LB/DON/101/2017

DEVELOPMENT OF FAST AND BOUNCY CRICKET PITCHES IN SRI LANKA

W.S.U. Perera

158018X

LIBRARY UNIVERSITY OF MORATUWA, SRI LANKA MORATUWA

Degree of Master of Science

Department of Civil Engineering

University of Moratuwa

Moratuwa

Sri Lanka

624 (043)

TH 3436 +

CDROM

June, 2017

TH 3436

DEVELOPMENT OF FAST AND BOUNCY CRICKET PITCHES IN SRI LANKA

Weerakkody Sahan Udakara Perera

158018X

The research thesis was submitted in partial fulfillment of the requirements for the Degree of Master of Science

Supervised by Dr. U.P. Nawagamuwa

Department of Civil Engineering

University of Moratuwa

Moratuwa

Sri Lanka

June, 2017

DECLARATION

I declare that this is my own work and this thesis does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis, in whole or in part in print electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

Date: June 14, 2017

W.S.U. Perera

The above candidate has carried out research for the Master thesis under my supervision.

UOM Verified Signature

Date: June 14, 2017

Dr. U.P. Nawagamuwa

S

ABSTRACT

Development of Fast and Bouncy cricket pitches in Sri Lanka

Most cricket batsmen in Indian subcontinent face a great difficulty in batting against fast bowlers on English and Australian fast and bouncy cricket pitches. The lack of having such practice pitches in home is the main reason for their lack of performances in fast pitches. It had been discovered that the pace and bounce of a cricket pitch is governed by clay content, clay mineralogy, sand content, organic matter content and grass content of the top layer of a cricket pitch.

Six local soils and one soil from India were tested for their index properties as the preliminary step. The soils which were fulfilling the requirement of the soil properties of fast and bouncy cricket pitch material were selected along with the currently used soil for Sri Lankan cricket pitch preparation and used for the laboratory model studies.

Six cubic samples for the friction and bounce comparison were prepared inside the laboratory from selected three soils varying the surface grass content.

The co-efficient of friction (μ value) and the co-efficient of restitution (e value) were determined by the bounce test and friction test respectively. Soils which had low " μ " value and high "e" value were selected as suitable soils for the further proceedings of the research.

MU and TY along with MT (Mixture of both MU and TY) were selected to carry on further studies in an actual cricket pitches in order to check their ability to generate pace and bounce.

Besides selected area of the cricket pitch was daily photographed and surface crack density was analysed using MATLAB software.

MU was selected as the most suitable soil from among all tests soils and recommended to be used for the development of local fast and bouncy cricket pitches in Sri Lanka.

Keywords: Pace, bounce, cricket pitch, clay

DEDICATION

To my parents, teachers and all cricket loving readers

ACKNOWLEDGEMENT

First of all, I would like to express my sincere gratitude to my supervisor, Dr. U.P. Nawagamuwa, senior lecturer at the Department of Civil Engineering of University of Moratuwa, for his valuable guidance during my master study. It has been a great honor to have him as my supervisor. Without his advice, support and perfect guidance, this research would not have been accomplished.

And I would like to thank to Dr. N.H. Priyankara and Dr. L.I.N. de Silva for giving me valuable suggestions during my two progress reviews. I am truly grateful for their time and valuable comments.

Moreover special thanks go to the undergraduate students who worked with me as a team – Mr. H.W.N. Wijerathna (Batch 11) and Mr. G.N.U. Thilakarathna (Batch 12). Without t eir help and assistance this research would not be a success.

I would like to extend my gratitude to Head of the Department, Prof. J.M.S.J. Bandara and former head Prof. S.M.A Nanayakkara, Department of Civil Engineering, University of Moratuwa in providing this opportunity. A special gesture of appreciation is also conveyed to department research coordinator, Prof. A.A.D.A.J. Perera, and Prof. S.A.S. Kulathilaka, Head of the division of Geotechnical Engineering for giving their full support in research and evaluation.

The assistance given by Mr. K.R. Pitipana Arachchi, technical officer, Mr. D.G.S. Vithanage, technical officer, Mr. Ajith, lab assistant and Mrs. Pradeepa of the Soil Mechanics Laboratory of the University of Moratuwa, during the laboratory tests is acknowledged.

Special thanks goes Prof. Ranjith Mapa from University of Peradeniya, Ms. Sumangali and the staff of Agricultural Research center, Murunkan, Dr. N.P. Rathnayaka and Mr. M.N.P. Dushantha from Department of Earth Resources Engineering University of Moratuwa.

Mr. Priyantha Fernando, curator at Tyronne Fernando stadium and Mr. Priyantha Perera, curator, at University of Moratuwa grounds and the ground staff in both grounds helped me immensely to make this research a success.

Also Mr. K. Mathivanan, Vice President of Sri Lanka Cricket supported in numerous ways and also provided cricket balls of premier club matches conducted by SLC for this research.

Many thanks are extended to University of Moratuwa for the services provided during the research and to the Senate research council of University of Moratuwa, Sri Lanka for funding this research under the Grant no SRC/LT/2015/07.

Finally, I would like to thank my family members for their love and unwavering support during my academic journey.

TABLE OF CONTENTS

DECLARATIONi
ABSTRACT ii
DEDICATIONiii
ACKNOWLEDGEMENTiv
TABLE OF CONTENTSvi
LIST OF FIGURESx
LIST OF TABLES xiv
LIST OF ABBREVIATIONS xiv
1 INTRODUCTION1
1.1 Game of Cricket 1
1.2 Cricket pitch and the need of Fast and bouncy cricket pitches in Sri Lanka 1
1.3 Pitch Characteristics and Need of fast and bouncy pitches in Sri Lanka 1
1.4 Objective 2
1.5 Research approach 3
1.6 Dissertation Outline 4
2 LITERATURE REVIEW5
2.1 Previous approaches for fast and bouncy cricket pitches 5
2.2 Layers of a typical Sri Lankan cricket pitch (Fernando, 2016) 5
2.3 Typical pitch preparation procedure (Fernando, 2016) 6
2.4 Playing characteristics of cricket pitches 7
2.4.1 Clay content of the soil, clay minerology and the impact
2.4.2 Smectite clay minerology and properties
2.4.3 Correlations between pitch characteristics and behaviour of ball 11

	2.5	Prev	vious tests on soils 12	5
		2.5.1	Laboratory tests (Perera & Nawagamuwa, 2015) 12	2
		2.5.1	Soils used in previous researches 14	1
		2.5.2	Laser Particle Analyser (LPA) test 15	5
		2.5.3	X-Ray Diffraction (XRD) test	5
	2.6	Pre	vious tests for pace and bounce16	5
		2.6.1	The friction test	6
		2.6.2	Pace Rating1	7
		2.6.3	Condition of the cricket ball during testing (James, et al., 2012) 18	8
	2.7	Ene	ergy input to the soil in compaction18	8
	2.8	Effe	ect of roller compaction on soil (Shipton, et al., 2006)19	9
	2.9	Car	nera set up and videography of deliveries19	9
		2.9.1	Camera	0
		2.9.2	Positioning of the camera	1
3		SAM	PLE SELECTION AND PREPARATION FOR LABORATOR	RY
TH	EST	S		23
	3.1	Intr	roduction2	3
	3.2	Sel	ection of samples2	3
		3.2.1	Murunkan soil sample (MU) 2	4
		3.2.2	Clay used in the Tyrone Fernando Stadium (TY) 2	.5
		3.2.3	Kotawehera soil sample (KO) 2	:6
4		LAB	ORATORY EXPERIMENTS AND RESULTS	27
	4.1	l Par	ticle size distribution test2	27
		4.1.1	Test Results of the particle size distribution test	28
		4.1.2	Summary of the particle size distribution test	29

	4.2 Las	er Particle Analysis (LPA)29
	4.3 Res	ults of Laser Particle Analysis 30
	4.3.1	Conclusion of Laser Particle Analysis
	4.4 Atte	erberg limit test33
	4.4.1	Atterberg limit test results
	4.4.2	Conclusion of the Atterberg test results
	4.5 Deg	gree of Colloidal Activity 35
	4.5.1	Results of Degree of Colloidal Activity
	4.5.2 Hydro	Conclusion of Degree of Colloidal Activity according to the CF by meter
	4.5.3	Conclusion of Degree of Colloidal Activity according to the CF by LPA 36
	4.6 X-I	Ray diffraction Test (XRD)37
	4.6.1	Results of the XRD Test
	4.6.2	Conclusion of the XRD Test
	4.7 Pro	octor Compaction Test40
	4.7.1	Results of the proctor compaction test
	4.7.2	Conclusion of the Proctor compaction results
	4.8 Sp	ecific gravity test42
	4.8.1	Results of the Specific gravity test
	4.8.2	Conclusion of the Specific gravity test
	4.9 Or	ganic matter content test 42
	4.9.1	Results of Organic matter content test
	4.9.2	Conclusion of the Organic matter content test
	4.10	Conclusion from the laboratory test results43
5	LAB	ORATORY MODEL STUDIES 40

	5.1 Intr	roduction	46
	5.2 Pre	paration of samples for the laboratory model	46
	5.3 Tes	sts for the Laboratory Model	52
	5.3.1	Friction Test	52
	5.3.2	Bounce test for the laboratory model	64
	5.3.3	Pace rating by murphy	72
6	TEST	IS FOR THE ACTUAL FIELD CONDITIONS	75
	6.1 Pre	paration of soils	-75
	6.1.1	Murunkan sample	75
	6.1.2	Tyronne Sample	76
	6.1.3	Ant Clay sample	. 76
	6.2 Pre	eparation of the pitch area at the university grounds	-76
	6.2.1	Procedure	. 77
	6.2.2	Ant-clay Layer	. 80
	6.2.3	Core cutter test for Ant clay layer	. 80
	6.2.4	Compaction energy given to the ant clay layer by vibratory rammer.	. 82
	6.2.5	Compaction of the cricket pitch	. 83
	6.2.6	Compaction Methodology	. 83
	6.2.7	Re-laying of Murunkan soil	. 84
	6.3 Co	ompaction of the model pitch	- 86
	6.4 Su	Immary of the applied energy on the pitch	- 88
	6.5 Va	ariation of the Moisture content	- 88
	6.6 Te	esting of the pitch	- 90
	6.7 Pa	ace test	-91
	6.8 B	ounce Test	92

	6.9 Me	easurement of crack density93	1
7	CAL	CULATIONS, RESULTS AND DISCUSSION95	
	7.1 Bo	unce Test95	
	7.2 Vie	deo recording for the pitch model95	
	7.2.1	Video analysis for the Bounce test	
	7.2.2	Calculations for the parallax error	
	7.2.1	Results and Analysis of the bounce test for the Pitch model	
	7.2.2	Conclusion of the Bounce Test for Pitch Model 104	
	7.2.3	Conclusion on the "e" value of Bounce Test for pitch Model 120	
	7.3 Pac	ce test 124	
	7.3.1	High Speed Video (HSV) recording 124	
	7.3.2	Video analysis for the Pace test 124	
	7.3.3	Videography for pace test 125	
	7.3.4	Calculations 126	
	7.3.5	Use of different conditions of cricket balls 129	
	7.3.6	Results 129	
	7.4 Cra	ack density on the pitch surface 147	
	7.4.1	Surface crack density analysis 148	
8	CON	CLUSIONS152	
	8.1 Gu	idelines for making fast and bouncy pitches 155	
	8.2 Lin	nitations of the research and recommendations for further studies 155	
	8.2.1	For the laboratory models studies 155	
	8.2.2	For the actual field tests	
9	Bibli	ography158	

X

LIST OF FIGURES

Figure 1.1 Schematic view of the research approach	
Figure 2.1 Layers of a typical SL pitch	6
Figure 2.2 Data courtesy of SLC and NZSTI, (Nawagamuwa, et al., 2009)	Q
Figure 2.3 USCS chart, Perera et al. 2015	
Figure 2.4 The principle of laser diffraction analysis (Burrows, 2013)	
Figure 2.5 Camera positioning - (James, et al., 2004)	20
Figure 2.6:Angle of view in iPhone 6S	21
Figure 3.1 Locations of the selected samples	21
Figure 3.2 Excavation of pits in clay deposits	24
Figure 3.3 Tyronne soil	25
Figure 3.4 Cracked Buildings due to Expansive soils	25
Figure 3.5 Obtaining samples from Kotawehera	26
Figure 4.1 Particle size distribution test results	20
Figure 4.2 Laser Particle analyser Machine and Prepared samples	
Figure 4.3 LPA test for MU	
Figure 4.4 LPA test for KO	30
Figure 4.5 LPA test results of TY	
Figure 4.6 Combined particle size distribution curves	
Figure 4.7 Comparison of Liquid limits	32
Figure 4.8 Soil Classification Chart	34
Figure 4.9 XRD for MU	37
Figure 4.11 XRD for TY	38
Figure 4.10 XRD for KO	38
Figure 4.12 Typical graphs for Dry density vs MC%	41
Figure 5.1 - 25mm x 25mm Grid on the surface of the ant clay layer	
Figure 5.2 Preparation of grass for planting	47
Figure 5.3 Penetrating roots inside the ant clay layer	48
Figure 5.4 Six cubic moulds with/without grass	
Figure 5.5 Adding fertilizer	48
Figure 5.6 Applying 10kN force by the CBR machine	40
Figure 5.8 TY sample with 1st clay layer of 30mm	50
Figure 5.8 Final TY sample with 3 compacted soil layers	50
Figure 5.9 Final appearance of the prepared six samples	50
Figure 5.10 compacting by AMSLER machine	51
Figure 5.11 Six samples were wrapped with a polythene sheet	-51
Figure 5.12 Friction test apparatus	-51
Figure 5.12 Friction test apparatus	51 51

Figure 5.13: Combination of new balls and 30 overs played balls	54
Figure 5.14 Friction test apparatus and arrangement of dial gauges	54
Figure 5.15 Friction Apparatus	56
Figure 5.16 Samples without grass model tests between MC% and no of Days	58
Figure 5.17 Samples with grass model tests between MC% and no of Days	59
Figure 5.18 Typical Friction force - Reaction force graph for Day5, New ball	60
Figure 5.19 Friction-Load Graphs comparison with days (TY, New Ball)	61
Figure 5.20 μ value Vs Days for MU	62
Figure 5.21 Comparison of μ value for TY with and without grass (New ball, Day 1)	63
Figure 5.22 Percentage change of μ w.r.t. TY for New ball	64
Figure 5.23 Image of the ball at its maximum rebound height (MU day 3)	65
Figure 5.24 Bounce test apparatus	66
Figure 5.25 Avg. Rebound height vs Days	68
Figure 5.26 e value vs Day for Samples without grass	69
Figure 5.27 e value vs Day for Samples with grass	70
Figure 5.28 Normalized 'e' Vs number of Days for Samples without grass	71
Figure 5.29 Normalized "e" Vs Day for Samples with grass	72
Figure 6.1 Crushing and sieving Murunkan soil	75
Figure 6.2 Location of the testing area in the university grounds (Not to a scale)	76
Figure 6.3 Grass placed within pipes and placing in the pitch	78
Figure 6.4 Compacted ant clay layer and holes driven in	78
Figure 6.5 Watering and laying of soil again	78
Figure 6.6 Excavated pit for the pitch model	79
Figure 6.7 Existing clay layer thickness	79
Figure 6.8 Light roller/ hand roller	79
Figure 6.9 Machine roller compaction	79
Figure 6.10 Prepared model pitch for testing	79
Figure 6.11: Core cutter test	80
Figure 6.12: Core cutter dimensions	81
Figure 6.13 Mixing of two soils	85
Figure 6.14 Arrangement of compacted soil within the pit in two stages (Stage 1 on left and stage	e 2 on
right)	85
Figure 6.15 Model pitch during first stage of testing for MU and TY	90
Figure 6.16 Model pitch during second stage of testing for MU and MT	90
Figure 6.17 Arrangement of camera for the testing procedure	91
Figure 6.18: Good length area of the pitch	92
Figure 6.20: Image analysis results of a digital photograph which covers 300x300mm of the pre-	epared
	93

Figure 7.31 Average bounce normalized by applied energy vs days for TY, MU, MT - Test cricket ball Figure 7.32 iPhone 6s used in the field tests ------ 124 Figure 7.33 Corrections for the horizontal distance measurements in pace test------ 125 Figure 7.34: Corrections for the horizontal distance measurements in pace test ------ 125 Figure 7.35 Corrections for the vertical distance measurements in pace test ------ 126 Figure 7.36 Energy reduction percentage for TY &MU, new ball------ 130 Figure 7.37 Energy reduction percentage for MT &MU, new ball------ 130 Figure 7.38 Energy reduction percentage for TY, MT &MU, new ball------ 131 Figure 7.39 Energy reduction percentage for TY &MU, 30 over ball ------ 132 Figure 7.40 Energy reduction percentage for MT & MU, 30 over ball ------ 132 Figure 7.41 Energy reduction percentage for TY, MT & MU, 30 over ball ------ 133 Figure 7.42 Energy reduction percentage for TY & MU, 60 over ball ------ 134 Figure 7.43 Energy reduction percentage for MT & MU, 60 over ball ----- 134 Figure 7.44 Energy reduction percentage for TY, N F & MU, 60 over ball ------135 Figure 7.45 Normalized ER% by applied energy for TY & MU (high MC%), new ball ------ 136 Figure 7.46 Normalized ER% by applied energy for MT & MU, new ball----- 136 Figure 7.47 Normalized ER% by applied energy for TY,MT & MU, new ball ------ 137 Figure 7.48 Normalized ER% by applied energy for TY & MU (high MC%), 30 over ball ------ 138 Figure 7.49 Normalized ER% by applied energy for MT & MU, 30 over ball------ 138 Figure 7.50 Normalized ER% by applied energy for TY, MT & MU, 30 over ball ------ 139 Figure 7.51 Normalized ER% by applied energy for TY & MU, 60 over ball ------ 140 Figure 7.52 Normalized ER% by applied energy for MT & MU, 60 over ball------ 140 Figure 7.53 Normalized ER% by applied energy for TY, MT & MU, 60 over ball ------ 141 Figure 7.55 Normalized ER% by MC% for MT and MU, new ball ------ 142 Figure 7.54 Normalized ER% by MC% for TY and MU(high MC%), new ball------ 142 Figure 7.56: Normalized ER% by MC% for TY, MT and MU, new ball------ 143 Figure 7.57 Normalized ER% by MC% for TY and MU (high MC%), 30 over ball------ 144 Figure 7.58 Normalized ER% by MC% for MT and MU, 30 over ball ------ 144 Figure 7.59 Normalized ER% by MC% for TY, MT and MU, 30 over ball------ 145 Figure 7.60 Normalized ER% by MC% for TY and MU (high MC%), 60 over ball------ 146 Figure 7.61: Normalized ER% by MC% for MT and MU, 60 over ball ------ 146 Figure 7.62: Normalized ER% by MC% for TY, MT and MU, 60 over ball------ 147 Figure 7.63 Actual image of the pitch and image analysis results by MATLAB software ----- 147 Figure 7.64 - Crack density% vs MC%------ 149 Figure 7.65 Crack density percentage vs days----- 149 Figure 7.66 - Crack density (%)/ MC% vs Days ----- 151

LIST OF TABLES

Table 2.1 Properties of clay used in Australian pitches (Nawagamuwa, et al., 2009)	8
Table 2.2: Soil properties used in England pitches	10
Table 2.3: Pace rating categorization	17
Table 4.1 List of carried out laboratory tests and test standards	27
Table 4.2 Particle Size distribution results	29
Table 4.3 Percentage passing at the clay and silt range	32
Table 4.4 Atterberg Limits of the tested soils	34
Table 4.5 Degree of Colloidal activity with CF by Hydrometer	36
Table 4.6 Degree of Colloidal activity with CF by 'PA	36
Table 4.7 Summary of the XRD Test for MU	39
Table 4.8 Summary of the XRD Test for KO	39
Table 4.9 Summary of the XRD Test for TY	39
Table 4.10 Comparison of Maximum Dry densities and Optimum Moisture Contents (OMC)	41
Table 4.11 Specific gravity test results	42
Table 4.12 Organic matter content results	43
Table 5.1 Results of the Coefficient of friction	57
Table 5.2 MC% of the top surface of the samples on each day	58
Table 5.3 Average rebound heights in cm	67
Table 5.4 e values	69
Table 5.5 "e" value Normalized by M.C	71
Table 5.6 Pace rating by Murphy (1985)	73
Table 5.7 Pace rating for new ball	73
Table 5.8 Pace rating for 30 overs used ball	74
Table 5.9 Pace rating 60 overs used ball	74
Table 6.1 Energy by each roller	86
Table 6.2 Daily cumulative compaction energy input per each soil during testing in Stage 1	87
Table 6.3 Energy by vibratory rammer (VR)	87
Table 6.4 Energy by rollers	87
Table 6.5 Daily compaction energy input during testing period of second stage	87
Table 6.6 Energy was applied on the pitch	88
Table 6.7 Variation of the MC% (Top 50mm)	
Table 7.1 Average Ball bounce of the Hockey ball for Pitch Model	100

Table 7.2 Average rebound values of the Test cricket ball for PM	
Table 7.3 Average e value for Hockey ball	
Table 7.4 Avg e value for Test cricket ball	
Table 7.5 Average Bounce / % change in applied energy for HB of PM	
Table 7.6 Average Bounce / % change in applied energy for TCB of PM	
Table 7.7 Average Bounce / MC% for HB	
Table 7.8 Average Bounce / MC% for TCB of PM	
Table 7.9 Surface crack density percentage	

4

Table 7.2	Average rebound values of the Test cricket ball for PM	10
Table 7.3	Average e value for Hockey ball	10
Table 7.4	Avg e value for Test cricket ball	10
Table 7.5	Average Bounce / % change in applied energy for HB of PM	10
Table 7.6	Average Bounce / % change in applied energy for TCB of PM	11
Table 7.7	Average Bounce / MC% for HB	11
Table 7.8	Average Bounce / MC% for TCB of PM	11
Table 7.9	Surface crack density percentage	.14

4

LIST OF ABBREVIATIONS

Description
Murunkan soil
Tyronne Fernando Stadium soil
Kotawehera soil
Murunkan: Tyronne = 1:1 mixed Soil
with Grass
Days after compaction
Ball pitching line for MU strip
Ball pitching line for MT strip
Ball pitching line for TY strip
Height of the ball measured by the pole
Corrected vertical ball height for TY soil
Corrected vertical ball height for MU soil
Hockey Ball
Test Cricket Ball
Pitch Model
milliseconds
Time when ball passes the 1 st pole
Time when ball passes the 2 nd pole

Тр	Ball pitching time
g	gravitational acceleration 9.81 ms ⁻¹
J	Joules
k	kilo
LPA	Laser Particle Analyser
Gs	Specific gravity
μ	Coefficient of Friction
e	Coefficient of Restitution
m	meters
cm	centimeters
ER%	Percentage reduction in total energy
MC%	Moisture Content
USCS	Unified Soil Classification System
SL	Sri Lanka / Sri Lankan
AUS	Australia / Australian
L/H	Light hand operated roller
H/H	Heavy hand operated roller
VR	Vibratory Rammer
WBR	Walk behind roller

XV