INVESTIGATION OF NR-EPDM BLENDS FOR IMPROVING OZONE RESISTANCE OF TYRE SIDE WALL.

By

S.A.D. Saman Kumara.

MERCHY OF MORATUWA END

A dissertation submitted as partial fulfillment of the requirements for the

award of the degree of MASTER OF SCIENCE in polymer technology,

University of Moratuwa, Sri Lanka.

Department of Chemical & Process Engineering

University of Moratuwa,

Sri Lanka.

May 2004

Thesis

82710

XXXXXXXXXXXX

66

678(0

LB DON 29/05

35

Supervisor

: Mr. K. Subramaniam University of Moratuwa.

University of Moratuwa

82710

.

82710

Acknowledgement

This study has been made possible through the generous help and co-operation extended to me by many individuals and institutions, to all of whom I am most grateful. I regret that lack of space does not permit me to mention every name.

Especially, I would like to express my gratitude to my supervisor Mr. K. Subramaniam, Senior lecturer, Polymer Technology Division, University of Moratuwa for advice, suggestions, assistance and cooperation he extended to me, to make this industry oriented research project a success.

I am indebted to my employer, Mr. Ranathunga Rajapaksha, Managing Director, Samson Rubber Industries (Pvt.) Ltd. sanctioning me leave and providing facilities and to follow the course and undertake this research project.

My special thanks are due to Dr. L.P. Mendis, Director, Samson Reclaim Rubber (Pvt.) Ltd. and Mr. N. Nandasena, Technical Manager, Samson Rubber Industries (Pvt.) Ltd for their support, advice and suggestions to carry out this work successfully

I would also like to thank Mr. Sumith and Mr. Upali who kindly helped me to carry out laboratory works.

My thank must go to Mr. Motha, Manager, Rubber and Plastic Technology Division, Industrial Technology Institute for his help to carry out some experimental work successfully.

I wish to record my appreciation for the assistance given by staff of Global Information Systems in typing the final copy of this report.

My gratitude must go to my parent & wife for the support given to me to make this study a success.

Finally I wish to thank every body who has helped in many ways for the successful completion of this project.

Ι

Contents

Page

Chapter 1:
List of figures viii
List of tablesvii
Abstractvi
Acknowledgementi

Introduction	1	
--------------	---	--

Chapter 2:

•

.

6

•

Historical review: Rubber blends and their protection

from	ozone	attack	
2.1	Natura	al rubber (NR): Structure and properties of NR	
2.2	Ethylene propylene diene monomer rubber (EPDM):		
	Struct	ure and properties of EPDM5	
2.3	Elasto	mer blends8	
	2.3.1	Compatibility of elastomers of the blends9	
	2.3.2	Methods of blend preparation10)
	2.3.3	Mechanical blending of elastomers10)
	2.3.4	Structure and morphology of elastomer blends11	
	2.3.5	Co-vulcanization and interfacial bonding of elastomers 14	ŀ
	2.3.6	Factors affecting blend properties15	5
		a) Polymer ratio16	5
		b) Phase morphology17	7
		c) Distribution of filler between the elastomers18	3
		d) Distribution of cross-links between the elastomers20)

		e) Interfacial adhesion / cross linking	22
		f) Distribution of plasticizer between the elastomers	23
2.4 NR-EPDM blends			23
	2.4.1	Properties of NR-EPDM blends	24
	2.4.2	Co-curing between NR, EPDM rubbers	24
	2.4.3	Accelerators for NR-EPDM blends	26
	2.4.4	Ozone protection of NR-EPDM blends	28
2.5 Prot		ction of rubber from ozone attack.	29
	2.5.1	Ozone formation	30
	2.5.2	General features of ozone cracking	31
	2.5.3	Effect of fillers for ozone cracking	32
	2.5.4	Chemistry of the ozone-rubber reaction	33
		a) Mechanism of ozonolysis	33
		b) Reaction of ozone with saturated hydrocarbons	36
	2.5.5		37
		a) Critical stress	38
		b) Rate of crack growth	39
	2.5.6	Physical methods of ozone protection	40
		a) Wrapping, covering or coating the rubber surface	40
		b) Adding waxes to the rubber	40
		c) Polymer blends	41
	2.5.7	Chemical antiozonants	42
	2.5.8	Mechanism of chemical antiozonants	43
		a) Re-linking theory	43
		b) Scavenging theory	43
		c) Protective film theory	44
		d) Combination of scavenging plus protective	
		film theory	44

¢

4

Chapter 3 :

9

r;

Exp	imental 45
3.1	Material Used45
	a) Filler: Carbon black45
	b) Process oil: Aromatical oil & Paraffinic oil45
	c) Activators: Zinc oxide and Stearic acid46
	d) Antiozonants: Vulkanox 4020 (Bayer)47
	e) Antioxident: Vulkanox HS (Bayer)47
	f) Processing additives: Gum easy T-7847
	g) Hydrocarbon waxes: Sun proof extra wax48
	h) Accelerators: MBTS, DPG, MBT, TMTD48
	i) Vulcanizing agent: Sulphur50
3.2	Preparation of compounds based on NR: EPDM blend
3.4	Physical tests
	a) Hardness
	b) Flexing58
	c) Tensile properties60
	d) Tear resistance62
	e) Set Property64
	f) Abrasion resistance
	g) Ozone resistance

Chapter 4:

-

Resu	lts and dis	cussion	69
4.1	Processing	g characteristics	69
	a)	Plasticity	69
	b)	Green tack	71
	c)	Cure characteristics	73
4.2	Physical p	properties	76
	a)	Hardness	76
	b)	Flexing	78
	c)	Tensile strength	80
	d)	Modulus at 300% elongation	82
	e)	Elongation at break	
	f)	Tear strength	
	g)	Tension set	
	h)	Abrasion resistance	90
	i)	Ozone resistance	92
4.3	Conclusio	on	95
			0.4

v

Abstract

In this project, attempts have been made to improve the properties of Natural rubber (NR) tyre sidewall compound, especially the ozone resistance by blending the rubber with Ethylene propylene diene monomer rubber (EPDM).

In view of this, various rubber compounds, containing the blends of NR and EPDM in the different proportions have been prepared, vulcanized and tested for their physical strength and ozone resistance.

The results of this investigation reveals that the blends containing NR:EPDM in the range of ratios from 70:30 to 80:20 are most suitable for the production of tyre sidewalls with high strength and ozone resistance.

List of Tables

٠

Ŧ

	Page
3.1	Formulation of the rubber blends
4.1	Plasticity of NR: EPDM blends
4.2	Green tack of NR: EPDM blends71
4.3	Cure characteristics of NR: EPDM blends73
4.4	Hardness of NR: EPDM blends76
4.5	Flexing of NR: EPDM blends78
4.6	Tensile strength of NR: EPDM blends80
4.7	Modulus of NR: EPDM blends82
4.8	Elongation at break of NR: EPDM blends
4.9	Tear strength of NR: EPDM blends
4.10	Tension set of NR: EPDM blends
4.11	Abrasion of NR: EPDM blends90
4.12a	Results of ozone resistance under static condition
	(Ozone con. 50 pphm). Tonis These & Dissertations
4.12b	Results of ozone resistance under dynamic condition
	(Ozone con. 50 pphm)93
4.12c	Results of ozone resistance under static condition
	(Ozone con. 150 pphm)93
4.12d	Results of ozone resistance under dynamic condition
	(Ozone con. 150 pphm)94

List of Figures

•

۰

*

.

1.1	Essential parts of cycle tyre	2
2.1	A section of a model blend of two elastomers A and B	•••••
	containing filler, plasticizer and crosslinks	16
3.1	Dimensions of hardness measuring sample.	57
3.2	Dimensions of flexing (fatigue) measuring sample	58
3.3	Dimensions of dumb bell cutter used for tensile test	61
3.4	Dimensions of dumb bell knife used for tear resistance test	63
3.5	Dimensions of abrasion measuring sample	65
3.6	Dimensions of test specimens for ozone resistance	68
4.1	Plasticity of NR: EPDM blends.	70
4.2	Green tack of NR: EPDM blends	72
4.3a	TS ₂ of NR: EPDM blends	74
4.3b	TC ₉₀ of NR: EPDM blends	75
4.4	Hardness of NR: EPDM blends	77
4.5	Flexing of NR: EPDM blends	79
4.6	Tensile strength of NR: EPDM blends	.81
4.7	Modulus of NR: EPDM blends	.83
4.8	Elongation at break of NR: EPDM blends	.85
4.9	Tear strength of NR: EPDM blends	.87
4.10	Tension set of NR: EPDM blends	.89
4.11	Abrasion of NR: EPDM blends	.91

Page