LB/DON/ 34/05

A FUZZY APPROACH TO HANDLE UNCERTAINTY AND VAGUENESS IN LIFE CYCLE COSTING FOR AIR CONDITIONING SYSTEMS

By R.C.R. Perera

LIERAWY OF MORATUWA, SHINT P

This thesis was submitted to the Department of Civil Engineering of the University of Moratuwa in partial fulfillment of the requirements for the Degree of Master of Science.

Supervised by

DR. A.A.D.A.J. PERERA

University of Moratuwa

82719

624°04° 624(043)

Department of Civil Engineering University of Moratuwa Sri Lanka October 2004

Thesis

82719

82719

Dedication

To my parents

For their spiritual support through out my life...

7

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk This thesis is a report on the research work carried out in the Department of Civil Engineering, University of Moratuwa, Sri Lanka. This submission is original and does not have any materials previously published or written by any others anywhere, except where citing is made.

R.C.R. Perera Department of Civil Engineering University of Moratuwa, Sri Lanka.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

UOM Verified Signature Supervisor Dr. A. A. J. Perez Dr. A. A. J.

i

Abstract

Air conditioning cost being the most cost effective element of building services in buildings because of its higher operating cost. In order to select a cost benefited one among the available types a life cycle cost analysis can be applied. Life cycle costing (LCC) by its definition is totally based on predictions. Accuracy in its application depends on how far the predictions covers the reality, handles the uncertainties involved and ultimately how far predicting.

There are five major variables that contribute to the operating cost as well as to the inaccuracy of LCC. Those are: indoor temperature; outdoor temperature; relative humidity; number of occupants; and period of operating. These variables inherit very high uncertainty and vagueness. Thus, predictions and decision making has to provide space for handling them. The fuzzy set theory is employed to handle the inherent uncertainty and vagueness of the human decision making process. Hence, the hypothesis of the research was "Fuzzy expert system will address the problem".

Conducting interviews and questionnaire surveys, with air conditioning design experts, the knowledge for the knowledgebase and decision-making logic for inference engine of the system were established. Then the system was prototyped in MATLAB R11TM. Traditional methods can process only descriptive data while fuzzy system can process both descriptive and non-descriptive (continuous) data and produce accurate output. For example, indoor temperature and number of occupants are changing almost every minute. This dynamicity is effectively accommodated in fuzzy membership functions. Since fuzzy systems can do multi-variant manipulating for sensitivity analysis, the contribution of all the input variables towards the output variable "change in operating cost" can be obtained at the same time. Finally, the developed system was tested for its accuracy in prediction of operating cost with data from hotel buildings covering the data taken from questionnaire survey and then with a real set of data to govern the whole system behavior. It exhibited 80% of accuracy. The thesis describes the approach, development of model and the testing in detail.

Key words: Life Cycle Costing (LCC), air conditioning, uncertainties, vagueness, Fuzzy logic

Acknowledgement

A special thank is due for the Vice Chancellor, Dean-Faculty of Engineering, Director-postgraduate studies, and the Chairman and the members of the Senate Research Committee of the University of Moratuwa for providing me a placement, and the Asian Development Bank for entitling me for a scholarship to undertake this research study. I also wish to thank Head, Department of Civil Engineering, who provided me with all the necessary resources and supports for successfully carrying out the study.

I am grateful to the departmental research coordinator and the examination panel for their continuous assessments and advices.

I am greatly indebted to my research supervisor Dr. A.A.D.A.J. Perera of Department of Civil Engineering, University of Moratuwa for guiding and advising the work at anytime without any reluctant.

I would like to extend my thank to the Faculty and Staff of Construction Engineering and Management division of Department of Civil Engineering and Department of Management of Technology for their support in carrying out this research work.

The help provided by people from the real estate industry and lending organizations, and overseas is much appreciated.

Finally, I also wish to thank all others who have helped this research work.

Table of Contents

Declaration	i
Abstract	ii
Acknowledgement	iii
Table of Contents	iv
List of Figures	vii
List of Tables	viii
Abbreviations	ix

1		Introduct	ion		1
	1.1	Bacl	sground		1
	1.2	Rese	earch Objectives		3
	1.3	Rese	earch Methodology		3
	1.4	Main	n Findings		4
	1.5	Guic	le to Report		4
2		Literatur	e Review	•••••	7
	2.1	Intro	oduction	•••••	7
	2.2	Life	Cycle Costing (LCC)		7
	2.3	Imp	lementation of LCC Worldwide	•••••••••••	8
		2.3.1	Examples of the Application in LCC	•••••	11
		2.3.2	LCC Tools		18
	2.4	LCC	and Uncertainty		20
		2.4.1	Practical Limitations in Application		20
		2.4.2	Common Problems for Previous Work	•••••	22
	2.5	Con	clusions		23
3		LCC in A	Air Conditioning Systems		24
	3.1	Intro	luction		24
	3.2	Air C	Conditioning		25
	3.3	Туре	s of Air Conditioning		26
		3.3.1	Refrigerant Systems	·····	27
					iv

iv

3.4	LCC	Considerations in Air Conditioning	31
3	3.4.1	Factors Affecting Operating Cost	33
3	3.4.2	Cooling Load	34
3.5	Concl	usions	37
4 F	`uzzy Lo	gic in LCC	38
4.1	Introd	luction	38
4.2	Fuzzy	Logic	39
4.3	Fuzzy	Expert System Model	40
4	4.3.1	Fuzzy Control Variables for Factors Affecting Operating Cost	40
4	4.3.2	Fuzzification	41
4	4.3.3	Fuzzy Inference	43
4	4.3.4	An Example Problem	46
4	4.3.5	Defuzzification	49
4.4	Evalua	ation of Ouestionnaire	51
4	4.4.1	Development of Ouestionnaires	51
4	4.4.2	Ouestionnaire Survey	51
4	4.4.3	Data Collection These & Dissertations	52
4.5	Devel	opment of the System	55
4.5	Concl	usions	60
5 T	esting th	ne System	61
5.1	Intro	luction	61
5.2	Pract	ical Testing	61
5.3	Theo	retical Testing	62
5.4	Adva	ntages of the System	65
5.5	Limi	ations of the System	66
5.6	Conc	lusions	67
6 C	Conclusio	ons	68
6.1	Sumi	nary and Conclusions	68
6.2	Reco	mmendations and Further Research	69
Refere	ences		70

١.

V

Appendices	.74
Appendix A An Overview of Fuzzy Logic	.74
Appendix B Questionnaire	.85
Appendix C Statistical Analysis of Data	.91
Appendix D Practical Testing Data	.98
Appendix E Theoretical Testing	104

.

1

-

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 1.1	Research Methodology	3	
Figure 1.2	Plan of the Thesis		
Figure 2.1	Life Cycle Cost Elements	8	
Figure 2.2	Implementing Activity-Based LCA Models for Design and		
	Management	17	
Figure 3.1	Classification of Air Conditioning (Source: Cooling and Air-		
	Conditioning, www.unl.ac.lk)	26	
Figure 3.2	Flow of Refregerant (Source: Mitsubishi Electric Air_conditioning,		
	www.mitsubishielectric.it/inglese/air_cond/body_3.htm)	.27	
Figure 3.3	Window type air conditioner (Source: How air conditioners work,		
	http://www.howstuffworks.com/ac2.htm)	.29	
Figure 3.4	A Split system (Source: What is air conditioning http://www.		
	airconditioning- online.com:8016/what_is_aircon.htm)	.30	
Figure 4.1	Fuzzy Expert System Model (Source: www.comp.nus.edu.sg)	.40	
Figure 4.2	Membership Functions for Input Variables	.44	
Figure 4.3	Inference by the System : An Example	48	
Figure 4.4	Center of Area (COA) Defuzzification	50	
Figure 4.5	Plan of FIS	.55	
Figure 4.6	The FIS Editor	56	
Figure 4.7	The MF Editor	57	
Figure 4.8	The Rule Editor	59	
Figure 4.9	The Rule Viewer	59	
Figure 4.10	The Surface Viewer	50	
Figure 5.1	Test Results	54	

÷

List of Tables

Table 1.1	Recent researches on LCC2	
Table 3.1	Procedure for Calculating Space Design Cooling Load by	
	CLTD/SCL/CLF Method (Source: 1997 ASHRAE Fundamentals	
	Handbook)	
Table 4.1	Normalization of Fuzzy Control Variables41	
Table 4.2	Mean Numeric Values for Linguistic Values of Variables43	
Table 4.3	Importance Index45	
Table 5.1	Results of Practical Testing	

_ _

٠.

4

4

÷

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

viii

Abbreviations

- LCC Life Cycle Costing
- IT' Indoor Temperature
- OT Outdoor Temperature
- RH Relative Humidity
- CNO Change in Number of Occupants
- COC Change in Operating Cost
- CCL Change in Cooling Load
- LCCA Life Cycle Cost Analysis
- MF Membership Function
- FL Fuzzy Logic

÷

- FST Fuzzy Set Theory
- COA Center Of Area Defuzzification Method

University of Moratuwa, Sri Lanka, Electronic Theses & Dissertations www.lib.mrt.ac.lk