DEVELOPMENT OF FAST AND BOUNCY CRICKET PITCHES IN SRI LANKA

W.S.U. Perera

158018X

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Moratuwa

Sri Lanka

June, 2017
DEVELOPMENT OF FAST AND BOUNCY CRICKET PITCHES IN SRI LANKA

Weerakkody Sahan Udakara Perera

158018X

The research thesis was submitted in partial fulfillment of the requirements for the Degree of Master of Science

Supervised by Dr. U.P. Nawagamuwa

Department of Civil Engineering
University of Moratuwa

Moratuwa
Sri Lanka

June, 2017
DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

.. Date: June 14, 2017

W.S.U. Perera

The above candidate has carried out research for the Master thesis under my supervision.

UOM Verified Signature

.. Date: June 14, 2017

Dr. U.P. Nawagamuwa
ABSTRACT

Development of Fast and Bouncy cricket pitches in Sri Lanka

Most cricket batsmen in Indian subcontinent face a great difficulty in batting against fast bowlers on English and Australian fast and bouncy cricket pitches. The lack of having such practice pitches in home is the main reason for their lack of performances in fast pitches. It had been discovered that the pace and bounce of a cricket pitch is governed by clay content, clay mineralogy, sand content, organic matter content and grass content of the top layer of a cricket pitch.

Six local soils and one soil from India were tested for their index properties as the preliminary step. The soils which were fulfilling the requirement of the soil properties of fast and bouncy cricket pitch material were selected along with the currently used soil for Sri Lankan cricket pitch preparation and used for the laboratory model studies.

Six cubic samples for the friction and bounce comparison were prepared inside the laboratory from selected three soils varying the surface grass content.

The co-efficient of friction (μ value) and the co-efficient of restitution (e value) were determined by the bounce test and friction test respectively. Soils which had low “μ” value and high “e” value were selected as suitable soils for the further proceedings of the research.

MU and TY along with MT (Mixture of both MU and TY) were selected to carry on further studies in an actual cricket pitches in order to check their ability to generate pace and bounce.

Besides selected area of the cricket pitch was daily photographed and surface crack density was analysed using MATLAB software.

MU was selected as the most suitable soil from among all tests soils and recommended to be used for the development of local fast and bouncy cricket pitches in Sri Lanka.

Keywords: Pace, bounce, cricket pitch, clay
DEDICATION

To my parents, teachers and all cricket loving readers
ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude to my supervisor, Dr. U.P. Nawagamuwa, senior lecturer at the Department of Civil Engineering of University of Moratuwa, for his valuable guidance during my master study. It has been a great honor to have him as my supervisor. Without his advice, support and perfect guidance, this research would not have been accomplished.

And I would like to thank to Dr. N.H. Priyanakara and Dr. L.I.N. de Silva for giving me valuable suggestions during my two progress reviews. I am truly grateful for their time and valuable comments.

Moreover special thanks go to the undergraduate students who worked with me as a team – Mr. H.W.N. Wijeratna (Batch 11) and Mr. G.N.U. Thilakarathna (Batch 12). Without their help and assistance this research would not be a success.

I would like to extend my gratitude to Head of the Department, Prof. J.M.S.J. Bandara and former head Prof. S.M.A Nanayakkara, Department of Civil Engineering, University of Moratuwa in providing this opportunity. A special gesture of appreciation is also conveyed to department research coordinator, Prof. A.A.D.A.J. Perera, and Prof. S.A.S. Kulathilaka, Head of the division of Geotechnical Engineering for giving their full support in research and evaluation.

The assistance given by Mr. K.R. Pitipana Arachchi, technical officer, Mr. D.G.S. Vithanage, technical officer, Mr. Ajith, lab assistant and Mrs. Pradeepa of the Soil Mechanics Laboratory of the University of Moratuwa, during the laboratory tests is acknowledged.

Special thanks goes Prof. Ranjith Mapa from University of Peradeniya, Ms. Sumangali and the staff of Agricultural Research center, Murunkan, Dr. N.P. Rathnayaka and Mr. M.N.P. Dushantha from Department of Earth Resources Engineering University of Moratuwa.

Mr. Priyantha Fernando, curator at Tyrone Fernando stadium and Mr. Priyantha Perera, curator, at University of Moratuwa grounds and the ground staff in both grounds helped me immensely to make this research a success.

Also Mr. K. Mathivanan, Vice President of Sri Lanka Cricket supported in numerous ways and also provided cricket balls of premier club matches conducted by SLC for this research.
Many thanks are extended to University of Moratuwa for the services provided during the research and to the Senate research council of University of Moratuwa, Sri Lanka for funding this research under the Grant no SRC/LT/2015/07.

Finally, I would like to thank my family members for their love and unwavering support during my academic journey.
TABLE OF CONTENTS

DECLARATION ... i
ABSTRACT .. ii
DEDICATION ... iii
ACKNOWLEDGEMENT ... iv
TABLE OF CONTENTS ... vi
LIST OF FIGURES .. x
LIST OF TABLES ... xiv
LIST OF ABBREVIATIONS ... xiv

1 INTRODUCTION... 1
1.1 Game of Cricket .. 1
1.2 Cricket pitch and the need of Fast and bouncy cricket pitches in Sri Lanka 1
1.3 Pitch Characteristics and Need of fast and bouncy pitches in Sri Lanka. --- 1
1.4 Objective ... 2
1.5 Research approach .. 3
1.6 Dissertation Outline ... 4

2 LITERATURE REVIEW .. 5
2.1 Previous approaches for fast and bouncy cricket pitches 5
2.2 Layers of a typical Sri Lankan cricket pitch (Fernando, 2016) 5
2.3 Typical pitch preparation procedure (Fernando, 2016) 6
2.4 Playing characteristics of cricket pitches 7
2.4.1 Clay content of the soil, clay minerology and the impact 8
2.4.2 Smectite clay minerology and properties 10
2.4.3 Correlations between pitch characteristics and behaviour of ball 11

vi
2.5 Previous tests on soils .. 12
 2.5.1 Laboratory tests (Perera & Nawagamuwa, 2015) 12
 2.5.1 Soils used in previous researches 14
 2.5.2 Laser Particle Analyser (LPA) test 15
 2.5.3 X-Ray Diffraction (XRD) test 16
2.6 Previous tests for pace and bounce 16
 2.6.1 The friction test ... 16
 2.6.2 Pace Rating .. 17
 2.6.3 Condition of the cricket ball during testing (James, et al., 2012) 18
2.7 Energy input to the soil in compaction 18
2.8 Effect of roller compaction on soil (Shipton, et al., 2006) 19
2.9 Camera set up and videography of deliveries 19
 2.9.1 Camera .. 20
 2.9.2 Positioning of the camera .. 21
3 SAMPLE SELECTION AND PREPARATION FOR LABORATORY TESTS ... 23
 3.1 Introduction .. 23
 3.2 Selection of samples .. 23
 3.2.1 Murunkan soil sample (MU) 24
 3.2.2 Clay used in the Tyrone Fernando Stadium (TY) 25
 3.2.3 Kotawehera soil sample (KO) 26
4 LABORATORY EXPERIMENTS AND RESULTS 27
 4.1 Particle size distribution test .. 27
 4.1.1 Test Results of the particle size distribution test 28
 4.1.2 Summary of the particle size distribution test 29
5.1 Introduction...46
5.2 Preparation of samples for the laboratory model46
5.3 Tests for the Laboratory Model..52
 5.3.1 Friction Test ...52
 5.3.2 Bounce test for the laboratory model64
 5.3.3 Pace rating by murphy..72

6 TESTS FOR THE ACTUAL FIELD CONDITIONS75
6.1 Preparation of soils ...75
 6.1.1 Murunkan sample ...75
 6.1.2 Tyrone Sample ..76
 6.1.3 Ant Clay sample ...76
6.2 Preparation of the pitch area at the university grounds76
 6.2.1 Procedure ...77
 6.2.2 Ant-clay Layer ..80
 6.2.3 Core cutter test for Ant clay layer80
 6.2.4 Compaction energy given to the ant clay layer by vibratory rammer .. 82
 6.2.5 Compaction of the cricket pitch83
 6.2.6 Compaction Methodology83
 6.2.7 Re-laying of Murunkan soil84
6.3 Compaction of the model pitch86
6.4 Summary of the applied energy on the pitch88
6.5 Variation of the Moisture content88
6.6 Testing of the pitch ..90
6.7 Pace test ..91
6.8 Bounce Test ...92
7 CALCUATIONS, RESULTS AND DISCUSSION ---------------------------------- 95

7.1 Bounce Test--- 95

7.2 Video recording for the pitch model ------------------------------------ 95

7.2.1 Video analysis for the Bounce test... 95

7.2.2 Calculations for the parallax error.. 98

7.2.1 Results and Analysis of the bounce test for the Pitch model 99

7.2.2 Conclusion of the Bounce Test for Pitch Model......................... 104

7.2.3 Conclusion on the “e” value of Bounce Test for pitch Model 120

7.3 Pace test--- 124

7.3.1 High Speed Video (HSV) recording.. 124

7.3.2 Video analysis for the Pace test... 124

7.3.3 Videography for pace test... 125

7.3.4 Calculations... 126

7.3.5 Use of different conditions of cricket balls............................ 129

7.3.6 Results... 129

7.4 Crack density on the pitch surface-------------------------------------- 147

7.4.1 Surface crack density analysis.. 148

8 CONCLUSIONS--- 152

8.1 Guidelines for making fast and bouncy pitches-------------------------- 155

8.2 Limitations of the research and recommendations for further studies ---- 155

8.2.1 For the laboratory models studies... 155

8.2.2 For the actual field tests.. 156

9 Bibliography--- 158
LIST OF FIGURES

Figure 1.1 Schematic view of the research approach ... 3
Figure 2.1 Layers of a typical SL pitch .. 6
Figure 2.2 Data courtesy of SLC and NZSTI, (Nawagamuwa, et al., 2009) 9
Figure 2.3 USCS chart, Perera et al. 2015 ... 13
Figure 2.4 The principle of laser diffraction analysis (Burrows, 2013) 15
Figure 2.5 Camera positioning - (James, et al., 2004) ... 20
Figure 2.6 Angle of view in iPhone 6S ... 21
Figure 3.1 Locations of the selected samples ... 24
Figure 3.2 Excavation of pits in clay deposits ... 25
Figure 3.3 Tyronne soil ... 25
Figure 3.4 Cracked Buildings due to Expansive soils .. 26
Figure 3.5 Obtaining samples from Kotawehera .. 26
Figure 4.1 Particle size distribution test results .. 28
Figure 4.2 Laser Particle analyser Machine and Prepared samples 29
Figure 4.3 LPA test for MU .. 30
Figure 4.4 LPA test for KO .. 30
Figure 4.5 LPA test results of TY .. 31
Figure 4.6 Combined particle size distribution curves ... 32
Figure 4.7 Comparison of Liquid limits ... 33
Figure 4.8 Soil Classification Chart .. 34
Figure 4.9 XRD for MU .. 37
Figure 4.11 XRD for TY ... 38
Figure 4.10 XRD for KO ... 38
Figure 4.12 Typical graphs for Dry density vs MC% ... 41
Figure 5.1 - 25mm x 25mm Grid on the surface of the ant clay layer 47
Figure 5.2 Preparation of grass for planting .. 47
Figure 5.3 Penetrating roots inside the ant clay layer .. 48
Figure 5.4 Six cubic moulds with/without grass ... 48
Figure 5.5 Adding fertilizer ... 48
Figure 5.6 Applying 10kN force by the CBR machine .. 49
Figure 5.7 TY sample with 1st clay layer of 30mm ... 50
Figure 5.8 Final TY sample with 3 compacted soil layers 50
Figure 5.9 Final appearance of the prepared six samples 50
Figure 5.10 compacting by AMSLER machine .. 51
Figure 5.11 Six samples were wrapped with a polythene sheet 51
Figure 5.12 Friction test apparatus .. 53
Figure 5.13: Combination of new balls and 30 overs played balls .. 54
Figure 5.14 Friction test apparatus and arrangement of dial gauges .. 54
Figure 5.15 Friction Apparatus ... 56
Figure 5.16 Samples without grass model tests between MC% and no of Days 58
Figure 5.17 Samples with grass model tests between MC% and no of Days 59
Figure 5.18 Typical Friction force - Reaction force graph for Day5, New ball 60
Figure 5.19 Friction-Load Graphs comparison with days (TY, New Ball) .. 61
Figure 5.20 μ value Vs Days for MU ... 62
Figure 5.21 Comparison of μ value for TY with and without grass (New ball, Day 1) 63
Figure 5.22 Percentage change of μ w.r.t. TY for New ball ... 64
Figure 5.23 Image of the ball at its maximum rebound height (MU day 3) .. 65
Figure 5.24 Bounce test apparatus .. 66
Figure 5.25 Avg. Rebound height vs Days ... 68
Figure 5.26 e value vs Day for Samples without grass ... 69
Figure 5.27 e value vs Day for Samples with grass ... 70
Figure 5.28 Normalized “e” Vs number of Days for Samples without grass 71
Figure 5.29 Normalized “e” Vs Day for Samples with grass ... 72
Figure 6.1 Crushing and sieving Murunkan soil ... 75
Figure 6.2 Location of the testing area in the university grounds (Not to a scale) 76
Figure 6.3 Grass placed within pipes and placing in the pitch ... 78
Figure 6.4 Compacted ant clay layer and holes driven in .. 78
Figure 6.5 Watering and laying of soil again ... 78
Figure 6.6 Excavated pit for the pitch model ... 79
Figure 6.7 Existing clay layer thickness ... 79
Figure 6.8 Light roller/ hand roller .. 79
Figure 6.9 Machine roller compaction ... 79
Figure 6.10 Prepared model pitch for testing ... 79
Figure 6.11: Core cutter test ... 80
Figure 6.12: Core cutter dimensions ... 81
Figure 6.13 Mixing of two soils ... 85
Figure 6.14 Arrangement of compacted soil within the pit in two stages (Stage 1 on left and stage 2 on right) .. 85
Figure 6.15 Model pitch during first stage of testing for MU and TY ... 90
Figure 6.16 Model pitch during second stage of testing for MU and MT 90
Figure 6.17 Arrangement of camera for the testing procedure ... 91
Figure 6.18: Good length area of the pitch ... 92
Figure 6.20: Image analysis results of a digital photograph which covers 300x300mm of the prepared
Figure 7.31 Average bounce normalized by applied energy vs days for TY, MU, MT - Test cricket ball

Figure 7.32 iPhone 6s used in the field tests

Figure 7.33 Corrections for the horizontal distance measurements in pace test

Figure 7.34: Corrections for the horizontal distance measurements in pace test

Figure 7.35 Corrections for the vertical distance measurements in pace test

Figure 7.36 Energy reduction percentage for TY & MU, new ball

Figure 7.37 Energy reduction percentage for MT & MU, new ball

Figure 7.38 Energy reduction percentage for TY, MT & MU, new ball

Figure 7.39 Energy reduction percentage for TY & MU, 30 over ball

Figure 7.40 Energy reduction percentage for MT & MU, 30 over ball

Figure 7.41 Energy reduction percentage for TY, MT & MU, 30 over ball

Figure 7.42 Energy reduction percentage for TY & MU, 60 over ball

Figure 7.43 Energy reduction percentage for MT & MU, 60 over ball

Figure 7.44 Energy reduction percentage for TY, MT & MU, 60 over ball

Figure 7.45 Normalized ER% by applied energy for TY & MU (high MC%), new ball

Figure 7.46 Normalized ER% by applied energy for MT & MU, new ball

Figure 7.47 Normalized ER% by applied energy for TY, MT & MU, new ball

Figure 7.48 Normalized ER% by applied energy for TY & MU (high MC%), 30 over ball

Figure 7.49 Normalized ER% by applied energy for MT & MU, 30 over ball

Figure 7.50 Normalized ER% by applied energy for TY, MT & MU, 30 over ball

Figure 7.51 Normalized ER% by applied energy for TY & MU, 60 over ball

Figure 7.52 Normalized ER% by applied energy for MT & MU, 60 over ball

Figure 7.53 Normalized ER% by applied energy for TY, MT & MU, 60 over ball

Figure 7.54 Normalized ER% by MC% for MT and MU, new ball

Figure 7.56: Normalized ER% by MC% for TY, MT and MU, new ball

Figure 7.57 Normalized ER% by MC% for TY and MU (high MC%), 30 over ball

Figure 7.58 Normalized ER% by MC% for MT and MU, 30 over ball

Figure 7.59 Normalized ER% by MC% for TY, MT and MU, 30 over ball

Figure 7.60 Normalized ER% by MC% for TY and MU (high MC%), 60 over ball

Figure 7.61: Normalized ER% by MC% for MT and MU, 60 over ball

Figure 7.62: Normalized ER% by MC% for TY, MT and MU, 60 over ball

Figure 7.63 Actual image of the pitch and image analysis results by MATLAB software

Figure 7.64 - Crack density% vs MC%

Figure 7.65 Crack density percentage vs days

Figure 7.66 - Crack density (%)/ MC% vs Days
LIST OF TABLES

Table 2.1 Properties of clay used in Australian pitches (Nawagamuwa, et al., 2009) ..8
Table 2.2: Soil properties used in England pitches ...10
Table 2.3: Pace rating categorization ..17
Table 4.1 List of carried out laboratory tests and test standards ...27
Table 4.2 Particle Size distribution results ...29
Table 4.3 Percentage passing at the clay and silt range..32
Table 4.4 Atterberg Limits of the tested soils ...34
Table 4.5 Degree of Colloidal activity with CF by Hydrometer ..36
Table 4.6 Degree of Colloidal activity with CF by *PA ...36
Table 4.7 Summary of the XRD Test for MU ...39
Table 4.8 Summary of the XRD Test for KO ...39
Table 4.9 Summary of the XRD Test for TY ...39
Table 4.10 Comparison of Maximum Dry densities and Optimum Moisture Contents (OMC)41
Table 4.11 Specific gravity test results ..42
Table 4.12 Organic matter content results ..43
Table 5.1 Results of the Coefficient of friction ..57
Table 5.2 MC% of the top surface of the samples on each day ...58
Table 5.3 Average rebound heights in cm ..67
Table 5.4 e values ..69
Table 5.5 "e" value Normalized by M.C ...71
Table 5.6 Pace rating by Murphy (1985) ..73
Table 5.7 Pace rating for new ball ...73
Table 5.8 Pace rating for 30 overs used ball ...74
Table 5.9 Pace rating 60 overs used ball ..74
Table 6.1 Energy by each roller ..86
Table 6.2 Daily cumulative compaction energy input per each soil during testing in Stage 187
Table 6.3 Energy by vibratory rammer (VR) ...87
Table 6.4 Energy by rollers ..87
Table 6.5 Daily compaction energy input during testing period of second stage87
Table 6.6 Energy was applied on the pitch ..88
Table 6.7 Variation of the MC% (Top 50mm) ..89
Table 7.1 Average Ball bounce of the Hockey ball for Pitch Model ..100
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MU</td>
<td>Murunkan soil</td>
</tr>
<tr>
<td>TY</td>
<td>Tyronne Fernando Stadium soil</td>
</tr>
<tr>
<td>KO</td>
<td>Kotawehera soil</td>
</tr>
<tr>
<td>MT</td>
<td>Murunkan: Tyronne = 1:1 mixed Soil with Grass</td>
</tr>
<tr>
<td>+GR</td>
<td>Days after compaction</td>
</tr>
<tr>
<td>D.A.C</td>
<td>Ball pitching line for MU strip</td>
</tr>
<tr>
<td>PLMU</td>
<td>Ball pitching line for MT strip</td>
</tr>
<tr>
<td>PLTY</td>
<td>Ball pitching line for TY strip</td>
</tr>
<tr>
<td>Hp</td>
<td>Height of the ball measured by the pole</td>
</tr>
<tr>
<td>HTY</td>
<td>Corrected vertical ball height for TY soil</td>
</tr>
<tr>
<td>HMU</td>
<td>Corrected vertical ball height for MU soil</td>
</tr>
<tr>
<td>HB</td>
<td>Hockey Ball</td>
</tr>
<tr>
<td>TCB</td>
<td>Test Cricket Ball</td>
</tr>
<tr>
<td>PM</td>
<td>Pitch Model</td>
</tr>
<tr>
<td>ms</td>
<td>milliseconds</td>
</tr>
<tr>
<td>T_in</td>
<td>Time when ball passes the 1st pole</td>
</tr>
<tr>
<td>T_out</td>
<td>Time when ball passes the 2nd pole</td>
</tr>
</tbody>
</table>
\(T_p \) Ball pitching time

\(g \) gravitational acceleration \(9.81 \text{ m/s}^2 \)

\(J \) Joules

\(k \) kilo

\(\text{LPA} \) Laser Particle Analyser

\(G_s \) Specific gravity

\(\mu \) Coefficient of Friction

\(e \) Coefficient of Restitution

\(m \) meters

\(\text{cm} \) centimeters

\(\text{ER}\% \) Percentage reduction in total energy

\(\text{MC}\% \) Moisture Content

\(\text{USCS} \) Unified Soil Classification System

\(\text{SL} \) Sri Lanka / Sri Lankan

\(\text{AUS} \) Australia / Australian

\(\text{L/H} \) Light hand operated roller

\(\text{H/H} \) Heavy hand operated roller

\(\text{VR} \) Vibratory Rammer

\(\text{WBR} \) Walk behind roller