY MORATUWA SRILANDA MORATUWA

This thesis was submitted to the Department of civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science in Geotechnical Engineering

> Supervised by Dr.S.A.S.KULATHILAKA

Department of Civil Engineering University of Moratuwa Moratuwa Sri Lanka

August 2004

624 04

UM Thesis coll.

82460

University of Moratuwa 82460

LIBRARY E

82460

DECLARATION

The work included in this thesis in part or whole has not been submitted for any other academic qualification at any institution.

A. Muhunthm 03/09/2004

UOM Verified Signature

ACKNOLEDGEMENT

My sincere thanks to the project supervisor, Dr.S.A.S Kulathilaka, for his excellent guidance and patient supervision throughout the last one and half years: Without whose support and assistance this thesis would not have been possible.

I would also like to express my gratitude to Dr.U.G.A Puswewala, Dr.H.S.Thilakasiri and Dr.T.A Peiris for giving necessary support, guidance and suggestions during progress reviews.

I would have not got the chance of doing this research study if the Scholarship was not granted. So many thanks are due to the Asian Development Bank and the Ministry of Science and Technology, Sri Lanka for funding this research through the Science and Technology Personal Development project. Also I would like to thank my university, University of Moratuwa for the services provided during the research.

The assistance received from Mr. Pitipanaarachchi, technical officer, Mr. D.G.S. Vithanage, technical officer and Mr. D. Bandulasena, lab assistant of the soil mechanics laboratory of the university of Moratuwa, during the laboratory-testing programme, is acknowledged.

Finally I would like to forward my sincere thanks to all the geotechnical research students for their support throughout the research period.

Arunasalam Muhunthan.

CONTENTS

	Page
ACKNOWLEDGEMENTS	i
CONTENTS	ii
List of Figures	vii
List of Tables	ix
Abstract	xiv
1.0 INTRODUCTION	
1.1 Difficulties in construction on soft ground	1
1.2 Improvement of peaty clay	1
1.2.1 Removal and replacement method	2
1.2.2 Stage construction	2
1.2.3 Preconsolidation by preloading	2
1.2.4 Electro-osmosis consolidation	3
1.2.5 Deep mixing method	3
1.2.6 Dynamic consolidation	4
1.2.7 Vacuum consolidation	4
1.3 Another possible solution	4
1.3.1 Expanded and extruded polystyrene blocks	5
1.3.2 Pulverized fuel ash	5
1.3.3 Expanded clay	5
1.4 Need to develop a material locally and objectives of the project	6
1.5 Arrangement of the thesis	7
2.0 LITERATURE REVIEW	
2.1 Artificial fills	8
2.2 Waste materials as fills	9
2.2.1 Civil engineering applications of recycled rubber from scrap tyres	10
2.2.2 Importance of soil tyre mixtures in civil engineering applications	12
2.2.3 Environmental studies of recycled rubber	13

2.2.4 Other general studies of recycled rubber	14
2.2.5 Concluding comment	16
2.3 Use of finite element techniques for modelling construction of	
embankments	16

3.0 DEVELOPMENT OF LIGHTWEIGHT FILL MATERIALS

3.1 Introduction	19
3.2 Development of a lightweight fill material with tyre chips	19
3.2.1 Testing of mixes and density analysis	20
3.2.1.1Particle size distribution	20
3.2.1.2 Specific gravity	21
3.2.1.3 Proctor test properties	22
3.2.1.4 Saturation and swelling characteristic of the lightweight fill	23
3.2.2 Compressibility characteristic of fill material	25
3.2.2.1 Consolidation tests on as compacted fill	26
3.2.2.2 Consolidation tests under saturated condition	30
3.2.3 Determination of shear strength characteristics of fills material	33
3.2.3.1 Unconsolidated undrained triaxial tests	34
3.2.3.2 Consolidated drain test results	36
3.2.4 Concluding comments	37
3.3 Development of a lightweight fill material with sawdust	38
3.3.1 Testing of mixes and density analysis	38
3.3.1.1 Specific gravity	41
3.3.1.2 Particle size distribution	41
3.3.2 Swelling characteristics of the mixes	42
3.3.3 Compressibility characteristics in as compacted condition	46
3.3.3.1 Compressibility characteristics of 3: 2 mix	46
3.3.3.2 Compressibility characteristics of 1: 1 mix	47
3.3.4 Compressibility characteristics under saturated condition	48

3.3.4.1 Compressibility characteristics of 3: 2 mix	48
3.3.4.2 Compressibility characteristics of 1: 1 mix	48
3.3.4.3 Comments on the compressibility characteristics	
	49
3.3.5 Determination of shear strength characteristic of fill material	52
3.3.5.1 Unconsolidated undrained triaxial tests	52
3.3.5.2 Consolidated drain test results	54
3.3.6 Concluding comments	56
3.4 Development of lightweight fill material with paddy husk	56
3.4.1 Testing of mixes and density characteristics	56
3.4.1.1 Specific gravity	58
3.4.1.2 Particles Size distribution	58
3.4.1.3 Swelling characteristics of the mixes	59
3.4.2 Compressible characteristics of the developed lightweight fill	
material	60
3.4.2.1 Consolidation tests on as compacted fill	60
3.4.2.2 Consolidation tests under saturated condition	63
3.4.3 Determination of shear strength characteristic of fill material	67

4.0 CONSTRUCTION OF EMBANKMENTS WITH LIGHTWEIGHT FILL

4.1 Introduction	70
4.2 Conventional process of preloading in road embankments	71
4.3 Proposed process using a fill material	73
4.4 Need for accurate modelling	73
4.5 Selection of a finite element program	74
4.6 Critical state programme (CRISP)	75
4.6.1 Finite element formulation	76
4.7 Modelling process	82
4.7.1 Mesh generation	83
4.7.2 Boundary condition	84
4.7.3 Selection of models	84

4.7.3.1 Plasticity	85
4.7.3.2 Critical state	86
4.7.3.3 Cam clay	88
4.7.3.4 Modified cam clay	90
4.7.4 Soil constitutive models for the proposed embankment	92
4.7.5 Evaluation of modified cam clay model parameters for peaty clay	93
4.7.6 Derivation of original Mohr column elastic perfectly plastic model	
parameters	99
4.7.7 Insitu stresses	101
4.7.8 Method of analysis	102

5.0 SIMULATIONS OF THE PROPOSED CONSTRUCTION PROCESS USING CRISP CONSOLIDATION MODEL.

5.1	Conver	ntional construction process and its simulation	105
	5.1.1	Insitu stage.	106
	5.1.2	Filling stage 1	106
	5.1.3	Consolidation stage 1	107
5.2 Pr	oposed	construction process using lightweight fill material.	109
	5.2.1 L	Jsing tyre chips soil mixture	109
	5.2.2 U	Jsing sawdust soil mixes	109
	5.2.3 L	Jsing paddy husk soil mixes	111
5.3 Pro	posed o	construction process 2	112
	5.3.1 U	sing tyre soil mixes	112
	5.3.2 U	sing sawdust soil mixes	114
	5.3.3 U	sing paddy husk soil mixes	114
6.0 AN	ALYS	IS AND RESULTS	

6.1 Construction process 1	116
6.2 Construction process 2	118
6.3 Parametric study performed	120

21
22
25
27
29

7.0 CONCLUSIONS

.

130

LIST OF FIGURES	Page
3.1 Particle size distribution of tyre chips mixes and lateritic soil	21
3.2 Proctor compaction test result	23
3.3 Swell in 1:2 tyre soil mix	24
3.4 Swell in 1:3 tyre soil mix	24
3.5 Swell in lateritic soil	24
3.6 Compressibility of as compacted lateritic soil	26
3.7 Compressibility of as compacted 1:2 mix	26
3.8 Compressibility of as compacted 1:3 mix	27
3.9 Effect on tyre mixing on m_v for lateritic soil	28
3.10 Settlement Vs root (time) curve	29
3.11 Effect on tyre mixing on c_v for as compacted lateritic soil	29
3.12 Compressibility of saturated of lateritic soil	30
3.13 Compressibility of saturated of 1:2 mix	30
3.14 Compressibility of saturated of 1:3 mix	31
3.15 Effect on tyre mixing on m_v for saturated lateritic soil	32
3.16 Effect on tyre mixing on c_v for saturated lateritic soil	32
3.17 Deviator stress Vs Axial strain for Lateritic soil	34
3.18 Mohr circle Plot for Lateral soil-UU test	34
3.19 Deviator stress Vs Axial strain for 1:3 mixtures	35
3.20 Mohr circle Plot for 1:3 mixtures-UU test	35
3.21 Deviator stress Vs Axial strain for 1:2 mixtures	35
3.22 Mohr circle Plot for 1:2 mixtures-UU test	35
3.23 Deviator stress Vs Axial strain for Lateritic soil	36
3.24 Mohr circle plot for lateritic soil-CD test	36
3.25 Deviator stress Vs Axial strain for 1:3 mix	36
3.26 Mohr circle Plot for 1:3 mix-CD test	36
3.27 Deviator stress Vs Axial strain for 1:2 mix	37
3.28 Mohr circle Plot for 1.2 mix-CD test	37

3.29 Proctor compaction test results	40
3.30 Standard Proctor Curves for 3: 2 mix	
3.31 Standard Proctor Curves for 1: 1 mix	40
3.32 Particle Size Distribution	41
3.33 Swell Characteristics of paddy husk mixes	44
3.34 Swell Characteristics of Lateritic Soil	44
3.36 e vs. log (σ) plot for 3: 2 mix at as compacted state	47
3.37 e vs. log (σ) plot for 1: 1 mix at as compacted state	47
3.38 e vs. log (σ) plot for 3: 2 mix at saturated state	48
3.39 e vs. log (σ) plot for 1: 1 mix at as saturated state	48
3.40 mv vs. log (σ) for as compacted fill	49
3.41 mv vs. log (σ) under saturated fill	49
3.42 C_v vs. log (σ) for as compacted fill	50
3.43 C_v vs. log (σ) for under saturated fill	50
3.44 Graphical representation of settlement Vs time of 3: 2 by Casagrande metho	d.50
3.45 Graphical representation of settlement Vs time of 3: 2 by Taylor method.	50
3.46 Graphical representation of settlement Vs time of 1:1 by Casagrande metho	d.51
3.47 Graphical representation of settlement Vs time of 50%: 50% by Taylor meth	nod
	51
3.48 Deviator stresses Vs Strain for 3: 2 mix design	53
3.49 Deviator stresses Vs Strain for 1:1 mix design	53
3.50 Mohr circle plot for 3: 2 mix design-UU test	53
3.51 Mohr circle plot for 1:1 mix design-UU test	54
3.52 Deviator stresses Vs Strain for 3: 2 mix design	54
3.53 Deviator stresses Vs Strain for 1: 1 mix design	54
3.54 Mohr circle plot for 3: 2 mix design-CD test	55
3.55 Mohr circle plot for 1:1 mix design-CD test	55
3.56 Proctor compaction test results of sawdust mixes	57
3.57 Particle size distribution curve for lateritic soil, soil-paddy husk mixes	58
3.58 Swelling for 1:1 mix	60
3.59 Swelling of paddy husk	60

3.60 e vs log (σ) plot for 1:1 mix at as compacted state	61
3.61 e vs. log (σ) plot for 1:1.5 mix at as compacted state	61
3.62 Effect on paddy husk mixing on mv for lateritic soil as compacted	d 62
3.63 Effect on paddy husk mixing on Cv for lateritic soil as compacted	63
3.64 e vs log (σ) plot for 1:1 mix at saturated state	64
3.65 e vs log (σ) plot for 1:1.5 mix at saturated state	65
3.66 Effect on paddy husk mixing on mv for lateritic soil as saturated	66
3.67 Effect on paddy husk mixing on C_v for lateritic soil as saturated	66
3.68 Deviator stresses Vs Strain for 1:1 as compacted mix	68
3.69 Mohr Circle plot for 1:1 compacted mix from UU test	68
3.70 Deviator stresses Vs Strain for 1:1.5 as compacted mix	68
3.71 Mohr Circle plot for 1:1 compacted mix from UU test	68
3.72 Deviator stresses Vs Strain for 1:1 saturated mix	69
3.73 Mohr Circle plot for 1:1 saturated mix from CD test.	69
3.74 Deviator stresses Vs Strain for 1:1 saturated mix	69
3.75 Mohr Circle plot for 1:1 saturated mix from CD test.	69
4.1 The soil profile and the embankment geometry	72
4.2 Tangent stiffness methods	82
4.3 The soil profile and the shape of the embankment	83
4.4 Finite element mesh	84
4.5 Plastic potentials and plastic increment strain vectors (Wood, 1990)). 86
4.6 (a) True unload-reload behaviour	88
(b) Idealised unload-reload behaviour of speswhite kaolin in v. ln p'	space (Al-
Tabbaa, 1987).	88
4.7 Cam clay yield surface	89
4.8 Modified Cam clay yield surface.	89
4.9 Determination of modified Cam Clay parameters	93
4.10 Critical state line	94
4.11 Critical state void ratio	95
4.12 Large scale setup	97
4.13 Finite element mesh of large scale	97

4.14 Comparison of observed settlement and settlements computed with CRISP.	98
4.15 Detail of determination of young's modulus	100
4.16 Consolidation test for soft peaty clay	101
4.17 Behaviour of toe	104
4.18 Behaviour of the point 5m beyond the toe	104
5.1 Insitu stage mesh	106
5.2 Deformed mesh after the stage 1 filling	106
5.3 Deformed mesh after the stage 1 filling and consolidation	107
5.4 Final finite element mesh	107
5.5 Final deformed finite element mesh	108
5.6 Graphical representation of construction of 3m embankment by lateritic soil	109
5.7 Graphical representation of construction of 3m embankment by tyre chips:	soil
mix-process 1	110
5.8 Graphical representation of construction of 3m embankment by tyre chips:	soil
mix-process 1	113
6.1 Construction results of 3m embankments over 8m depth peaty clay-process 1	116
6.2 Construction results of 3m embankments over 8m depth peaty clay- process 2	119
6.3 Construction results of 3m embankments over 8m depth peaty clay	126

LIST OF TABLES	Page
3.1 Specific gravity of tyre soil mixes and lateritic soil	22
3.2 Compaction properties of tyre soil mixes and lateritic soil	22
3.3 Swelling characteristics of fill	25
3.4 Compressibility characteristics of as compacted fill	27
3.5 Compressibility characteristics of as saturated fill	31
3.6 Undrained shear strength parameters	34
3.7 Drained shear strength parameters	37
3.8 Compaction properties of tyre soil mixes and lateritic soil	39
3.9 Specific gravity of sawdust soil mixes and lateritic soil	41
3.10 Details of Selected Mix Designs	42
3.11 Swell Characteristics of 1: 1 mix	43
3.12 Swell Characteristics of 3: 2 mix	43
3.13 Swell details of selected mixes and lateritic soil	44
3.14 Swell pressure detail	45
3.15 Compression details of 3: 2 mix and 1: 1 mix as compacted state	51
3.16 Compression details of 60%: 40% Mix and 50%: 50% Mix Under Saturated	i state
	52
3.17 Compressibility characteristics of sawdust soil mix	52
3.18 Shear strength parameters of sawdust: soil mixes	55
3.19 Proctor compaction test results on lateritic soils with paddy husk	57
3.20 Details of specific gravity	58
3.21Swell data for the mixes	59
3.22 Compressibility characteristics of as compacted fill	62
3.23 Compressibility characteristics of saturated fill	65
3.24 Shear strength parameters	69
4.1 Permeability with stress range	98
4.2 Cam clay parameters for peaty clay	99
4.3 Elastic perfectly plastic model parameters for fill materials and dense sand.	100
4.4 Insitu stresses for the sub soil	102

5.1 Detail of conventional construction techniques for 3m high embankments 108 5.2 Detail of tyre shreds construction techniques for 3m high embankments 110 5.3 Detail of sawdust construction techniques for 3m high embankments 111 5.4 Detail of paddy husk construction techniques of 3m embankments 2 5.5 Detail of tyre soil mix construction techniques for 3m embankments-Construction process 2 113 5.6 Detail of sawdust soil mix construction techniques for 3m embankments-Construction process 2 114 5.7 Detail of paddy husk soil mix construction techniques for 3m embankments-Construction process 2 115 6.1 Construction of the embankment with Soil: Tyre chip mixes- Construction process 1 117 6.2 Construction of the embankment with Soil: Sawdust mixes- Construction process 1 117 6.3 Construction of the embankment with Soil: Paddy husk mixes- Construction process 1 118 6.4 Construction of the embankment with Soil: Tyre chip mixes- Construction process 2 119 6.5 Construction of the embankment with Soil: Sawdust mixes- Construction process 2 120 6.6 Construction of the embankment with Soil: Paddy husk mixes- Construction process 2 120 6.7 Effectiveness of the process 1 with the variation of embankment thickness over 8m thickness soft layer. 121 6.8 Effectiveness of the process 2 with the variation of embankment thickness over 8m thickness soft layer. 122 6.9 Effectiveness of the process with variation of the thickness of the peaty clay layer for 3m embankments - Construction process 1. 122 6.10 Effectiveness of the process with variation of the thickness of the peaty clay layer for 4m embankments - Construction process 1. 123

6.11 Effectiveness of the process with variation of the thickness of the peaty clay
layer for 5m embankments - Construction process 1.123
6.12 Effectiveness of the process with variation of the thickness of the peaty clay
layer for 3m embankments - Construction process 2. 124
6.13 Effectiveness of the process with variation of the thickness of the peaty clay
layer for 4m embankments - Construction process 2. 124
6.14 Effectiveness of the process with variation of the thickness of the peaty clay
layer for 5m embankments - Construction process 2124
6.15 Construction of the embankment with Soil: Tyre chip mixes over peaty ground
with stiff crust. 126
6.16 Construction of the embankment with Soil: Sawdust mixes over peaty ground
with stiff crust. 126
6.17 Construction of the embankment with Soil: Paddy husk mixes over peaty ground
with stiff crust. 127
6.18 Construction of the embankment with polystyrene blocks 127

Abstract

Number of proposed highways in Sri Lanka are to be constructed over sites underlain by soft peaty clay, due to scarcity of land. In order to ensure that the in-service settlements of these roads are small enough and the road could function satisfactorily, number of special ground improvements techniques are to be adopted. An alternate approach that could be considered is the use of a lightweight fill material in the construction. Extremely lightweight fill material such as expanded and extruded polystyrene blocks were used in a number of developed countries in the construction of road embankments over soft ground and in landslide repair. However, these materials are to be imported to the country and would be very expensive. As such, from a local point of view, a process involving the use of such materials would not be economically competitive. In order to find an economically feasible solution, the lightweight fill materials should be developed with the locally available inexpensive raw materials.

As such, lightweight fill materials were developed locally by mixing with different proportions of tyre chips with lateritic soil, sawdust with lateritic soil and paddy husk with lateritic soil. Tyre chips were obtained by shredding discarded motorcar tyres. Sawdust was obtained from wood mill waste and paddy husk was obtained from rice mill waste. The developed fill material should of sufficiently low density and workable. Different mix proportions were tried out to get several suitable mixes. The developed material should be sufficiently incompressible and should possess adequate shear strength. Further detailed tests were conducted on selected mixes to establish their engineering characteristics in relation to strength and stiffness.

The effectiveness of the use of lightweight fill material in the embankment construction was studied in detail by the finite element package CRISP. The set criterion was that the in-service settlement of the road should be less than 50mm. This was achieved through the preloading process. In this study a comparison was done for two different approaches; one constructed with lateritic soil and the other incorporating the developed lightweight fills in the preloading process. The placement of the fill layers, the settlement of the peaty clay, the effect of the removal of the preload and the application of the pavement and traffic load was studied with a fully coupled Modified Cam clay constitutive model. Parametric analyses were also done varying the thickness of the embankment and the peaty clay. The process was found to be helpful in reducing the construction period and consumed fill volume. The advantages were more prominent with the increase of embankment height and soft layer thickness.